JPS5835274B2 - Aluminum steel plate - Google Patents

Aluminum steel plate

Info

Publication number
JPS5835274B2
JPS5835274B2 JP15951775A JP15951775A JPS5835274B2 JP S5835274 B2 JPS5835274 B2 JP S5835274B2 JP 15951775 A JP15951775 A JP 15951775A JP 15951775 A JP15951775 A JP 15951775A JP S5835274 B2 JPS5835274 B2 JP S5835274B2
Authority
JP
Japan
Prior art keywords
anode
degree
uniformity
value
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15951775A
Other languages
Japanese (ja)
Other versions
JPS5282612A (en
Inventor
裕司 三野
清明 若泉
忠彰 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Light Metal Industries Ltd
Original Assignee
Mitsubishi Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Light Metal Industries Ltd filed Critical Mitsubishi Light Metal Industries Ltd
Priority to JP15951775A priority Critical patent/JPS5835274B2/en
Publication of JPS5282612A publication Critical patent/JPS5282612A/en
Publication of JPS5835274B2 publication Critical patent/JPS5835274B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はアルミニウム電解槽の制御方法に係る。[Detailed description of the invention] The present invention relates to a method for controlling an aluminum electrolyzer.

詳しくは、プリベーク式アルミニウム電解槽において、
電解浴中のアルミナ濃度の減少により生起する陽極効果
を確実に予知し、陽極効果が起る前に電解浴中のアルミ
ナ濃度を増加させて陽極効果の発生を防止し、効率良く
アルミニウム電解槽の運転制御を行なう方法に係るもの
である。
For more details, please refer to the pre-baked aluminum electrolyzer.
It is possible to reliably predict the anodic effect that occurs due to a decrease in the alumina concentration in the electrolytic bath, increase the alumina concentration in the electrolytic bath before the anodic effect occurs, and prevent the anodic effect from occurring. This relates to a method of controlling operation.

工業的にアルミニウムを製造するには、アルミニウム電
解槽を用い、氷晶石を主体とする電解浴中でアルミナを
電気分解してこれを還元する。
To produce aluminum industrially, an aluminum electrolytic bath is used to electrolyze and reduce alumina in an electrolytic bath mainly composed of cryolite.

通常のアルミニウム電解槽の操業においては、電解浴内
のアルミナ濃度は約2〜8重量%の範囲内にあるように
維持される。
In normal aluminum electrolyzer operation, the alumina concentration within the electrolytic bath is maintained within the range of about 2-8% by weight.

すなわち、電解浴中のアルミナ濃度がその飽和濃度(約
10%)以上になると、電解浴中のアルミナは陰極上面
に沈積し、いわゆる底よごれを起す。
That is, when the alumina concentration in the electrolytic bath exceeds its saturation concentration (approximately 10%), the alumina in the electrolytic bath is deposited on the upper surface of the cathode, causing so-called bottom fouling.

底よごれを起した電解槽では電流効率が著しく低下し、
また、正常槽に回復するまでには長時間を要する。
In an electrolytic cell with fouling at the bottom, the current efficiency decreases significantly.
Furthermore, it takes a long time to recover the normal tank.

一方、電解浴中のアルミナ濃度が2%またはこれ以下に
低下すると、電解浴中の陽極底面にガス膜が発生し、こ
のガス膜のために極間抵抗が増加し、その結果、電摺電
圧が急激に増加する現象、いわゆる陽極効果現象が生起
する。
On the other hand, when the alumina concentration in the electrolytic bath decreases to 2% or less, a gas film is generated on the bottom surface of the anode in the electrolytic bath, and this gas film increases the resistance between the electrodes, resulting in an increase in the electrolytic voltage. A so-called anodic effect phenomenon occurs, in which the amount of water increases rapidly.

陽極効果を起した電槽では、正常の運転状態における電
摺電圧が約4〜5ボルトであるのに対し、約30ボルト
の電摺電圧となるので、多大なる電力損失を生ずる。
In a battery case in which the anode effect occurs, the electrical voltage in normal operating conditions is approximately 4 to 5 volts, but the electrical voltage is approximately 30 volts, resulting in a large power loss.

陽極効果は電解浴にアルミナを供給し、電解浴中のアル
ミナ濃度を増加させることにより解消される。
The anodic effect is eliminated by supplying alumina to the electrolytic bath and increasing the alumina concentration in the electrolytic bath.

陽極効果は底よごれほど正常槽に回復するまでに長時間
を要しないので、通常の電解槽運転は、アルミナが沈積
を起す怖れの少ないアルミナ濃度の低い範囲、すなわち
電解浴中のアルミナ濃度が2〜6%の範囲で行なわれる
Since the anode effect does not require a long period of time to recover to the normal state of the bath due to bottom fouling, normal electrolytic cell operation is carried out in a low alumina concentration range where there is little risk of alumina deposition, that is, when the alumina concentration in the electrolytic bath is low. It is carried out in the range of 2 to 6%.

このように、アルミナ濃度の低い範囲で電解槽の運転を
行なえば、それだけ陽極効果が生起する確率が高くなる
As described above, the more the electrolytic cell is operated in a range where the alumina concentration is low, the higher the probability that the anode effect will occur.

勿論、実際に陽極効果が頻発すれば電流効率が悪くなる
ので、陽極効果が起ることを予知し、陽極効果が起る前
に電解浴中のアルミナ濃度を上昇させて、陽極効果の発
生を極力防止しなければならない。
Of course, if the anodic effect actually occurs frequently, the current efficiency will deteriorate, so it is possible to predict the occurrence of the anode effect and increase the alumina concentration in the electrolytic bath before the anodic effect occurs, thereby preventing the anodic effect from occurring. We must prevent this as much as possible.

従来より、この陽極効果の予知方法としては種種知られ
ているが、最も一般的な方法は、電摺電圧を連続的また
は間欠的に測定し、電解浴中のアルミナ濃度の減少に伴
なって増加しく電摺電圧値から、陽極効果を予知するこ
とである。
Various methods have been known to predict this anode effect, but the most common method is to measure the electric voltage continuously or intermittently, and to predict the alumina concentration in the electrolytic bath as the alumina concentration decreases. The objective is to predict the anode effect from the increasing electric voltage value.

しかしながら、陽極効果に伴なう電圧値の上昇は短かい
時間内で起ること、電摺電圧値は常に0.01〜0.0
5V程度脈動していること、電解槽内よりアルミニウム
メタルを汲み取る際に0.1〜0.5V程度電圧変動が
あること等の理由から、上記のような電解槽全体の電圧
変化により陽極効果を予知することは非常に難しく、ま
た、この方法を採用する場合には通常コンピューター等
の複雑な演算回路を必要とする。
However, the voltage value rise due to the anode effect occurs within a short time, and the electric voltage value is always 0.01 to 0.0.
Due to the fact that it pulsates around 5V, and that there is a voltage fluctuation of around 0.1 to 0.5V when drawing aluminum metal from inside the electrolytic tank, the anode effect can be affected by the voltage change of the entire electrolytic tank as described above. It is very difficult to predict, and when this method is adopted, it usually requires a complicated arithmetic circuit such as a computer.

そこで、本発明者らは容易且つ、確実にアルミニウム電
解槽における陽極効果の発生を予知する方法について鋭
意研究した結果、複数個の陽極を有するプリベーク式ア
ルミニウム電解槽において、各陽極に流れる電流量を測
定し、これらの測定値から一つの電解槽の全陽極に流れ
る電流量の不均一化度を算出したところ、電解槽に陽極
効果が生起する20〜60分前からこの不均一化度の値
が増加傾向を示すことを見出し、且つ、この不均一化度
の値の変化を監視することにより、アルミニウム電解槽
における陽極効果の発生を確実に予知し得ることを確認
して、本発明に到達したものである。
Therefore, the present inventors conducted extensive research on a method to easily and reliably predict the occurrence of the anode effect in an aluminum electrolytic cell, and as a result, in a pre-baked aluminum electrolytic cell having multiple anodes, the amount of current flowing through each anode was calculated. The degree of non-uniformity of the amount of current flowing through all the anodes of one electrolytic cell was calculated from these measured values, and the value of this degree of non-uniformity was calculated from 20 to 60 minutes before the anode effect occurred in the electrolytic cell. The present invention was achieved by discovering that the value of the degree of non-uniformity shows an increasing tendency and confirming that by monitoring changes in the value of the degree of non-uniformity, it is possible to reliably predict the occurrence of the anodic effect in an aluminum electrolytic cell. This is what I did.

すなわち本発明の目的は、プリベーク式アルミニウム電
解槽における陽極効果の発生を容易且つ確実に予知する
ことにより、陽極効果を起さずに効率良く電解槽の運転
制御を行なうことに存し、而してこの目的は本発明方法
に従って、複数個の陽極を有するプリベーク式アルミニ
ウム電解槽において、各陽極に流れる電流量を連続的ま
たは間欠的に測定し、これらの測定値から統計的演算に
より全陽極に流れる電流量の不均一化を算出し、この不
均一化度の値に基づいて陽極効果を予知して、電解浴中
のアルミナ濃度を制御することによって遠戚される。
That is, an object of the present invention is to easily and reliably predict the occurrence of the anode effect in a pre-baked aluminum electrolytic cell, thereby efficiently controlling the operation of the electrolytic cell without causing the anode effect. The purpose of the lever is to continuously or intermittently measure the amount of current flowing through each anode in a pre-baked aluminum electrolytic cell having multiple anodes according to the method of the present invention, and calculate the amount of current flowing through all the anodes by statistical calculation from these measured values. This can be achieved by calculating the non-uniformity of the amount of current flowing, predicting the anode effect based on the value of the degree of non-uniformity, and controlling the alumina concentration in the electrolytic bath.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

プリベーク式アルミニウム電解槽は、通常1槽につき1
0〜30個の陽極を有する。
Pre-baked aluminum electrolytic cells usually have 1 unit per tank.
It has 0-30 anodes.

陽極は通常バインダーピッチとピッチコークスとを混捏
したのち成型し、約1100〜1300℃で焼成するこ
とにより製造される。
The anode is usually manufactured by kneading binder pitch and pitch coke, molding the mixture, and firing the mixture at about 1,100 to 1,300°C.

これらの陽極は電解槽運転中、次第に消耗していくため
、ある一定時間毎に新陽極と交換する。
These anodes gradually wear out during operation of the electrolytic cell, so they must be replaced with new anodes at regular intervals.

これらの陽極の交換は、電解浴温の急激な低下を避ける
ため、全陽極のうちの一つまたはいくつか少数を単位と
し、陽極の消耗に応じて順次単位時間毎に行なわれる。
In order to avoid a sudden drop in the temperature of the electrolytic bath, these anodes are replaced in units of one or a few of all the anodes, and are sequentially performed every unit time according to the wear of the anodes.

本発明では、電解槽運転中、これらの各陽極に流れる電
流量の測定を連続的または間欠的に行なつ。
In the present invention, during operation of the electrolytic cell, the amount of current flowing through each of these anodes is measured continuously or intermittently.

各陽極に流れる電流量を測定するには、各陽極導電棒の
適当な位置に電流計をとりつけ、陽極(または陽極導電
棒)に流れる電流量を直接測定すれば良いが、電流値の
代りに間接的に電圧値を測定しても良い。
To measure the amount of current flowing through each anode, you can attach an ammeter to an appropriate position on each anode conductive rod and directly measure the amount of current flowing through the anode (or anode conductive rod), but instead of measuring the current value, The voltage value may be measured indirectly.

電圧値を測定するには、陽極導電棒における任意の位置
における2点間の電位差を測定する方法、各陽極導電棒
に電流を供給するための給電体と陽極導電棒を給電体に
固定するためのクランプ部との電位差を測定する方法な
どにより、陽極導電棒乃至陽極に至る任意の位置での電
位差を測定する。
To measure the voltage value, there is a method of measuring the potential difference between two points at any position on the anode conductive rod, a power supply body for supplying current to each anode conductive rod, and a method for fixing the anode conductive rod to the power supply body. The potential difference at any position from the anode conductive rod to the anode is measured by a method of measuring the potential difference with the clamp section of the anode.

但し、この場合、各陽極導電棒毎に測定された電位差値
が各陽極に分配された電流量に対応するように、各陽極
導電棒または陽極棒における電位差の測定方法、または
電圧計の設定方法は全て同一となるようにする。
However, in this case, the method of measuring the potential difference in each anode conductive rod or the setting method of the voltmeter is necessary so that the potential difference value measured for each anode conductive rod corresponds to the amount of current distributed to each anode. should all be the same.

次いで、本発明方法では、上記の方法で測定された電流
値または電圧値から統計的演算により、一つの電槽の全
陽極導電棒に流れる電流量の不均一化度を算出する。
Next, in the method of the present invention, the degree of non-uniformity of the amount of current flowing through all the anode conductive rods of one battery case is calculated by statistical calculation from the current value or voltage value measured by the above method.

電流量の不均一化度を算出するには、分散、標準偏差な
どの公知の統計的演算方法を利用することができる。
In order to calculate the degree of non-uniformity of the amount of current, known statistical calculation methods such as variance and standard deviation can be used.

例えば、下記式(1)を用いることにより電流量の不均
一化度を計算することができる。
For example, the degree of non-uniformity of the amount of current can be calculated by using the following equation (1).

不均一化度の値を算出したのち、この不均一化度の値に
基づいて電解槽に生起する陽極効果の予知を行なう。
After calculating the value of the degree of non-uniformity, the anode effect occurring in the electrolytic cell is predicted based on the value of the degree of non-uniformity.

算出された不均一化度の値は、陽極効果が生起する約6
0分前から次第に大きくなり、陽極効果発生時にほぼ最
大となる。
The calculated value of the degree of non-uniformity is approximately 6, at which the anode effect occurs.
It gradually increases from 0 minutes before reaching its maximum value when the anode effect occurs.

この後、アルミナを電解浴内に供給することにより浴中
のアルミナ濃度を高くすると、陽極効果が治まり、それ
とともに不均一化度の値も小さくなる。
After this, when the alumina concentration in the electrolytic bath is increased by supplying alumina into the electrolytic bath, the anodic effect subsides, and the value of the degree of non-uniformity also decreases.

従って、本発明方法において、陽極効果を予知するため
の最も簡便的な方法として、連続的または間欠的に測定
される各陽極に流れる電流量に対応して、連続的または
間欠的に算出される不均一化度を一定時間毎に監視し、
前回に算出された不均一化度の値と新たに算出された不
均一化度との値を比較し、不均一化度の時間的変化が増
加傾向を示し、且つ、両者の差が予じめ認定された値を
超えたときに、陽極効果を予知する方法が採用される。
Therefore, in the method of the present invention, the simplest method for predicting the anode effect is to continuously or intermittently calculate the amount of current flowing through each anode, which is measured continuously or intermittently. Monitor the degree of non-uniformity at regular intervals,
The previously calculated value of the degree of heterogeneity and the newly calculated value of the degree of heterogeneity are compared, and the temporal change in the degree of heterogeneity shows an increasing tendency, and the difference between the two is as expected. A method is adopted that predicts the anodic effect when the certified value is exceeded.

あるいは、連続的または間欠的に算出される不均一化度
の値を経時的に監視し、単位時間に対する不均一化度の
増加値が設定値を超えたときに、陽極効果を予知するこ
ともでき、また、前記方法と本方法を組み合わせれば、
さらに確実に陽極効果を予知することができる。
Alternatively, the value of the degree of non-uniformity calculated continuously or intermittently can be monitored over time, and an anode effect can be predicted when the increase in the degree of non-uniformity with respect to unit time exceeds a set value. Also, if the above method and this method are combined,
Furthermore, the anode effect can be predicted more reliably.

而して、本発明において、陽極効果発生時に、不均一化
度の値が増加する理由、換言すれば、陽極効果発生時に
、各陽極に流れる電流量の値が陽極毎に種々異なってく
る理由は、以下のとおりであると考えられる。
Therefore, in the present invention, the reason why the value of the degree of non-uniformity increases when the anode effect occurs, in other words, the reason why the value of the amount of current flowing through each anode varies depending on the anode when the anode effect occurs is considered to be as follows.

すなわち、陽極効果発生時には前述の如く、陽極底面に
ガス膜が発生し、このガス膜が極間抵抗となる。
That is, when the anode effect occurs, as described above, a gas film is generated on the bottom surface of the anode, and this gas film becomes the resistance between the electrodes.

ところが、電槽中には交換直後の新陽極から交際直前の
旧陽極まで、電解運転中の陽極消耗の程度に応じて、底
面形状の種々異なる陽極が存在する。
However, in the battery case, there are anodes with different bottom shapes depending on the degree of anode wear during electrolysis operation, from a new anode just after replacement to an old anode just before replacement.

そして、陽極効果発生時、新陽極の底面ではガスが逃げ
にくいためガス膜が形成され易く、一方消耗の程度が進
んだ旧陽極ではガス膜が形成されにくい。
When the anode effect occurs, a gas film is likely to be formed on the bottom surface of the new anode because gas is difficult to escape, whereas a gas film is difficult to form on the old anode that has become worn out.

このことから、電解槽運転中、陽極効果の発生が近づく
と、乃至は陽極効果が発生すると、新陽極には、底面の
大きなガス膜抵抗のため電流が流れにくくなり、一方間
陽極には比較的多量の電流が流れることとなるので、各
陽極に流れる電流量の値が大きく異なってくることとな
り、不均一化度の値が大きくなるものと考えられる。
From this, during operation of the electrolyzer, when the anode effect approaches or occurs, it becomes difficult for current to flow to the new anode due to the large gas film resistance at the bottom, while the current flows to the new anode compared to the other anode. Since a large amount of current flows, the value of the amount of current flowing to each anode becomes greatly different, and it is thought that the value of the degree of non-uniformity becomes large.

このようにして不均一化度の値に基づいて陽極効果を予
知した後、陽極効果の発生を防止するために電解浴中の
アルミナ濃度を高くする。
After predicting the anodic effect based on the value of the degree of non-uniformity in this way, the alumina concentration in the electrolytic bath is increased in order to prevent the anodic effect from occurring.

電解浴中のアルミナ濃度を高くするには、電解浴上面の
アルミナ固化浴(クラスト)を破砕して、これを浴中に
供給する方法、または、アルミナ供給管を電解浴中に挿
入し、供給管から直接アルミナを電解浴中に供給する方
法など、公知の種々の方法により行なうことができる。
To increase the alumina concentration in the electrolytic bath, you can crush the alumina solidified bath (crust) on the top of the electrolytic bath and supply it into the bath, or you can insert an alumina supply pipe into the electrolytic bath and supply it. This can be carried out by various known methods, such as a method of directly supplying alumina into an electrolytic bath from a tube.

以上、詳細に説明したように、本発明方法によれば、プ
リベーク式アルミニウム電解槽における陽極効果の発生
を容易且つ確実に予知し、陽極効果発生前に電解浴のア
ルミナ濃度を制御することができるので、効率良く電解
槽の運転制御を行なうことが可能である。
As described in detail above, according to the method of the present invention, it is possible to easily and reliably predict the occurrence of an anode effect in a pre-baked aluminum electrolytic bath, and to control the alumina concentration in the electrolytic bath before the anode effect occurs. Therefore, it is possible to efficiently control the operation of the electrolytic cell.

次に、本発明を実施例によりさらに詳細に説明するが、
本発明はその要旨を超えない限り以下の実施例に限定さ
れるものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 1〜2 摺電流135KA、陽極個数18の二種のプリベーク式
アルミニウム電解槽AおよびBにおいて、各電解槽の全
陽極導電棒に全く同一の方法で電圧計をとりつけ、各陽
極導電棒の2点間における電位差を連続的に測定し、測
定された一連の電圧値から10分毎に不均一化度の値を
算出した(前記(1)式を使用)。
Examples 1 to 2 In two types of pre-baked aluminum electrolytic cells A and B with a sliding current of 135 KA and the number of anodes of 18, voltmeters were attached to all the anode conductive rods of each electrolytic cell in exactly the same way, and the voltage of each anode conductive rod was measured. The potential difference between two points was continuously measured, and the value of the degree of non-uniformity was calculated every 10 minutes from a series of measured voltage values (using equation (1) above).

算出した不均一化度の値を表1および図1に示す。The calculated values of the degree of nonuniformity are shown in Table 1 and FIG. 1.

表1および図1より、電解槽Aにおいては陽極効果の発
生前60分前より、また、電解槽Bにおいては30分前
より不均一化度の値が増加傾向を示し、電解槽Aにおい
ては陽極効果を起す40分前に、また、電解槽Bにおい
ては10分前に、単位時間(10分間)あたりの不均一
化度の値の増加量が0.01を超えることが明らかとな
った。
From Table 1 and Figure 1, the value of the degree of non-uniformity shows an increasing tendency in electrolytic cell A from 60 minutes before the occurrence of the anode effect, and in electrolytic cell B from 30 minutes before the occurrence of the anode effect. It became clear that the increase in the value of the degree of non-uniformity per unit time (10 minutes) exceeded 0.01 40 minutes before the anode effect occurred, and 10 minutes before the electrolytic cell B. .

そこで、電解槽AおよびBにおいて、両槽における全陽
極導電棒の2点間における電位差を連続的に測定し、同
様に、測定された電圧値から10分毎に不均一化度の値
を算出して、不均一化度の値の変化を監視した。
Therefore, in electrolytic cells A and B, we continuously measured the potential difference between two points of all anode conductive rods in both cells, and similarly calculated the degree of non-uniformity from the measured voltage values every 10 minutes. The change in the value of the degree of heterogeneity was monitored.

そして、両槽における単位時間(10分間)に対する不
均一化度の値の増加量がo、oiを超えたとき、電解浴
中にアルミナを供給して浴中のアルミナ濃度を高くした
When the amount of increase in the value of the degree of non-uniformity per unit time (10 minutes) in both baths exceeded o and oi, alumina was supplied into the electrolytic bath to increase the alumina concentration in the bath.

なお、陽極交換時には、陽極交換前と陽極交換後で、単
位時間(10分間)に対する不均一化度の値の増加量が
0.01を超えたが、この場合にはアルミナの供給は行
なわなかった。
Furthermore, when replacing the anode, the amount of increase in the value of the degree of non-uniformity per unit time (10 minutes) exceeded 0.01 before and after replacing the anode, but in this case, alumina was not supplied. Ta.

上記方法により30日間電解槽AおよびBの運転制御を
行なったところ、この間、陽極効果および底よごれ現象
は全く起らず、効率良く電解槽の運転制御を行なうこと
ができた。
When the operation of electrolytic cells A and B was controlled for 30 days using the above method, no anode effect or bottom fouling phenomenon occurred during this period, and the operation of the electrolytic cells could be controlled efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は二種のプリベーク式電解槽において算出した不
均一化度の時間的変化を示すグラフである。
FIG. 1 is a graph showing temporal changes in the degree of non-uniformity calculated in two types of pre-baked electrolytic cells.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の陽極を有するプリベーク式アルミニウム電
解槽において、各陽極に流れる電流量を連続的または間
欠的に測定し、これらの測定値から統計的演算により全
陽極に流れる電流量の不均一化度を算出し、この不均一
化度の値に基づいて陽極効果を予知して電解浴中のアル
ミナ濃度を制御することを特徴とするアルミニウム電解
槽の制御方法。
1. In a pre-baked aluminum electrolytic cell with multiple anodes, the amount of current flowing through each anode is measured continuously or intermittently, and the degree of non-uniformity of the amount of current flowing through all the anodes is determined by statistical calculation from these measured values. A method for controlling an aluminum electrolytic cell, comprising: calculating the degree of non-uniformity, predicting the anode effect based on the value of the degree of non-uniformity, and controlling the alumina concentration in the electrolytic bath.
JP15951775A 1975-12-29 1975-12-29 Aluminum steel plate Expired JPS5835274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15951775A JPS5835274B2 (en) 1975-12-29 1975-12-29 Aluminum steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15951775A JPS5835274B2 (en) 1975-12-29 1975-12-29 Aluminum steel plate

Publications (2)

Publication Number Publication Date
JPS5282612A JPS5282612A (en) 1977-07-11
JPS5835274B2 true JPS5835274B2 (en) 1983-08-01

Family

ID=15695489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15951775A Expired JPS5835274B2 (en) 1975-12-29 1975-12-29 Aluminum steel plate

Country Status (1)

Country Link
JP (1) JPS5835274B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022271B2 (en) * 1983-09-28 1990-01-17 Molex Inc
WO1997009468A1 (en) * 1995-09-01 1997-03-13 Auckland Uniservices Limited Measurement of alumina in reduction pots

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022271B2 (en) * 1983-09-28 1990-01-17 Molex Inc
WO1997009468A1 (en) * 1995-09-01 1997-03-13 Auckland Uniservices Limited Measurement of alumina in reduction pots

Also Published As

Publication number Publication date
JPS5282612A (en) 1977-07-11

Similar Documents

Publication Publication Date Title
EP0386899B1 (en) Process for controlling aluminium smelting cells
JP3917586B2 (en) Method for improving current efficiency in electrolysis.
GB2080830A (en) Controlling alumina content of fused bath for production of aluminium by electrolysis
CN109183074B (en) Aluminum electrolysis cell blanking method based on pole changing period
CN103014773A (en) Device and method for balancing alumina concentration of aluminium electrolysis tank
RU2496923C2 (en) Method for making aluminium in electrolysis unit
US3712857A (en) Method for controlling a reduction cell
US4126525A (en) Method of controlling feed of alumina to an aluminum electrolytic cell
CN106460210A (en) Method for controlling feeding of alumina into electrolyzer during aluminum production
US3812024A (en) Control of an aluminum reduction cell
KR100571635B1 (en) Electric current control method and apparatus for use in gas generators
US3625842A (en) Alumina feed control
JPS5835274B2 (en) Aluminum steel plate
JPS61261490A (en) Method for accurately keeping low alumina content in molten salt electrolytic cell for producing aluminum
US3900371A (en) Method of controlling the thickness of the lateral ledges in a cell for the electrolytic recovery of aluminum
JP5991070B2 (en) Fluorine gas generator and control method of fluorine gas generator
JPS5835275B2 (en) Aluminum steel plate
JP6726411B2 (en) Power control device and power control method for use in electrolytic refining equipment
US3829365A (en) Method of operating a cell for the recovery of aluminum by electrolysis of aluminum oxide in a fluoride melt
WO2020190271A1 (en) System and method for controlling of smelting pot line
Cotten Understanding the basic requirements of the anode set modifier
JPS5810996B2 (en) Method for controlling alumina supply to an aluminum electrolyzer
JP2020169381A (en) Water electrolysis system and control method for water electrolysis system
US2898276A (en) Production of titanium
RU2631077C1 (en) Method of automatic control of aluminium electrolyser disturbances