JPS5835362B2 - dc transformer - Google Patents

dc transformer

Info

Publication number
JPS5835362B2
JPS5835362B2 JP53128516A JP12851678A JPS5835362B2 JP S5835362 B2 JPS5835362 B2 JP S5835362B2 JP 53128516 A JP53128516 A JP 53128516A JP 12851678 A JP12851678 A JP 12851678A JP S5835362 B2 JPS5835362 B2 JP S5835362B2
Authority
JP
Japan
Prior art keywords
transformer
winding
current
circuit
secondary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53128516A
Other languages
Japanese (ja)
Other versions
JPS5556614A (en
Inventor
正義 井坂
義巳 黒滝
清 中村
圭翹 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP53128516A priority Critical patent/JPS5835362B2/en
Publication of JPS5556614A publication Critical patent/JPS5556614A/en
Publication of JPS5835362B2 publication Critical patent/JPS5835362B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Transformers For Measuring Instruments (AREA)

Description

【発明の詳細な説明】 本発明は直流変成器に係り、特に被検出の一次電流極性
が急変する場合も良好な動作をするのに好適な直流変成
器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a DC transformer, and more particularly to a DC transformer suitable for good operation even when the polarity of the primary current to be detected changes suddenly.

第1図は公知の二個の可飽和リアクトルで構成された直
流変成器の1例である。
FIG. 1 is an example of a known DC transformer composed of two saturable reactors.

一次導体10に貫通された可飽和鉄心11゜12には各
々二次巻線13.14が巻装されている。
A secondary winding 13, 14 is wound on each of the saturable cores 11 and 12 passed through the primary conductor 10.

この二個の二次巻線13.14を差動で直列に接続し、
更に交流電源15と全波整流回路16及び出力負荷17
を直列に接続して閉回路を成し二次回路を構成する。
These two secondary windings 13 and 14 are differentially connected in series,
Furthermore, an AC power supply 15, a full-wave rectifier circuit 16, and an output load 17
are connected in series to form a closed circuit and constitute a secondary circuit.

上記の構成回路の各部動作波形を第2図に示す。FIG. 2 shows the operating waveforms of each part of the above-mentioned constituent circuit.

−次導体10に流れる直流電流工、に対し、二個の可飽
和リアクトルは交流電源の半サイクル毎に飽和、非飽和
状態を繰返すため、二次巻線13゜140両端子電圧電
圧、V2は図に示すように正弦波の一部となり、この時
の二次巻線■2はほぼ方形波状である。
- In contrast to the DC current flowing through the secondary conductor 10, the two saturable reactors repeat saturation and non-saturation states every half cycle of the AC power supply, so the voltage at both terminals of the secondary winding 13°140, V2 is As shown in the figure, it becomes part of a sine wave, and the secondary winding (2) at this time has a substantially square wave shape.

したがって出力負荷17には工、の如くの電流が流れ直
流変成器として動作する。
Therefore, the output load 17 receives a current of 0.05 to 1.0 volts and operates as a DC transformer.

第1図に示した直流変成器においては、−次導体10の
直流電流工、の極性が反転したり、またインパルス状の
電流や一次電源電流の投入及び開放時には直流変成器を
構成する二個の可飽和リアクトルが同時に非飽和状態と
なる場合がある。
In the DC transformer shown in Fig. 1, the polarity of the DC current wire of the -order conductor 10 is reversed, and when the impulse current or the primary power supply current is turned on and off, the two parts forming the DC transformer are In some cases, two saturable reactors become unsaturated at the same time.

この時の直流変成器の等価回路は第3図に示す如く、励
磁インダクタンス30、鉄心の渦電流による抵抗31及
び二次巻線間の静電容量32の並列回路となる。
As shown in FIG. 3, the equivalent circuit of the DC transformer at this time is a parallel circuit consisting of an exciting inductance 30, a resistance 31 caused by an eddy current in the iron core, and a capacitance 32 between the secondary windings.

この時、−次導体10の直流電流■1 が前記の如く急
変し、直流変流器を構成する二個の可飽和リアクトルが
同時に非飽和状態となると、励磁インダクタンス30及
び鉄心の渦電流抵抗31は鉄心非飽和のため極めて大き
く、二次巻線電圧33は二次巻線間の静電容量32をチ
ャージアップする電流により過大な電圧が発生する問題
点がある。
At this time, when the DC current (1) of the -order conductor 10 suddenly changes as described above and the two saturable reactors constituting the DC current transformer become unsaturated at the same time, the exciting inductance 30 and the eddy current resistance 31 of the iron core is extremely large due to the non-saturation of the iron core, and the secondary winding voltage 33 has the problem that an excessive voltage is generated due to the current that charges up the capacitance 32 between the secondary windings.

従来、この少なくとも二個の可飽和リアクトルから成る
直流変成器の二次巻線13.14の過大電圧抑制法とし
ては、第4図に示すように二次巻線13.14と並列に
保護装置40、例えばC−Rのアブゾーバや非線形素子
等を接続する方式。
Conventionally, as a method for suppressing excessive voltage in the secondary winding 13.14 of a DC transformer consisting of at least two saturable reactors, a protection device is installed in parallel with the secondary winding 13.14 as shown in FIG. 40, a method for connecting, for example, a C-R absorber or nonlinear element.

また、他の実施例としては第5図に示すように一次電流
■1 の急峻な電流変化d i / d tによる二次
巻線13,14の過大電圧対策として、−次巻線10と
並列に保護装置40、例えば非線形な整流素子を逆並列
に接続する方式等が一般に知られている。
In addition, as another example, as shown in FIG. 5, as a countermeasure against overvoltage in the secondary windings 13 and 14 due to the steep current change d i / d t of the primary current A protection device 40, for example, a method in which nonlinear rectifying elements are connected in antiparallel, is generally known.

第4図に示す従来の実施例では、−次導体10の電流■
1 が急変した時、二次巻線13.14に過大な電圧が
発生した状態で保護装置40が動作する方式であり、根
本的に二次巻線13.14に発生する過大電圧を抑制す
るものではない。
In the conventional embodiment shown in FIG.
1 is a system in which the protection device 40 operates in a state where excessive voltage is generated in the secondary winding 13.14 when the voltage suddenly changes, and fundamentally suppresses the excessive voltage generated in the secondary winding 13.14. It's not a thing.

さらにこの方式では二次巻線13.14に過大な電圧が
発生している状態、すなわち二個の可飽和リアクトルが
同時に非飽和の時には、可飽和リアクトルを構成する可
飽和鉄心11,120B−H特性の相違により二次巻線
差電圧部に電圧が発生し、後段の出力負荷1Tの端子に
その影響が現われ、直流変成器として誤動作する等の問
題点がある。
Furthermore, in this method, when an excessive voltage is generated in the secondary winding 13, 14, that is, when two saturable reactors are simultaneously unsaturated, the saturable iron cores 11, 120B-H constituting the saturable reactor Due to the difference in characteristics, a voltage is generated in the secondary winding differential voltage section, and its influence appears on the terminal of the output load 1T in the subsequent stage, causing problems such as malfunction as a DC transformer.

また、第5図に示す従来の実施例では、−次巻線100
両端子に保護装置40として、非線形素子例えば整流素
子を逆並列に接続するものであり、−次電流■、がその
整流素子側に分流するので検出精度に問題を生じたり、
また保護装置40は高圧側の一次電流回路に設けられる
ため、高耐圧装置を必要とする等の欠点がある。
Furthermore, in the conventional embodiment shown in FIG.
A nonlinear element, such as a rectifier, is connected in antiparallel to both terminals as a protection device 40, and the -order current (2) is shunted to the rectifier, which may cause problems in detection accuracy.
Furthermore, since the protection device 40 is provided in the primary current circuit on the high voltage side, it has drawbacks such as requiring a high withstand voltage device.

本発明の目的は上述した二個の可飽和リアクトルから構
成される直流変成器において、−次電流■1 の急変時
に二次巻線の両端子に発生する過大電圧を抑制しうる直
流変成器を提供するにある。
The object of the present invention is to provide a DC transformer that can suppress the excessive voltage generated at both terminals of the secondary winding when the -order current (1) suddenly changes. It is on offer.

本発明は、−次導体に貫通するもの、あるいは−次巻線
を有する二個の可飽和リアクトルと交流電源15、全波
整流回路16及び出力負荷17で閉回路を形成して成る
直流変成器において、−次電流■1の急変時に二次巻線
の両端子に過大な電圧が発生するのを抑制する方法とし
て、前記可飽和リアクトルに新たに、前記−次巻線に対
し和動で配列された三次巻線を設けると共に適当なイン
ピーダンス素子で閉回路を構成し、この三次巻線回路に
短絡巻線の効果を持たせるようにしたものである。
The present invention provides a DC transformer formed by forming a closed circuit with an AC power source 15, a full-wave rectifier circuit 16, and an output load 17, two saturable reactors that penetrate a -order conductor or have a -order winding. As a method of suppressing excessive voltage from being generated at both terminals of the secondary winding when the negative secondary current ■1 changes suddenly, the saturable reactor is newly arranged in a harmonic manner with respect to the negative secondary winding. A closed circuit is constructed using a suitable impedance element, and this tertiary winding circuit has the effect of a short-circuit winding.

第6図に本発明の実施例を示す。FIG. 6 shows an embodiment of the present invention.

第6図において、−次導体に貫通する二個の可飽和リア
クトルとその二次巻線を形成する閉回路は、従来技術で
述べたものと同一符号であるものは説明を省略する。
In FIG. 6, the two saturable reactors penetrating the -order conductor and the closed circuit forming the secondary winding thereof have the same reference numerals as those described in the prior art, and the explanation thereof will be omitted.

第6図で一次導体10に貫通する二個の鉄心it、12
に前記−次導体10に差動で直列に巻装された二次巻線
13.14に対し、和動で配列された三次巻線18.1
9と抵抗20で閉回路を構成する三次巻線回路は、前記
二次巻線13゜14に発生する過大な電圧を抑制するた
めの短絡巻線回路である。
In FIG. 6, two iron cores it, 12 penetrating the primary conductor 10
The secondary winding 13.14 is differentially wound in series on the negative conductor 10, and the tertiary winding 18.1 is arranged in a harmonic manner.
The tertiary winding circuit, which constitutes a closed circuit with 9 and the resistor 20, is a short-circuit winding circuit for suppressing excessive voltage generated in the secondary windings 13 and 14.

上述の三次巻線回路を有する直流変成器は、−次導体1
0に定常的な電流■1が流れている場合には、可飽和リ
アクトルの偶数調波電流が流れるだけであり、直流変成
器の動作には特に問題を生じない。
The DC transformer having the above-mentioned tertiary winding circuit has a negative order conductor 1
When a steady current 1 is flowing at 0, only the even harmonic current of the saturable reactor flows, and there is no particular problem in the operation of the DC transformer.

この三次巻線回路を有する直流変成器において一次電流
■1が急変して、二個の可飽和リアクトルが同時に非飽
和となった場合、直流変成器の等何回路は第7図に示す
ようになる。
In a DC transformer with this tertiary winding circuit, if the primary current (1) suddenly changes and the two saturable reactors become unsaturated at the same time, the DC transformer's equal circuit will become as shown in Figure 7. Become.

すなわち、今回飽和リアクトルの二次巻線13゜140
巻数をN2 とし、三次巻線18,19の巻数N3及び
三次巻線負荷抵抗20をR3とすれば、三次巻線負荷抵
抗R3は(1)式の関係で二次巻線側に換算された ただし R3′二次巻線側に換算された三次巻線の負荷抵抗 抵抗35が並列に接続された状態となる。
In other words, this time the secondary winding of the saturation reactor is 13°140
If the number of turns is N2, the number of turns N3 of the tertiary windings 18 and 19, and the tertiary winding load resistance 20 is R3, then the tertiary winding load resistance R3 was converted to the secondary winding side using the relationship in equation (1). However, the load resistance 35 of the tertiary winding converted to the R3' secondary winding side is connected in parallel.

この等価換算抵抗35により、直流変成器の一次導体の
電流■1 が急変した時、二次巻線に流れる電流34が
制限され、過大な電圧を抑制することができる。
This equivalent conversion resistor 35 limits the current 34 flowing to the secondary winding when the current 1 in the primary conductor of the DC transformer changes suddenly, thereby suppressing excessive voltage.

本発明の他の実施例としては、第8図に示すように可飽
和リアクトルの三次巻線18を二個の鉄心11.12に
共通に巻装して成る回路に抵抗20を接続する方式にお
いても同様な効果がある。
As another embodiment of the present invention, as shown in FIG. 8, a resistor 20 is connected to a circuit formed by winding the tertiary winding 18 of a saturable reactor commonly around two iron cores 11 and 12. has a similar effect.

更にこの方式は直流変成器の製作コスト低減の利点も有
している。
Furthermore, this method also has the advantage of reducing the manufacturing cost of the DC transformer.

また、他の実施例としては、第9図に示すように可飽和
リアクトルの三次巻線回路に非線形素子例えばツェナー
ダイオード21.22を順逆直列に接続した場合も同様
な効果がある。
Further, as another embodiment, the same effect can be obtained when nonlinear elements such as Zener diodes 21 and 22 are connected in forward and reverse series to the tertiary winding circuit of the saturable reactor as shown in FIG.

更に、他の実施例としては、第10図に示すよ5に可飽
和リアクトルの三次巻線回路に非線形素子例えばツエナ
ーダ23,24を順逆直列に接続し、かつ限流抵抗25
を追加して成る方式においても同様の効果がある。
Furthermore, as another embodiment, as shown in FIG.
A similar effect can also be obtained by adding .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の二個の可飽和リアクトルから成る直流変
成器の一例、第2図は第1図に示す従来の直流変成器の
主な部分の動作波形の一例、第3図は第1図に示す直流
変成器を構成する二個の可飽和リアクトルが同時に非飽
和状態となった時の直流変成器の等価回路、第4図と第
5図は従来の二個の可飽和リアクトルから成る直流変成
器において、−次電流急変時に二次巻線に発生する過大
な電圧を抑制する実施例を示す回路図、第6図は本発明
の三次巻線を有する直流変成器の一実施例、第7図は第
6図に示した三次巻線を有する直流変成器の二個の可飽
和リアクトルが同時に非飽和状態となった場合の直流変
成器の等価回路図、第8図から第10図は本発明の他の
実施例を示す直流変成器の一例である。 10・・・−次導体または一次巻線、11.12・・・
可飽和鉄心、13.14・・・二次巻線、15・・・交
流電源、16・・・全波整流回路、17・・・出力負荷
、18.19・・・三次巻線、20・・・抵抗、21〜
24・・・ツェナーダイオード、25・・・限流抵抗、
30・・・励磁インダクタンス、31・・・鉄心の渦電
流による抵抗、32・・・二次巻線間の静電容量、33
・・・二次巻線電圧、34・・・二次電流、35・・・
二次巻線換算の三次巻線回路抵抗、40・・・保護装置
Figure 1 is an example of a conventional DC transformer consisting of two saturable reactors, Figure 2 is an example of the operating waveforms of the main parts of the conventional DC transformer shown in Figure 1, and Figure 3 is an example of the operating waveforms of the main parts of the conventional DC transformer shown in Figure 1. The equivalent circuit of a DC transformer when the two saturable reactors that make up the DC transformer shown in the figure become unsaturated at the same time, Figures 4 and 5 are composed of two conventional saturable reactors. A circuit diagram showing an embodiment of suppressing excessive voltage generated in a secondary winding when a sudden change in secondary current occurs in a DC transformer, FIG. 6 is an embodiment of a DC transformer having a tertiary winding according to the present invention, Fig. 7 is an equivalent circuit diagram of the DC transformer when the two saturable reactors of the DC transformer having the tertiary winding shown in Fig. 6 become unsaturated at the same time, and Figs. 8 to 10 is an example of a DC transformer showing another embodiment of the present invention. 10... -order conductor or primary winding, 11.12...
Saturable iron core, 13.14... Secondary winding, 15... AC power supply, 16... Full wave rectifier circuit, 17... Output load, 18.19... Tertiary winding, 20... ...Resistance, 21~
24... Zener diode, 25... Current limiting resistor,
30... Excitation inductance, 31... Resistance due to eddy current of iron core, 32... Capacitance between secondary windings, 33
...Secondary winding voltage, 34...Secondary current, 35...
Tertiary winding circuit resistance in terms of secondary winding, 40...Protective device.

Claims (1)

【特許請求の範囲】[Claims] 1−次巻線及び二次巻線を巻装した可飽和リアクトルを
少なくとも二個以上使用し、前記可飽和リアクトルの二
次巻線な差動で直列に接続し、その差動接続した他の出
力端子部に交流電源と負荷で閉回路を構成して成る直流
変圧器において、前記二個の可飽和リアクトルに、前記
−次巻線に対し和動に配列された三次巻線、この三次巻
線の両端子にインピーダンス素子を備えたことを特徴と
する直流変成器。
At least two or more saturable reactors each having a primary winding and a secondary winding are used, and the secondary windings of the saturable reactors are differentially connected in series, and other differentially connected In a DC transformer comprising an AC power supply and a load forming a closed circuit at the output terminal section, the two saturable reactors include a tertiary winding arranged in harmony with the secondary winding, and the tertiary winding. A DC transformer characterized by having impedance elements at both terminals of the line.
JP53128516A 1978-10-20 1978-10-20 dc transformer Expired JPS5835362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53128516A JPS5835362B2 (en) 1978-10-20 1978-10-20 dc transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53128516A JPS5835362B2 (en) 1978-10-20 1978-10-20 dc transformer

Publications (2)

Publication Number Publication Date
JPS5556614A JPS5556614A (en) 1980-04-25
JPS5835362B2 true JPS5835362B2 (en) 1983-08-02

Family

ID=14986664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53128516A Expired JPS5835362B2 (en) 1978-10-20 1978-10-20 dc transformer

Country Status (1)

Country Link
JP (1) JPS5835362B2 (en)

Also Published As

Publication number Publication date
JPS5556614A (en) 1980-04-25

Similar Documents

Publication Publication Date Title
US4274071A (en) Three-phase ferroresonant transformer structure embodied in one unitary transformer construction
SU563131A3 (en) Ozonizer power supply system
KR930005341A (en) Integrated magnetic filter inductor with series and common mode windings
US3781638A (en) Power supply including inverter having multiple-winding transformer and control transistor for controlling main switching transistors and providing overcurrent protection
JPS6130917A (en) Noise filter for 3-phase 4-wires
US3851239A (en) High voltage d.c. supply circuit
GB1118267A (en) Rectifying apparatus for producing constant d.c. output voltage
JPS5835362B2 (en) dc transformer
US2895059A (en) Floating power supply circuit
US3519915A (en) High-frequency sine-wave static inverter
Lee et al. Analysis and modeling of a family of two-transistor parallel inverters
KR100882856B1 (en) Protection Circuit for Power Supply Line with Noise Filter
US2911582A (en) Static magnetic frequency multiplier
US2953736A (en) Static magnetic frequency multiplier
SU519731A1 (en) Device for simulating a synchronous generator
SU447694A1 (en) Stabilized rectifier
SU998037A1 (en) Arc welding power supply source
SU497677A2 (en) Device for current protection zero sequence
SU917255A1 (en) Device for protection of three-phase induction electric motor from interturn shortings in stator winding
JPS5943796Y2 (en) Inverter cross current detection circuit
JPS642963B2 (en)
SU832678A1 (en) Stabilized ac-to-dc voltage converter
SU1142877A1 (en) A.c.voltage-to-d.c.voltage converter
JPS598472Y2 (en) Thyristor protection device for inverter
SU1684878A1 (en) Voltage converter