JPS5835615B2 - Improved styrenic polymer extrusion foam manufacturing method - Google Patents

Improved styrenic polymer extrusion foam manufacturing method

Info

Publication number
JPS5835615B2
JPS5835615B2 JP54142014A JP14201479A JPS5835615B2 JP S5835615 B2 JPS5835615 B2 JP S5835615B2 JP 54142014 A JP54142014 A JP 54142014A JP 14201479 A JP14201479 A JP 14201479A JP S5835615 B2 JPS5835615 B2 JP S5835615B2
Authority
JP
Japan
Prior art keywords
foam
polymer
weight
styrene
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54142014A
Other languages
Japanese (ja)
Other versions
JPS5667343A (en
Inventor
■ 加藤
礼彦 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Kakoh KK
Original Assignee
Dow Kakoh KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Kakoh KK filed Critical Dow Kakoh KK
Priority to JP54142014A priority Critical patent/JPS5835615B2/en
Publication of JPS5667343A publication Critical patent/JPS5667343A/en
Publication of JPS5835615B2 publication Critical patent/JPS5835615B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は改良された難燃性スチレン系ポリマー押出発泡
体の製法に関するもので、更に詳しくは押出発泡体原板
断面の密度分布がより均一化され、得られる発泡体の圧
縮強度、繰り返し圧縮歪特性、断熱性能の改良された難
燃性スチレン系ポリマー押出発泡体の製法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing an extruded flame-retardant styrene polymer foam, and more specifically, the present invention relates to a method for producing an improved extruded flame-retardant styrene polymer foam, and more specifically, the density distribution in the cross section of the extruded foam original plate is made more uniform, and the resulting foam is improved. This invention relates to a method for producing a flame-retardant styrenic polymer extruded foam with improved compressive strength, repeated compressive strain characteristics, and heat insulation performance.

スチレン系ポリマー押出発泡体は、例えば特公昭27−
2690号、特公昭31−5393号、特公昭36−2
2276号、米国特許第 3188295号等に記載されているようにその製造方
法はよく知られており、その断熱性、耐久性、衛生性、
取扱いの容易性等の特性が認められ、冷凍庫、貯蔵庫は
もとよりホテル、病院、事務所、工場、並びに一般住居
に至るあらゆる建築物の断熱材として活用され、省エネ
ルギー化と居住性の向上に大きな役割を果している。
Styrenic polymer extruded foam is, for example,
No. 2690, Special Publication No. 31-5393, Special Publication No. 36-2
As described in No. 2276, U.S. Patent No. 3,188,295, etc., the manufacturing method thereof is well known, and its insulation, durability, hygiene,
Recognized for its characteristics such as ease of handling, it is used as insulation material in all kinds of buildings, from freezers and storage rooms to hotels, hospitals, offices, factories, and general residences, and plays a major role in saving energy and improving livability. is fulfilled.

しかしスチレン系ポリマー発泡体を建材関係に用いる場
合は発泡体の燃焼性が問題となり、JISA 951
1にも規定されているように火災防止の観点から発泡体
には自消性又は難燃性が要求されている。
However, when using styrene polymer foam for building materials, the combustibility of the foam becomes a problem, and JISA 951
As stipulated in Article 1, foams are required to be self-extinguishing or flame retardant from the viewpoint of fire prevention.

通常、発泡体に難燃性を付与するには難燃剤を添加する
が、この時、発泡体の気泡径を小さくするため(密度一
定で発泡体の断熱性を良くするためには発泡体気泡径を
十分に小さくしなければならない。
Usually, a flame retardant is added to impart flame retardancy to a foam, but at this time, in order to reduce the cell diameter of the foam (in order to maintain a constant density and improve the insulation properties of the foam, it is necessary to add a flame retardant). The diameter must be made sufficiently small.

)通常の造核剤例えば最も一般的に用いられるケイ酸カ
ルシウム、珪藻土、シリコンオイルを使った場合は気泡
径の調節はされるが難燃性が著しく阻害されるという問
題があった。
) When ordinary nucleating agents such as calcium silicate, diatomaceous earth, and silicone oil, which are most commonly used, are used, the bubble diameter can be controlled, but there is a problem in that flame retardancy is significantly impaired.

この問題を解決したのが特公昭36−22276号及び
米国特許第3188295号で、同明細書には難燃剤を
含有する樹脂に通常の造核剤を加えて難燃効果を損うこ
となく気泡径が十分に小さい発泡体を得ることは容易な
ことでなく、これを行い得るのはインジゴ化合物及び銅
フタロシアン顔料を造核剤とするときであると述べられ
ている。
This problem was solved in Japanese Patent Publication No. 36-22276 and US Pat. It is said that it is not easy to obtain a foam with a sufficiently small diameter, and that this can be achieved when an indigo compound and a copper phthalocyan pigment are used as nucleating agents.

本発明は上述の従来の難燃性スチレン系ポリマー押出発
泡体の製法に更に改良を加えたもので、難燃性スチレン
系ポリマー押出発泡体の研究を種々の角度から行ってい
る過程で、押出発泡に使用するポリマーの中身まで遡っ
て検討を加えている際、意外なことに従来には見られな
かった特定の要件を満たすポリマーを使用するとき、得
られる押出発泡体原板の断面密度分布がより均一化され
、発泡体圧縮強さ、繰り返し圧縮歪特性、更には断熱性
能も改良されることを見い出し本発明を成し遂げた。
The present invention is a further improvement to the above-mentioned conventional method for producing extruded flame-retardant styrene polymer foam. When we went back and examined the contents of the polymer used for foaming, we found that when we used a polymer that met specific requirements that had not been seen before, the cross-sectional density distribution of the resulting extruded foam original plate was The present invention was accomplished by discovering that the foam can be made more uniform, and the compressive strength, repeated compressive strain characteristics, and heat insulation performance of the foam can also be improved.

本発明でいう密度分布の均一化、繰り返し圧縮歪特性の
改良がもたらす実用的効果について今少し説明を加える
A little explanation will now be given on the practical effects brought about by the uniform density distribution and the improvement of repeated compressive strain characteristics in the present invention.

一般に押出発泡法により得られるスチレン系ポリマー発
泡体原板には、その断面に密度斑があり、中心部の密度
は低く外周部のそれは高い。
Generally, a styrenic polymer foam original plate obtained by an extrusion foaming method has density irregularities in its cross section, with the density being lower in the center and higher in the outer periphery.

スチレン系ポリマー発泡体においては密度が十分に小さ
い範囲(20〜50kg/m’)では密度が低くなると
断熱性能が劣り(熱伝導率が高い)機械的強度も弱くな
る。
In a styrene polymer foam, if the density is in a sufficiently small range (20 to 50 kg/m'), the lower the density, the poorer the insulation performance (higher thermal conductivity) and the weaker the mechanical strength.

従っである断熱性能と機械的強度を持つ目標製品を製造
しようとする時、発泡体原板の最低密度部分即ち原板中
心部の物性が製品目標となるよう製造するので、密度斑
により生じる周辺部の高密度の部分は過剰品質となる。
Therefore, when trying to manufacture a target product with certain heat insulation performance and mechanical strength, the physical properties of the lowest density part of the foam base plate, that is, the center of the base plate, are the target product, so the properties of the peripheral area caused by density unevenness are reduced. High density areas will be over-quality.

従って最低密度は同一にして密度分布をより均一にでき
るならば、均一化によりもたらされる過剰部の減少に相
当する分だけ原価低減できることになる。
Therefore, if the minimum density can be kept the same and the density distribution can be made more uniform, the cost can be reduced by the amount corresponding to the reduction in excess portion brought about by uniformization.

特に量産型の場合、その経済的効果は極めて大きい。Especially in the case of mass-produced type, the economic effect is extremely large.

又、繰り返し圧縮歪特性についても、難燃性スチレン系
ポリマー押出発泡体原板は、そのまま、或は薄く切り分
けて床に敷きつめたり、畳の芯材として大量に用いられ
ているが、該圧縮歪特性が改善されると長時間使用時に
応力が繰り返しかかる部分が歪んでくるという問題が解
消され、踏圧感が変化しない利点を生むことになるので
ある。
In addition, flame-retardant styrene-based polymer extruded foam original plates are used in large quantities as they are or cut into thin pieces and laid on the floor or as core material for tatami mats. If this is improved, the problem of distortion in parts that are repeatedly subjected to stress during long-term use will be resolved, and the advantage will be that the pressure sensation will not change.

しかして本発明は難燃剤と、インジゴ化合物、銅フタロ
シアン顔料、及びアントラキノン系顔料の少なくとも一
種からなる造核剤の適量を含有させることによって難燃
性が付与され気泡径が調節されたスチレン系ポリマーの
押出発泡体を製造する際に、0.3重量%以下のスチレ
ン単量体及び0.5〜1,5重量%のスチレン三重体を
含有したスチレン系ポリマーを使用することを特徴とす
る改良されたスチレン系ポリマー押出発泡体の製法に係
る。
Therefore, the present invention provides a styrene-based material that is imparted with flame retardancy and has a controlled cell diameter by containing an appropriate amount of a flame retardant and a nucleating agent consisting of at least one of an indigo compound, a copper phthalocyan pigment, and an anthraquinone pigment. When producing an extruded polymer foam, a styrenic polymer containing 0.3% by weight or less of styrene monomer and 0.5 to 1.5% by weight of styrene triplet is used. The present invention relates to an improved method for producing extruded styrenic polymer foam.

以下本発明の内容を詳述する。The contents of the present invention will be explained in detail below.

本発明の重要な要件は (イ)スチレン単量体の含有量が0.3重量%以下、(
ロ)スチレン三量体の含有量が0.5〜1.5重量%、
の範囲にあるポリマーを使用することがある。
The important requirements of the present invention are (a) the content of styrene monomer is 0.3% by weight or less;
b) The content of styrene trimer is 0.5 to 1.5% by weight,
Polymers in the range may be used.

その理由はスチレン単量体の含有量が0.3重量%を越
す場合は発泡体の強度、繰り返し圧縮歪特性が改善され
ない。
The reason for this is that if the styrene monomer content exceeds 0.3% by weight, the strength and repeated compressive strain characteristics of the foam will not be improved.

又スチレン単量体の含有量が0.3重量%以下のもので
もスチレン三重体の含有量が0.5重量%以下では十分
な密度均一化効果が認められないし、該含有量が1.0
重量%以上になるとその効果が飽和気味で、1.5重量
%を越えると得られる発泡体の実用耐熱特性がかえって
悪化する。
Furthermore, even if the styrene monomer content is 0.3% by weight or less, if the styrene triplet content is 0.5% by weight or less, a sufficient density uniformity effect cannot be observed;
When the amount exceeds 1.5% by weight, the practical heat resistance properties of the resulting foam actually deteriorate.

ここでいう耐熱とは樹脂そのものの耐熱性とは別で、発
泡体を建築物躯体にアスファルトで容着する時のアスフ
ァルト耐熱性を指し、建材用発泡体の耐熱性能を実用上
に近い状態で評価したものである。
Heat resistance here is different from the heat resistance of the resin itself, and refers to the asphalt heat resistance when the foam is adhered to the building frame with asphalt. It was evaluated.

アスファルト耐熱性が低下すると発泡体気泡膜の溶融変
形、破泡、発泡体体積の減少の度合が大きくなり、アス
ファルト溶着作業が困難となるし、溶着後の施行精度も
悪く、接着強度も低下する。
When the asphalt heat resistance decreases, the degree of melting deformation, foam rupture, and decrease in foam volume of the foam cell membrane increases, making asphalt welding work difficult, and the accuracy after welding is poor, and the adhesive strength decreases. .

そのような現象はスチレン三量体の含有量が1.5重量
%を越えると顕著になる。
Such a phenomenon becomes noticeable when the content of styrene trimer exceeds 1.5% by weight.

スチレン系ポリマーに難燃剤及び造核剤を添加して押出
発泡させると溶融押出時に難燃剤及び(又は)造核剤の
一部が部分変化して結果的には得られる発泡体の強度が
低下するが、本発明の場合使用するポリマーが含有する
化学的二重結合を持つところのスチレン単量体の量を減
少することにより得られる発泡体の強度が先ず改善され
、その上でスチレン三量体が発泡溶融体中に適量存在す
ると発泡に好適な溶融流動領域が拡大され、これが密度
分布の均一化に貢献すると同時に、気泡生成中のポリマ
ーにねばりが出て来て気泡壁の弾性が向上し、その結果
、発泡体の強度が更に向上し、繰り返し圧縮歪特性が改
善され、更には断熱性能も改善されるものと推定される
When a flame retardant and nucleating agent are added to a styrenic polymer and extruded into foam, part of the flame retardant and/or nucleating agent changes during melt extrusion, resulting in a decrease in the strength of the resulting foam. However, by reducing the amount of styrene monomer with chemical double bonds contained in the polymer used in the present invention, the strength of the resulting foam is firstly improved; When the appropriate amount of polymer is present in the foaming melt, the melt flow region suitable for foaming is expanded, which contributes to uniform density distribution, and at the same time, the polymer during foaming becomes sticky, improving the elasticity of the cell walls. However, as a result, it is estimated that the strength of the foam is further improved, the repeated compressive strain characteristics are improved, and the heat insulation performance is also improved.

なお、本発明者等の研究ではスチレン単量体、スチレン
三量体の含有量は基材ポリマーとこれを加工し発泡した
後とは差程大きな違いが生じないことが確認されている
In addition, research conducted by the present inventors has confirmed that there is no significant difference in the content of styrene monomer and styrene trimer between the base polymer and the content after processing and foaming the base polymer.

本発明の方法は例えば、先ず従来公知のスチレン系ポリ
マー製造方法の中からモノマー重合方法/条件、ポリマ
ー精製方法/条件を考慮し、スチレン単量体が0.3重
量%以下及びスチレン三量体が0.5〜1.5重量%の
範囲にあるポリマーを選び、或はこれ等含有量の異なる
ポリマーを適宜混合して調整し、これを基材ポリマーと
する。
The method of the present invention, for example, first takes into account the monomer polymerization method/conditions and polymer purification method/conditions from conventionally known styrenic polymer production methods, and selects styrene monomers of 0.3% by weight or less and styrene trimers. A polymer having a content of 0.5 to 1.5% by weight is selected, or polymers having different contents are appropriately mixed and adjusted, and this is used as a base polymer.

次に、例えば上記基材ポリマーに難燃剤、造核剤を予備
混合し、この混合物を押出機にて溶融混合し、かかる溶
融混合物に発泡剤を注入して更に混練し、これを発泡温
度(80〜180℃)に調温して、ダイスから室温、大
気圧下に押出し、発泡させて発泡体とする。
Next, for example, a flame retardant and a nucleating agent are premixed with the base polymer, this mixture is melt-mixed in an extruder, a blowing agent is injected into the molten mixture, and the mixture is further kneaded. The mixture is extruded from a die at room temperature under atmospheric pressure and foamed to form a foam.

本発明で使用される難燃剤は重合体に難燃性を付与する
脂肪族炭化水素及び芳香族炭化水素のノ・ロゲン化物、
特に臭化物及びそれらの誘導体、或はポリアルキルエス
テル及びエーテルの臭素化物である。
The flame retardants used in the present invention include aliphatic hydrocarbon and aromatic hydrocarbon compounds that impart flame retardancy to the polymer;
In particular, bromides and their derivatives, or bromides of polyalkyl esters and ethers.

本発明者らの研究によると密度が100に9/m以下の
スチレン系ポリマーの発泡体に対しては分解温度が25
0℃以下の含・・ロゲン系難燃剤が好適で、難燃性、機
械物性、着色性の安定した発泡体が得られる。
According to research by the present inventors, the decomposition temperature is 25% for styrene polymer foams with a density of 100:9/m or less.
A rogen-containing flame retardant having a temperature of 0° C. or lower is suitable, and a foam with stable flame retardancy, mechanical properties, and coloring properties can be obtained.

その上うな難燃剤の例としてはテトラブロモデカン(分
解温度150℃)、ペンタブロモエチルベンゼン(20
0℃)、テトラブロモビスフェノールA(210℃)、
トリス(4−アリロキシ−3・5−シグロモフェニル)
プロパン(195〜198℃)、ペンタブロモモノクロ
ロシクロヘキサン(230〜235℃)カ挙げられる。
Additionally, examples of such flame retardants include tetrabromodecane (decomposition temperature 150°C), pentabromoethylbenzene (decomposition temperature 150°C),
0°C), tetrabromobisphenol A (210°C),
Tris (4-allyloxy-3,5-cyglomophenyl)
Examples include propane (195-198°C) and pentabromomonochlorocyclohexane (230-235°C).

これら難燃剤の添加量はポリマー使用量の約0.5〜1
0重量%であり、これ等は普通粒状ポリマーや造核剤等
と共に押出機中に送入されるが、押出発泡域以前の任意
の所で加熱可塑化された溶融体に添加混合しても良い。
The amount of these flame retardants added is about 0.5 to 1 of the amount of polymer used.
0% by weight, and these are normally fed into the extruder together with granular polymers, nucleating agents, etc., but they can also be added and mixed into the heated and plasticized melt at any point before the extrusion foaming zone. good.

本発明で必須的に使用される造核剤としては、上述の難
燃剤を添加しても得られる発泡体の難燃性を阻害するこ
となく気泡径調節能力を持つインジゴ化合物と銅フタロ
シアン顔料が公知なものとして挙げられる。
Nucleating agents that are essential in the present invention include indigo compounds and copper phthalocyanine pigments, which have the ability to adjust the cell diameter without impairing the flame retardancy of the foam obtained even when the above-mentioned flame retardants are added. are listed as known.

しかしながら本発明者らの研究によればなかでも特にカ
ラーインデックス(アメリカン アソシエーション オ
フ テキスタイルケミスツ アンド カラリスッCAm
ericanAssociation of Te
xtile Chemists andColori
sts)発行の区分でバットブルー1(インジゴ化合物
)及びピグメントブルー15:1.15:2.15:3
.15:4(銅フタロシアン顔料)と命名されるもり、
及び新規な造核剤としてソルベントブルー35.83.
105(いずれもアントラキノン化合物)と命名される
ものが難燃性スチレン系ポリマー発泡体に対し難燃性を
損わず、優れた青色着色性及び繰り返し所用能(回収原
料の再使用能)を与えることを見い出した。
However, according to the research of the present inventors, in particular, the color index (American Association of Textile Chemistry and Coloris
ericanAssociation of Te
xtile Chemists and Colori
sts) published classification: Bat Blue 1 (indigo compound) and Pigment Blue 15:1.15:2.15:3
.. 15:4 (copper phthalocyan pigment)
and Solvent Blue 35.83. as a new nucleating agent.
105 (both are anthraquinone compounds) provides flame-retardant styrenic polymer foam with excellent blue coloring properties and repeatability (ability to reuse recovered raw materials) without impairing flame retardancy. I discovered that.

これら上述の造核剤はスチレン系ポリマーに対し0.0
01〜3重量%の割合で使用される。
These above-mentioned nucleating agents are 0.0
It is used in a proportion of 0.01 to 3% by weight.

中でもこれら造核剤を0.02〜0.5重量%の割合で
使用すると発泡体は色調の優れた薄い青色を呈し外観色
彩上好ましいばかりか押出発泡時、難燃剤の分解の検出
尺度となり得ることを見し・出した。
Among these, when these nucleating agents are used in a proportion of 0.02 to 0.5% by weight, the foam exhibits an excellent light blue color, which is not only favorable in terms of appearance color, but can also be used as a detection measure for the decomposition of flame retardants during extrusion foaming. I saw something and put it out there.

即ち、押出発泡条件が過酷になると難燃剤の分解の程度
が大きくなり、難燃効果が低下すると同時に青色が褪色
若しくは変色することを見い出した。
That is, it has been found that when the extrusion foaming conditions become severe, the degree of decomposition of the flame retardant increases, the flame retardant effect decreases, and at the same time the blue color fades or changes color.

この現象は押出発泡体製造時の異常条件の感知修正に利
用できるので極めて簡便、有用な工程管理手段となり得
る。
This phenomenon can be used to detect and correct abnormal conditions during the production of extruded foam, and thus can be an extremely simple and useful means of process control.

本発明の押出発泡に用いられる発泡剤は揮発性有機化合
物としてそれ自体公知の例えばプロパン、ブタン、ペン
タン、ヘキサン、ヘプタン、スチレン、インブチレン、
ジメチルエーテル、メチルエチルエーテル、塩化メチル
、モノクロルジフルオルメタン、パークロルフルオル炭
素類が挙げられる。
The blowing agents used in the extrusion foaming of the present invention are volatile organic compounds known per se, such as propane, butane, pentane, hexane, heptane, styrene, imbutylene,
Examples include dimethyl ether, methyl ethyl ether, methyl chloride, monochlorodifluoromethane, and perchlorofluorocarbons.

これら発泡剤の2種以上の混合物も使用される。Mixtures of two or more of these blowing agents may also be used.

発泡剤の添加量は一般に始めのポリマー100 gr当
り0,05〜0.5gr分子比の量で使用される。
The amount of blowing agent added is generally used in an amount of 0.05 to 0.5 gr molar ratio per 100 gr of starting polymer.

本発明でいうスチレン系ポリマーとはスチレンを主成分
とするポリマーを指すが、スチレンの代すニα−メチル
スチレン、ビニルトルエン、クロルスチレン等地のステ
1フン系モノマーであってもよい。
The styrenic polymer used in the present invention refers to a polymer containing styrene as a main component, but it may also be a styrene-based monomer such as di-α-methylstyrene, vinyltoluene, or chlorostyrene.

又上記スチレン系モノマーに共重合可能なモノマー、例
えばアクリロニトリル、メタクリロニトリル、アクリル
酸メチル、メタクリル酸メチル、無水マレイン酸、アク
リルアミド、ビニルピリジン、アクリル酸、メタクリル
酸等を共重合したコポリマーや、更に靭性を付与するた
めゴムをブ1/ンドしたもの或は重合時に加えたものも
含まれる。
Copolymers copolymerized with monomers copolymerizable with the above styrene monomers, such as acrylonitrile, methacrylonitrile, methyl acrylate, methyl methacrylate, maleic anhydride, acrylamide, vinylpyridine, acrylic acid, methacrylic acid, etc. It also includes rubber binders or rubber added during polymerization to impart toughness.

更に上記ステ1フン系ポリマーにその特性が損なわれな
い程度に他のポリマーをブレンドしたものであっても差
し支えない。
Furthermore, other polymers may be blended with the above-mentioned Stephun-based polymer to the extent that its properties are not impaired.

以下に本発明を実施例、比較例で説明するが、先ず使用
するスチレンポリマーを表 1に示す。
The present invention will be explained below using Examples and Comparative Examples. First, Table 1 shows the styrene polymers used.

※実施例1〜4/比較例1〜3 まず、実施例1としてポリマーAを使用し、スクリュー
型押出機、発泡剤注入混合機、冷却機、板状物底形用の
ダイスからなる押出発泡装置にて発泡を行った。
*Examples 1 to 4/Comparative Examples 1 to 3 First, as Example 1, Polymer A was used, and an extrusion foaming machine consisting of a screw extruder, a blowing agent injection mixer, a cooler, and a die for the bottom shape of a plate-like object was prepared. Foaming was performed using a device.

ポリマー100重量部、難燃剤として2・2−ビス(4
−アリロキシ−3・5−ジプロモノエニール)プロパン
2重量部、造核剤としてカラーインデックスでバットブ
ルー1と命名されるインジゴ化合物0.03重量部から
なる原料を押出機スクリューホッパ一部に連続供給し、
発泡剤注入混合機にてジクロロジフルオルメタンとメチ
ルクロライド1対1からなる混合発泡剤10重量部を加
圧注入した。
100 parts by weight of polymer, 2,2-bis(4
A raw material consisting of 2 parts by weight of -allyloxy-3,5-dipromonoenyl) propane and 0.03 parts by weight of an indigo compound named Vat Blue 1 in the color index as a nucleating agent was continuously fed into a part of the extruder screw hopper. supply,
Using a blowing agent injection mixer, 10 parts by weight of a mixed blowing agent consisting of dichlorodifluoromethane and methyl chloride (1:1) was injected under pressure.

得られた混合物は続いて冷却機にて加圧下のもとで混和
、冷却され、最終的に樹脂温度は123℃に調節された
The resulting mixture was then mixed and cooled under pressure in a cooler, and the resin temperature was finally adjusted to 123°C.

続L・て発泡剤含有樹脂はダイスより大気圧下に発泡さ
れ、平均厚さ56mm、平均中160闘の断面を有する
平均気泡径約0.7間の押出発泡体原板を得た。
The foaming agent-containing resin was foamed using a die under atmospheric pressure to obtain an extruded foam base plate having an average thickness of 56 mm, an average cross section of 160 mm, and an average cell diameter of about 0.7.

この原板より長さ50mmの試験片を切り出し、厚さ方
向の上下両面を等しく約3間平削し、巾方向の両端を各
々約30關切落し、得られた厚さ50mm、巾100m
m、長さ501rLMLの試験片を更に厚さ方向に5等
分に切分は最上面より符番された平板試験片1〜5を得
た。
A test piece with a length of 50 mm was cut from this original plate, and the top and bottom sides in the thickness direction were planed equally for about 3 inches, and both ends in the width direction were cut off by about 30 inches each, resulting in a thickness of 50 mm and a width of 100 m.
The test piece having a length of 501 rLML was further divided into 5 equal parts in the thickness direction to obtain flat test pieces 1 to 5 numbered from the top surface.

この平板試験片の重量と体積を測定し、みかげ密度を求
めた。
The weight and volume of this flat test piece were measured, and the apparent density was determined.

結果は下表の通り。The results are shown in the table below.

木表に見られる通り押出発泡体原板の密度分布は中心部
が低く、上下両端程高い。
As seen on the wooden surface, the density distribution of the extruded foam original plate is low in the center and high towards the top and bottom ends.

従って最低密度より高い部分は過剰密度となる。Therefore, the portion higher than the minimum density becomes an excess density.

ここでは過剰密度の指標として中心部の最低密度より高
い分の密度差の積算値、即ち(37,1−36,0)+
(36,3−36,0)+(36,4−36,0)+(
37,3−36,0) = 3.1を用いる。
Here, as an indicator of excess density, we use the integrated value of the density difference higher than the lowest density in the center, that is, (37,1-36,0)+
(36,3-36,0)+(36,4-36,0)+(
37,3-36,0) = 3.1 is used.

次に発泡体原板より上記密度の測定の時と同様にして厚
さ501n11L1巾100mm、長さ100mmの試
験片を取り出し5%歪圧縮強度を測定したところ3.4
kg /crAであった。
Next, a test piece with a thickness of 501n11L1 width of 100mm and length of 100mm was taken out from the foam base plate in the same manner as in the density measurement above, and its 5% strain compressive strength was measured.It was 3.4
kg/crA.

又、発泡体原板を厚さ方向の真中で2等分し、厚さ25
mm、タテ、ヨコ50mmの試験片を作成し、厚さ方向
全面に1.25 kg/cr;iの応力が繰り返し10
万回かかる繰り返し圧縮歪試験を行った。
In addition, the foam base plate was divided into two equal parts in the middle in the thickness direction, and the thickness was 25 mm.
A test piece of 50 mm in length and width was prepared, and a stress of 1.25 kg/cr; i was repeatedly applied to the entire surface in the thickness direction for 10 minutes.
A repeated compressive strain test was conducted over 10,000 times.

10万回後の試験片厚さは20順に減少し歪量は5關で
あった。
After 100,000 cycles, the thickness of the test piece decreased in the order of 20, and the amount of strain was 5.

更に原板より切り出した厚さ25m11L、巾100間
、長さ200mmの試料2枚を平行に並べて200關角
とし、JIS A 1412に準拠して熱伝導率を
測定したところ0.027 Kcal / m/Hr / ’Cであった。
Furthermore, two samples cut out from the original plate with a thickness of 25 m and 11 L, a width of 100 mm, and a length of 200 mm were arranged in parallel to form a 200 mm angle, and the thermal conductivity was measured in accordance with JIS A 1412 and found to be 0.027 Kcal/m/ It was Hr/'C.

アスファルト耐熱性については厚さ25rILrIL、
巾50關、長さ100mmの試験片を用いて行った。
For asphalt heat resistance, thickness 25rILrIL,
The test was conducted using a test piece with a width of 50 mm and a length of 100 mm.

まず試験片の長さ方向50間の位置に区切線を入れ、長
さ方向を上下関係とし上端をチャック固定した。
First, a dividing line was placed at a position of 50 mm in the length direction of the test piece, and the upper end was fixed with a chuck so that the length direction was in a vertical relationship.

次に肉厚3.2間の鉄板でできた肉寸法深さ200關、
開口部300X300mmの長方体の容器に、JASA
6011で3種と定める防水工事用アスファルトを入れ
、これを約110mmの厚さに盛り整えた乾燥した川砂
入りの火皿の上に置き、下方からガスコンロ(プロパン
ガス用)で加熱した。
Next, a wall dimension depth of 200 mm made of an iron plate with a wall thickness of 3.2 mm,
JASA in a rectangular container with an opening of 300 x 300 mm.
6011 Class 3 waterproofing asphalt was added, placed on a fire tray containing dry river sand arranged to a thickness of about 110 mm, and heated from below with a gas stove (for propane gas).

該アスファルトの温度は、10秒間良く攪拌し、アスフ
ァルトの表面から約50mmの深さに於いて測定した値
で200±5℃の範囲に調温した。
The temperature of the asphalt was adjusted to a range of 200±5° C. as measured at a depth of about 50 mm from the surface of the asphalt after stirring thoroughly for 10 seconds.

このアスファルト液中にチャックに固定し準備されであ
る試料片を上記区分線の位置まで5秒間浸漬し、取出し
た後約20℃に調温した室内で24時間自然冷却し、付
着したアスファルトを硬化させた。
A sample piece prepared by fixing it on a chuck was immersed in this asphalt solution for 5 seconds to the position of the above dividing line, and after taking it out, it was naturally cooled for 24 hours in a room controlled at about 20°C to harden the attached asphalt. I let it happen.

冷却後の試料片の上記区切線から25間の位置の厚さ方
向の寸法と同試料片の区切線からアスファルトに浸漬し
た方向の長さ寸法を測定し、双方の積を計算したところ
1020c77fであった。
After cooling, we measured the thickness direction of the sample piece at a position 25 minutes from the above dividing line and the length dimension of the same sample piece in the direction of immersion in asphalt from the dividing line, and calculated the product of both, and found that it was 1020c77f. there were.

最後に得られた発泡体樹脂が含有する未反応スチレン単
量体及びスチレン三量体を前述と同様の方法で分析した
ところ、それぞれ0.20重量%及び0.87重量%で
あった。
When the unreacted styrene monomer and styrene trimer contained in the finally obtained foam resin were analyzed in the same manner as described above, they were found to be 0.20% by weight and 0.87% by weight, respectively.

本分析値より判断されるように発泡に使用するポリマー
とそれを発泡した後の発泡体を形成するポリマーが含有
するスチレン単量体及びスチレン三量体は殆んど変らず
As judged from this analytical value, the styrene monomer and styrene trimer contained in the polymer used for foaming and the polymer forming the foam after foaming are almost unchanged.

略同等と見做される。considered to be approximately equivalent.

以上の結果の要点をまとめて表−2に記す。The main points of the above results are summarized in Table 2.

次に比較例1として表−1のポリマーBを用いること以
外は実施例1と全く同じ条件で押出発泡を行い、得られ
た発泡体についても同様の評価、分析を行った。
Next, as Comparative Example 1, extrusion foaming was performed under exactly the same conditions as in Example 1 except that Polymer B in Table 1 was used, and the obtained foam was evaluated and analyzed in the same manner.

結果をまとめて表−2に記す。更に発泡に使用するポリ
マーが含有するスチレン三量体の量的な効果を明らかに
するためスチレン三量体0.87重量%を含有するポリ
マーAと0.13重量%のポリマーBを3/1(実施例
2)、1/1(実施例3)、1/3(比較例2)の比に
ブレンドし、今までと同様押出発泡を行い、得られた発
泡体の評価、分析を行った。
The results are summarized in Table-2. Furthermore, in order to clarify the quantitative effect of styrene trimer contained in the polymer used for foaming, Polymer A containing 0.87% by weight of styrene trimer and Polymer B containing 0.13% by weight were 3/1. (Example 2), 1/1 (Example 3), and 1/3 (Comparative Example 2), extrusion foaming was performed as before, and the obtained foam was evaluated and analyzed. .

又、スチレン三量体の含有量の上限を調べるため、ポリ
マーAを製造する際、揮発分分離除去装置を出て来た溶
融ポリマーに別途準備したスチレン三重体なポ′ンプに
て定量注入し作成したポリマーC(実施例4)とポリマ
ーF(比較例3)についても前出と同様に押出発泡、評
価、分析を行った。
In addition, in order to investigate the upper limit of the styrene trimer content, when producing Polymer A, a styrene trimer was metered into the molten polymer coming out of the volatile matter separation and removal device using a separately prepared styrene trimer pump. Polymer C (Example 4) and Polymer F (Comparative Example 3) thus prepared were also subjected to extrusion foaming, evaluation, and analysis in the same manner as described above.

これらの結果を表−2に記す。実施例5〜6/比較例4
〜5 使用ポリマーについて、ポリマーAを製造する際、揮発
分分離除去装置の真空圧を調節することで得たポリマー
D(実施例5)、ポリマーE(実施例6)、ポリマーG
(比較例4)、ポリマーH(比較例5)に各々変更する
こと以外は前出の実施例1と同様に押出発泡を行い、得
られた発泡体の評価、分析を行った。
These results are shown in Table-2. Examples 5-6/Comparative Example 4
~5 Regarding the polymers used, Polymer D (Example 5), Polymer E (Example 6), and Polymer G were obtained by adjusting the vacuum pressure of the volatile matter separation and removal device when producing Polymer A.
(Comparative Example 4) and Polymer H (Comparative Example 5), extrusion foaming was carried out in the same manner as in Example 1 above, and the obtained foams were evaluated and analyzed.

結果を表−2に示す。表−2に於いては発泡体製品各評
価項目を併せて○、△、×印で表示した。
The results are shown in Table-2. In Table 2, each evaluation item for the foam product is indicated by ◯, △, or × mark.

○印は各評価項目に於いて最良値と最悪値の間で上位%
に位置するもの、△印は中位%に、×印は下位%に位置
するものであり、例えば5%圧縮強さでは表−2中最良
値は3,5、最悪値は2.2kg/cnlであるので、
3.2〜3.5 kg/ca It’riつ印、2.7
〜3.1 kg/crrfは△印、2.2〜2.6 k
g /crAは×印となる。
○ indicates the top % between the best and worst values for each evaluation item
For example, for 5% compressive strength, the best value in Table 2 is 3.5, and the worst value is 2.2kg/%. Since it is cnl,
3.2-3.5 kg/ca It'ritsu mark, 2.7
~3.1 kg/crrf is marked △, 2.2~2.6 k
g/crA is marked with an x.

又総合評価として、すべての項目が○印のものを°優″
、○印及び若干の△印を含むものを”良パ、1個でも×
印があるものを劣で示した。
Also, as a comprehensive evaluation, all items marked with ○ are excellent.
, items with ○ marks and some △ marks are ``Good Pass'', and at least one ×
Those with marks were shown as inferior.

本結果より明らかなように、使用するポリマーの含有す
る未反応スチレン単量体の量が0.3重量%以下の場合
は5%圧縮強さは改善されるが、更に、含有するスチレ
ン三量体の量が0.5重量%以上という条件と重なると
5%圧縮強度が更に向上するばかりか過剰密度指標、繰
り返し圧縮歪特性、断熱性能が相剰的に改善されること
が分る。
As is clear from these results, when the amount of unreacted styrene monomer contained in the polymer used is 0.3% by weight or less, the 5% compressive strength is improved; It can be seen that when the amount of carbon fiber is 0.5% by weight or more, not only the 5% compressive strength is further improved, but also the excess density index, repeated compressive strain characteristics, and heat insulation performance are mutually improved.

実施例7〜IO/比較例6〜11 本実施例/比較例は本発明で見い出された難燃性スチレ
ン系ポリマー発泡体に特に有効な造核剤に関するもので
ある。
Examples 7 to IO/Comparative Examples 6 to 11 These Examples/Comparative Examples relate to the nucleating agent found in the present invention that is particularly effective for flame-retardant styrenic polymer foams.

実施例1に於いて造核剤として用いたインジゴ(カラー
インデックス命名、バットブルー1)の代りに銅フタロ
シアン系ピグメントブルー15:1(実施例7)、アン
トラキノン系ソルベントフルー35 (実施例s )、
同ソルベントブルー83(実施例9)、同ソルベントブ
ルー105(実施例10)を用いたもの、及び比較例と
してピグメントブルー66(比較例6)、ピグメントブ
ルー29(比較例7)、バットブルー4(比較例8)、
フルベントレッド135 (比較例9 )、テイスハ−
スイエロ−3(比較例10)ソルベントグリーン3(比
較例11)を用いること以外は実施例1と同じく押出発
泡した。
Copper phthalocyanine pigment blue 15:1 (Example 7) and anthraquinone solvent flue 35 (Example s) were used instead of indigo (color index naming, Bat Blue 1) used as a nucleating agent in Example 1. ,
Pigment Blue 66 (Comparative Example 6), Pigment Blue 29 (Comparative Example 7), and Bat Blue 4 (Comparative Examples). Comparative example 8),
Full Vent Red 135 (Comparative Example 9), Teisha
Extrusion foaming was carried out in the same manner as in Example 1, except that Suelo-3 (Comparative Example 10) and Solvent Green 3 (Comparative Example 11) were used.

得られた発泡体について平均密度、平均気泡径、気泡調
節能力、及び着色力を評価した。
The resulting foam was evaluated for average density, average cell diameter, cell control ability, and coloring power.

ここでいう気泡調節能力は造核剤を一定量(0,03重
量部)添力叱発泡した時の気泡の微細化能力で、得られ
る発泡体の平均気泡径が2.Otnm以下のものを○印
(可)、2.0關を越えたものを×印(不可)とした。
The bubble control ability here refers to the ability to refine the bubbles when foaming is performed by adding a certain amount (0.03 parts by weight) of a nucleating agent, and the average cell diameter of the resulting foam is 2. Those below 0 nm were marked with a circle (acceptable), and those exceeding 2.0 nm were marked with an x (impossible).

又着色力は造核剤が発泡体を着色する能力で、造核剤0
.03重量部を無色の溶剤100重量部に分散し、この
溶液と得られた発泡体の色相を白色の紙の上で比較し、
略同じと思われるものを○印(優)、異なるものを×印
(劣)で表わした。
The coloring power is the ability of the nucleating agent to color the foam, and the nucleating agent is 0.
.. Disperse 03 parts by weight in 100 parts by weight of a colorless solvent, compare the hue of this solution and the resulting foam on white paper,
Items that appear to be approximately the same are marked with a circle (excellent), and items that are different are marked with an x (poor).

次に得られた発泡体樹脂の再使用能を見るため、発泡体
を粉砕し、押出機にて再度粒状ペレット化し、このペレ
ットを用いスクリュー径30 mrnの押出発泡装置に
て前述と同様な方法で再度押出発泡を行い、更にもう一
度同じ操作を繰り返し、合計3回の押出発泡履歴を与え
た。
Next, in order to examine the reusability of the obtained foam resin, the foam was crushed and pelletized again using an extruder, and the pellets were used in an extrusion foaming device with a screw diameter of 30 mrn in the same manner as described above. Extrusion foaming was carried out again, and the same operation was repeated once again, giving a total of three extrusion foaming histories.

得られた発泡体について前回と同様平均密度、平均気泡
径、気泡調節能力、及び再使用安定性について評価した
The resulting foam was evaluated for average density, average cell diameter, cell control ability, and reuse stability in the same manner as before.

再使用安定性とは再使用した場合の気泡調節能力、着色
力の持続安定性で、第1回目の押出発泡で得られた発泡
体と3回の押出発泡履歴を受けて得られた発泡体を比較
し、気泡調節能力が維持され且つ着色力も維持されてい
るものを○印(可)、気泡調節能力が失なわれるか、着
色力或いは両方共失なわれているものを×印(不可)で
表わした。
Reuse stability refers to the foam control ability and the lasting stability of coloring power when reused, and it refers to the foam obtained from the first extrusion foaming and the foam obtained after three extrusion foaming cycles. Compare the results, and mark ○ (acceptable) for those that maintain bubble control ability and coloring power, and mark × (unacceptable) for those that have lost bubble control ability, coloring power, or both. ).

以上の結果を表−3にまとめて記した。The above results are summarized in Table 3.

表−3中更に総合評価として気泡調節能力、着色力、再
使用安定性いずれの項目も○印のものを”優″、いずれ
かの項目に×印のあるものを”劣″とした。
Furthermore, as a comprehensive evaluation in Table 3, those marked with a circle in any of the items of bubble control ability, coloring power, and reuse stability were rated as "excellent," and those with an x mark in any of the items were rated as "poor."

表−3より本発明に属する造核剤(実施例7〜10)は
気泡調節能力、着色力、再使用安定性に優れるが、本発
明外の造核剤(比較例6〜11)の場合は気泡調節能力
が無いか、あっても着色力が劣るか、或は気泡調節能力
、着色力はあっても再使用安定性が欠けるものである。
From Table 3, the nucleating agents belonging to the present invention (Examples 7 to 10) are excellent in bubble control ability, coloring power, and reuse stability, but the nucleating agents other than the present invention (Comparative Examples 6 to 11) Either they do not have the ability to control bubbles, or even if they do, the coloring power is poor, or they have the ability to control bubbles and coloring power but lack reuse stability.

Claims (1)

【特許請求の範囲】 1 難燃剤と、インジゴ化合物、銅フタロシアン顔料及
びアントラキノン系顔料の少なくとも1種からなる造核
剤の適量を含有させることによって難燃性が付与され気
泡径が調節されたスチレン系ポリマーの押出発泡体を製
造する際に、0.3重量%以下のスチレン単量体及び0
.5〜15重量%のスチレン三量体を含有したスチレン
系ポリマーを使用することを特徴とする改良されたスチ
レン系ポリマー押出発泡体の製法。 2 造核剤カカラーインデックス(アメリカンアソシエ
ーション オフ テキスタイル ケミスツアンド カラ
リスツ(American As5ociationo
f Textile Chemists and Co
1orists)発行)の区分でパットブルー1(イン
ジゴ化合物)、ピグメントブルー15:1,15:2.
15:3.15:4(iフタロシアン顔料)、ノルベン
トフルー35.83.105(アントラキノン化合物)
と命名されるものであり且つその使用量がポリマーに対
し0.02〜0.5重量%である特許請求の範囲第1項
記載の発泡体の製法。 3 難燃剤が分解温度250℃以下のノ・ロゲン含有化
合物である特許請求の範囲第1項記載の発泡体の製法。
[Claims] 1. Flame retardance is imparted and the cell diameter is controlled by containing a flame retardant and an appropriate amount of a nucleating agent consisting of at least one of an indigo compound, a copper phthalocyan pigment, and an anthraquinone pigment. When producing extruded foam of styrenic polymer, 0.3% by weight or less of styrene monomer and 0.
.. 1. An improved method for making an extruded styrenic foam, characterized in that a styrenic polymer containing 5 to 15% by weight of styrene trimer is used. 2 Nucleating Agent Color Index (American Association Off Textile Chemistry and Colorists)
f Textile Chemists and Co.
Pat Blue 1 (indigo compound), Pigment Blue 15:1, 15:2.
15:3.15:4 (i-phthalocyan pigment), norbentofluor 35.83.105 (anthraquinone compound)
A method for producing a foam according to claim 1, wherein the foam is used in an amount of 0.02 to 0.5% by weight based on the polymer. 3. The method for producing a foam according to claim 1, wherein the flame retardant is a compound containing nitrogen having a decomposition temperature of 250° C. or lower.
JP54142014A 1979-11-05 1979-11-05 Improved styrenic polymer extrusion foam manufacturing method Expired JPS5835615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54142014A JPS5835615B2 (en) 1979-11-05 1979-11-05 Improved styrenic polymer extrusion foam manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54142014A JPS5835615B2 (en) 1979-11-05 1979-11-05 Improved styrenic polymer extrusion foam manufacturing method

Publications (2)

Publication Number Publication Date
JPS5667343A JPS5667343A (en) 1981-06-06
JPS5835615B2 true JPS5835615B2 (en) 1983-08-03

Family

ID=15305360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54142014A Expired JPS5835615B2 (en) 1979-11-05 1979-11-05 Improved styrenic polymer extrusion foam manufacturing method

Country Status (1)

Country Link
JP (1) JPS5835615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347405B2 (en) * 1983-06-30 1991-07-19 Ishikawajima Harima Heavy Ind

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015181A2 (en) * 1994-11-15 1996-05-23 Shell Internationale Research Maatschappij B.V. Expandable beads based on a polymer of a vinylaromatic compound containing blowing agent and plasticizer
JPH09206669A (en) * 1996-01-31 1997-08-12 Sekisui Plastics Co Ltd Polystyrene resin foamed sheet and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347405B2 (en) * 1983-06-30 1991-07-19 Ishikawajima Harima Heavy Ind

Also Published As

Publication number Publication date
JPS5667343A (en) 1981-06-06

Similar Documents

Publication Publication Date Title
KR100801275B1 (en) Method for producing expandable polystyrene beads which have excellent heat insulation properties
MX2010010875A (en) Compositions of expandable vinyl aromatic polymers with an improved thermal insulation capacity, process for their preparation and expanded articles obtained therefrom.
EP0533742B1 (en) Fire resistant alkenylaromatic foams
US4006118A (en) Flame-retardant thermoplastic polymer compositions
JPS5835615B2 (en) Improved styrenic polymer extrusion foam manufacturing method
US5830924A (en) Non-linear styrenic polymer-based foams
US20120283345A1 (en) Heat-resistant and flame-retardant extruded foam made of styrene copolymers
KR100884817B1 (en) Method for producing expandable polystyrene beads
US2857342A (en) Steeping process for the preparation of foamable styrene polymer particles
WO1996011970A1 (en) Non-linear styrenic polymer-based foams
KR101099027B1 (en) Method for producing expandable polystyrene beads which have excellent flammable capability
JPH05279549A (en) Flame-retardant thermoplastic resin composition
JPS63117057A (en) Flame-retardant, heat-resistant aromatic vinyl resin composition
JPS5943060B2 (en) Flame-retardant styrenic resin composition with excellent thermal stability
EP0616619B1 (en) Fire resistant alkenylaromatic foams
RU2427595C2 (en) Composition for producing expandable polystyrene
JPH03273035A (en) Extrusion-foamed polymer with excellent thermal insulation property
JPS63172755A (en) Flame-retardant styrene resin composition
JPS5837333B2 (en) Flame-retardant styrenic resin composition
JPH0431447A (en) Flame-retarding resin foam particle of excellent heat insulation property
US3721646A (en) Process for the preparation of self-extinguishing polymers
JPS5943046A (en) Flame-retardant acrylic resin composition and production thereof
JPS5962664A (en) Resin composition for flame-retardant foam
JPS63256633A (en) Extruded foam of heat-resistant methacrylamide copolymer
JPS59166552A (en) Self-extinguishing resin composition