JP6726411B2 - Power control device and power control method for use in electrolytic refining equipment - Google Patents

Power control device and power control method for use in electrolytic refining equipment Download PDF

Info

Publication number
JP6726411B2
JP6726411B2 JP2018243346A JP2018243346A JP6726411B2 JP 6726411 B2 JP6726411 B2 JP 6726411B2 JP 2018243346 A JP2018243346 A JP 2018243346A JP 2018243346 A JP2018243346 A JP 2018243346A JP 6726411 B2 JP6726411 B2 JP 6726411B2
Authority
JP
Japan
Prior art keywords
electrolytic
voltage
power supply
current
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243346A
Other languages
Japanese (ja)
Other versions
JP2019070198A (en
Inventor
賢太郎 古賀
賢太郎 古賀
光治 大西
光治 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018243346A priority Critical patent/JP6726411B2/en
Publication of JP2019070198A publication Critical patent/JP2019070198A/en
Application granted granted Critical
Publication of JP6726411B2 publication Critical patent/JP6726411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電解精錬設備において、設備や人への悪影響を未然に防止する安全装置に関し、具体的には電解精錬設備において、安全に操業するための電解精錬用の電源制御装置と、その制御方法に関する。 The present invention relates to a safety device for preventing adverse effects on equipment and people in an electrolytic refining facility, and specifically, in an electrolytic refining facility, a power control device for electrolytic refining for safe operation, and its control. Regarding the method.

銅やニッケル等の非鉄金属の精錬方法として、非鉄電解精錬法が広く知られている。この非鉄電解精錬法は、電解槽内の電解液に浸漬させたアノード(陽極板)とカソード(陰極板)との間に通電して電解液に溶解しているCuやNiなどの精錬対象金属(以降、目的金属と称する)をカソード表面上に電着させ、これにより高純度の目的金属を得るものである。 A nonferrous electrolytic refining method is widely known as a refining method for nonferrous metals such as copper and nickel. This non-ferrous electrolytic refining method is a refining target metal such as Cu or Ni that is dissolved in the electrolytic solution by energizing between the anode (anode plate) and the cathode (cathode plate) immersed in the electrolytic solution in the electrolytic cell. (Hereinafter, referred to as a target metal) is electrodeposited on the cathode surface to obtain a high-purity target metal.

具体的には、通電を継続して各カソードの表面上に所定の厚み迄目的金属を電着させた後、電解槽内の電解液からカソードを引き上げて電着した目的金属を回収し、再度電着前のカソードを電解槽に浸漬させて通電することが繰り返される。またアノードについても、時間経過と共にアノードは消耗するので、消耗したアノードは電解槽中から引き上げて新品に交換される。カソードやアノードを引き上げた後、電解槽の底部に設置された配管から栓を引き抜くことで電解液を取り除き、定期的に電解槽の掃除を行っている。 Specifically, after energization is continued to electrodeposit the target metal on the surface of each cathode to a predetermined thickness, the cathode is pulled up from the electrolytic solution in the electrolytic cell to recover the electrodeposited target metal, The cathode before electrodeposition is immersed in the electrolytic cell and energized repeatedly. Also, with respect to the anode, the anode is consumed with the passage of time, and thus the consumed anode is pulled out of the electrolytic cell and replaced with a new one. After pulling up the cathode or anode, the electrolytic solution is removed by pulling out a plug from a pipe installed at the bottom of the electrolytic cell, and the electrolytic cell is regularly cleaned.

ところで、電解槽を複数用いる場合、それらの電解槽を直列に電源に接続して通電する方式と、それらの電解槽を互いに並列に電源に接続して通電する方式があり、前者の直列方式が一般的に用いられている。
その理由として、電着が進むにつれてカソードがアノードに接触しやすくなり、接触した時には、その接触部に電流が集中してしまうが、この電流ロスやそれに伴う生産ロスが直列方式では小さいことが挙げられる。具体的には、直列方式では、接触の生じた電解槽の電流が空費される程度である。一方、並列方式では、並列関係にある各電解槽に流れるべき電流が、接触部に集中して空費されてしまう。
By the way, when a plurality of electrolyzers are used, there are a method of connecting those electrolyzers in series to a power source and energizing, and a method of connecting these electrolyzers to a power source in parallel with each other to energize, and the former series method is It is commonly used.
The reason for this is that as the electrodeposition progresses, the cathode easily comes into contact with the anode, and when it comes into contact, the current concentrates on the contact portion, but this current loss and the accompanying production loss are small in the series method. To be Specifically, in the series method, the current of the electrolytic cell in which the contact occurs is wasted. On the other hand, in the parallel system, the electric current that should flow through the electrolytic cells in parallel is concentrated on the contact portion and is wasted.

また使用する電源としては、電流量を一定に保つ定電流電源と、電圧値を一定に保つ定電圧電源とに大別されるが、直列方式では定電流電源を用いるのが一般的である。
この定電流電源を用いると、電気抵抗に差があっても各槽へ均等に電流を分配できるので、電着して得られる目的金属の生産量や品質を保つことができる。さらに電解槽からカソードやアノードを引き上げる際にも、その電解槽を迂回するように一時的に回路を変更する場合にも、定電流電源を用いれば、各槽に流れる電流の時間的変動が抑えられるので、電着して得られる目的金属の生産量や品質を保つことができる。なお、電源としては直流電源であればよく、パルス通電や逆方向通電といった機能を備えてもよい。
The power supply used is roughly classified into a constant current power supply that keeps the current amount constant and a constant voltage power supply that keeps the voltage value constant. In the series system, the constant current power supply is generally used.
When this constant current power source is used, the current can be evenly distributed to each tank even if there is a difference in electrical resistance, so the production amount and quality of the target metal obtained by electrodeposition can be maintained. In addition, when pulling up the cathode or anode from the electrolytic cell or when temporarily changing the circuit so as to bypass the electrolytic cell, the constant current power supply can be used to suppress the temporal fluctuation of the current flowing in each cell. Therefore, the production amount and quality of the target metal obtained by electrodeposition can be maintained. The power supply may be a DC power supply, and may have a function such as pulse energization or reverse energization.

ところで、カソード、アノード、およびそれらから通電中に脱落した破片は重量が大きく、落下して電解槽の底面を破損することがある。底面が破損したり、栓が緩んで抜けたりすると、電解槽内から電解液が失われることになり、この電解液の液位が低下するにつれて、バルク電解液に対するカソードやアノードの接触面積は減少し、この接触面積は最終的に0となる。このとき、わずかな接触面積に莫大な電流が集中して、過熱された電解液が突沸して火傷や薬傷を及ぼす危険がある。また、空中放電の火花を伴って、目が眩んだり火災が起きたりする危険もある。 By the way, the cathode, the anode, and the fragments that have fallen off from the cathode during energization are heavy, and may fall to damage the bottom surface of the electrolytic cell. If the bottom surface is damaged or the plug is loosened and pulled out, the electrolyte solution is lost from the inside of the electrolytic cell.As the electrolyte level decreases, the contact area of the cathode and anode with the bulk electrolytic solution decreases. However, this contact area finally becomes zero. At this time, a huge electric current is concentrated on a small contact area, and there is a risk that the overheated electrolytic solution may bump and cause burns or chemicals. In addition, there is a risk that blindness or a fire may occur due to the spark of air discharge.

これら危険は、電解液の液位が低下した槽を早期に発見できれば、その電解槽を迂回するように一時的に回路を変更することで防止できる。しかし、電解槽の上部にはカソードやアノードがあって視界を遮っているから、電解液の液位や槽底の状態は遠くからは見えず、また電解槽は、1槽あたり数m程度の敷地面積を占有するものが一般的で、電解精錬制御室から離れた建物に数百個単位で収容されていることも多く、目視による早期発見は困難であった。 These dangers can be prevented by temporarily changing the circuit so as to bypass the electrolytic cell, if a cell in which the electrolyte level is lowered can be found early. However, since there are cathodes and anodes in the upper part of the electrolytic cell to block the view, the liquid level of the electrolytic solution and the state of the cell bottom cannot be seen from a distance, and the electrolytic cell has several m 2 per cell. Generally, it occupies the site area of, and it is often housed in the building away from the electrolytic refining control room in units of several hundreds, and early visual detection was difficult.

そこで、上記危険状態を取り除くため、特許文献1に示すような、電解装置の安定電圧値を読み取り、記憶し、この値に対して変動許容範囲を設定し、電圧値が許容範囲を逸脱した際に、電解装置を保護する技術が知られている。しかしながら電解工場では、電解槽は多数個が(特に、直列に)電源に接続されているから、多数個の電解槽によって電解装置の電圧が安定化してしまい、電解液の液位の低下に関する危険を取り除くことができなかった。
以上のように、電解槽内の液位の低下を精度よく検出して、確実に危険を防止するシステムが求められていた。
Therefore, in order to remove the dangerous state, when a stable voltage value of the electrolysis device is read and stored as shown in Patent Document 1, a fluctuation allowable range is set for this value, and the voltage value deviates from the allowable range. In addition, a technique for protecting an electrolysis device is known. However, in an electrolysis plant, many electrolyzers are connected to a power source (especially in series), so the voltage of the electrolyzer is stabilized by the number of electrolyzers, and there is a risk of lowering the electrolyte level. Could not be removed.
As described above, there has been a demand for a system that accurately detects a decrease in the liquid level in the electrolytic cell and reliably prevents a danger.

特開平03−130385号公報JP, 03-130385, A

本発明は、直流電源に複数の電解槽が直列に接続された電解工場において、電解槽内の液位の低下に随伴される現象を検出し、液位の低下に起因する危険を確実に防止する電解精錬設備の電源制御装置および、その制御方法を提供することを目的とする。 The present invention, in an electrolysis plant in which a plurality of electrolytic cells are connected in series to a DC power supply, detects a phenomenon associated with a decrease in the liquid level in the electrolytic cell, and reliably prevents the risk caused by the decrease in the liquid level. An object of the present invention is to provide a power supply control device for electrolytic refining equipment and a control method therefor.

発明者らは、操業状態において電解槽から電解液が減少する際の電解槽内の電解液の液量変化について観察し、その変化速度が一定していることを発見した。また、電解槽から電解液が減少するときの電解槽に掛かる電圧(槽電圧)の変化を検討し、電解液の液量が減少するにつれ、電解槽にかかる電圧は加速度的に増加することを見出した。
よって、単位時間あたりの電圧の変動率の変化速度で判断すれば、電解槽内の液位の低下を精度よく検出できる。
続いて、発明者らは、一定時間内に電圧の変動率の変化を発見する方法を検討し、たとえば10〜20個の電解槽を直列につなげた組を作り、その組の電圧を測定することで、短期間に電解槽内の液位の低下を検出できることを見出し、本発明を完成した。
The inventors observed changes in the amount of the electrolytic solution in the electrolytic cell when the electrolytic solution decreased from the electrolytic cell in the operating state, and found that the rate of change was constant. In addition, we examined the change in the voltage (cell voltage) applied to the electrolytic cell when the electrolytic solution decreased from the electrolytic cell, and found that the voltage applied to the electrolytic cell increased at an accelerated rate as the amount of electrolytic solution decreased. I found it.
Therefore, if the change rate of the voltage fluctuation rate per unit time is used for determination, it is possible to accurately detect the decrease in the liquid level in the electrolytic cell.
Next, the inventors examined a method of discovering a change in the voltage fluctuation rate within a fixed time, for example, made a group in which 10 to 20 electrolytic cells were connected in series, and measured the voltage of the group. As a result, they have found that a drop in the liquid level in the electrolytic cell can be detected in a short period of time, and have completed the present invention.

本発明の第1の発明は、受電した高圧電流を降圧して低圧電流を給電する変圧機能部を備えた電源と、その電源に直列に接続されて閉回路をなす複数の電解槽からなる電解部とを備え、電源から電解部に電解電流を供給する電解精錬設備に用いる電源制御装置であって、その電解部が、直列接続された1個以上、m個の電解槽からなる組を2組以上、n組、直列接続した構成からなり、そのn組のいずれか一組に掛かる電圧と、その一組と異なる他の一組に掛かる電圧との差が、遮断電圧値以上の電圧を示した場合、電源から電解部への電解電流の供給を停止することを特徴とする電源制御装置である。 A first aspect of the present invention is an electrolysis system comprising a power source having a transformer function section for stepping down a received high voltage current to supply a low voltage current, and a plurality of electrolytic cells connected in series to the power source to form a closed circuit. A power supply control device for use in an electrolytic refining facility for supplying an electrolytic current from a power supply to an electrolysis section, the electrolysis section comprising one or more and m electrolyzers connected in series to each other. Groups or more, n groups, which are connected in series, and the difference between the voltage applied to any one of the n groups and the voltage applied to another group different from the one is a voltage equal to or higher than the cutoff voltage value. In the case shown, the power supply control device is characterized in that the supply of the electrolysis current from the power supply to the electrolysis section is stopped.

本発明の第2の発明は、第1の発明における電解電流の供給を停止することが、変圧機能部への高圧電流を遮断することによって行われることを特徴とする電源制御装置である。 A second invention of the present invention is the power supply control device characterized in that the supply of the electrolytic current in the first invention is stopped by interrupting the high-voltage current to the transformer function section.

本発明の第の発明は、第1又はの発明に記載の電源制御装置を用いて直列接続されたm個の電解槽からなる組に掛かる電圧増加を検出し、電源から電解部への電解電流の供給を停止した後、前記電圧増加が検出された組が電解液量の減少した槽を含み、この槽を迂回する通電経路を構築し、電解電流の供給を再開することを特徴とする電源制御方法である。 A third invention of the present invention uses the power supply control device according to the first or second invention to detect an increase in voltage applied to a group of m electrolyzers connected in series, and from the power supply to the electrolysis section. After the supply of the electrolytic current is stopped, the set in which the voltage increase is detected includes a tank in which the amount of the electrolytic solution has decreased, and a conduction path that bypasses this tank is constructed, and the supply of the electrolytic current is restarted. This is the power control method.

本発明によれば、直流電源に複数の電解槽が直列に接続された電解精錬設備において、電解槽内の電解液の液位低下を検出でき、その液位低下に起因する危険を確実に防止できるシステムを提供することができる。 According to the present invention, in an electrolytic refining facility in which a plurality of electrolysis cells are connected in series to a DC power source, it is possible to detect a decrease in the liquid level of the electrolytic solution in the electrolysis cell and reliably prevent the risk resulting from the decrease in the liquid level. It is possible to provide a system that can.

本発明の電源制御装置を用いた電解工程の一具体例の等価回路を示す概略図である。It is the schematic which shows the equivalent circuit of one specific example of the electrolysis process using the power supply control apparatus of this invention. 一般的な電解槽を示す図で、(a)は断面図、(b)は銅イオンと電流(※同じ矢印)の流路を示す概略図である。It is a figure which shows a general electrolysis cell, (a) is sectional drawing, (b) is schematic which shows the flow path of a copper ion and an electric current (* same arrow). 本発明において電解液量の減少した槽を迂回する通電経路を示す概略図である。FIG. 3 is a schematic diagram showing an energization path that bypasses a tank with a reduced amount of electrolyte in the present invention. 本発明の実施例1に係る電源制御装置を示す概略フロー図である。It is a schematic flow chart which shows the power supply control device concerning Example 1 of the present invention. 本発明の実施例2に係る電源制御装置を示す概略フロー図である。It is a schematic flowchart which shows the power supply control apparatus which concerns on Example 2 of this invention. 従来の電解工程の等価回路を示す概略図である。It is the schematic which shows the equivalent circuit of the conventional electrolysis process. 電解工程において、一槽の電解槽から電解液を喪失した場合の等価回路を示す概略図である。It is a schematic diagram showing an equivalent circuit when the electrolytic solution is lost from one electrolytic cell in the electrolysis step.

以下、本発明の、電源制御装置および電源制御方法を詳細に説明する。
本発明では、電解槽を直列につなげて構成した組にかかる電圧を測定して、その測定電圧値が過大になった場合に、電源から電解槽へ電解電流の供給を停止する。なお、本願発明では、電圧の測定値が正の値となるように測定する。
その測定電圧値が過大であるかどうかの判定は、その測定電圧値から計算により評価電圧値を求め、その評価電圧値が予め設定した遮断電圧値以上の値を示す場合に、測定電圧値は過大であると判断する。
Hereinafter, the power supply control device and the power supply control method of the present invention will be described in detail.
According to the present invention, the voltage applied to the set constituted by connecting the electrolytic cells in series is measured, and when the measured voltage value becomes excessive, the supply of the electrolytic current from the power source to the electrolytic cell is stopped. In the present invention, the voltage is measured so that the measured value is a positive value.
To determine whether or not the measured voltage value is excessive, the evaluation voltage value is calculated from the measured voltage value, and when the evaluation voltage value shows a value equal to or higher than the preset cutoff voltage value, the measured voltage value is It is judged to be excessive.

その判断基準となる遮断電圧値は、下記式(1)〜(8)で詳述するように、評価電圧値の平均値と評価電圧値の変動幅を線形結合して得ることができる。また、評価電圧値および遮断電圧値は、一定期間ごとに算出し直して設定するのがよい。このようにすることで、電解槽内の液位の低下などの異常を早期に検出できるとともに、誤検出を少なくできる。
遮断電圧値の計算に用いるデータの期間は、遮断電圧値の更新間隔より長くするのが望ましい。このようにすることで、遮断電圧値は安定し、異常の検出精度を向上させることができる。
The cutoff voltage value serving as the criterion can be obtained by linearly combining the average value of the evaluation voltage value and the fluctuation range of the evaluation voltage value, as described in detail in the following equations (1) to (8). Moreover, it is preferable that the evaluation voltage value and the cutoff voltage value are recalculated and set at regular intervals. By doing so, an abnormality such as a decrease in the liquid level in the electrolytic cell can be detected at an early stage and erroneous detection can be reduced.
It is desirable that the data period used for calculation of the cutoff voltage value be longer than the update interval of the cutoff voltage value. By doing so, the cutoff voltage value becomes stable, and the detection accuracy of the abnormality can be improved.

評価電圧値、遮断電圧値の計算方法として、後述する第1または第2の評価方法を用いる。
[第1の評価方法]
評価電圧値として、測定電圧値E[V]をそのまま用いる。
このとき、遮断電圧値[V]としては、次の式(1)〜(3)に挙げるいずれかを用いることができる。
As a method of calculating the evaluation voltage value and the cutoff voltage value, a first or second evaluation method described later is used.
[First evaluation method]
As the evaluation voltage value, the measured voltage value E[V] is used as it is.
At this time, as the cutoff voltage value [V], any of the following expressions (1) to (3) can be used.

Figure 0006726411
Figure 0006726411

特に、銅の電解精製においては、遮断電圧値として、下記式(3)で算出した値を用いることができる。なお、測定槽数は測定電圧値Eを計測した際の、直列に接続された電解槽の組(すなわち、測定電圧値Eの印加されている範囲)に配置されている電解槽の数である。 In particular, in the electrolytic refining of copper, the value calculated by the following formula (3) can be used as the cutoff voltage value. The number of measurement cells is the number of electrolysis cells arranged in a group of electrolysis cells connected in series (that is, the range to which the measurement voltage value E is applied) when measuring the measurement voltage value E. ..

Figure 0006726411
Figure 0006726411

本発明におけるこの方法では、電解槽を直列につなげた組にかかる電圧の測定電圧値Eを評価電圧値として用いるので、評価電圧値は、大きくしかも変動が少ない。このため、評価電圧値(=測定電圧値E)が、上記式(1)または式(2)で示す遮断電圧値に達することは、電解槽内の液位の低下などの異常時ということができる。 In this method of the present invention, since the measured voltage value E of the voltage applied to the set in which the electrolytic cells are connected in series is used as the evaluation voltage value, the evaluation voltage value is large and has little fluctuation. Therefore, when the evaluation voltage value (=measured voltage value E) reaches the cutoff voltage value represented by the above formula (1) or formula (2), it means that there is an abnormality such as a drop in the liquid level in the electrolytic cell. it can.

特に、銅の電解精製においては、電圧の測定電圧値Eは、電解槽当たりで表すと、0.2V/槽〜0.4V/槽が一般的であり、概ね0.25V/槽〜0.35V/槽の範囲にある。このため、電圧の測定電圧値Eが、上記式(3)で示す遮断電圧値に達することは、電解槽内の液位の低下などの異常時ということができる。 Particularly, in electrolytic refining of copper, the measured voltage value E of the voltage is generally 0.2 V/tank to 0.4 V/tank, and is generally 0.25 V/tank to 0. It is in the range of 35 V/tank. Therefore, it can be said that the measured voltage value E of the voltage reaches the cutoff voltage value represented by the above formula (3) at the time of an abnormality such as a decrease in the liquid level in the electrolytic cell.

[第2の評価方法]
評価電圧値として、測定電圧値Eと、その測定電圧値Eを記録した電解槽の組と同数の電解槽を直列につなげた別の組にかかる電圧の測定値E’との差の絶対値である、|E−E’|を用いる。このときの遮断電圧値として、次に挙げるいずれかの値を用いる。
[Second evaluation method]
As an evaluation voltage value, the absolute value of the difference between the measured voltage value E and the measured value E′ of the voltage applied to another set in which the same number of electrolytic cells as the set of electrolytic cells in which the measured voltage value E is recorded are connected in series. , |EE'| is used. One of the following values is used as the cutoff voltage value at this time.

Figure 0006726411
Figure 0006726411

この評価方法では、同数の電解槽を直列につなげた組にかかる電圧同士の差の絶対値|E−E’|を評価電圧値として用いるので、評価電圧値の変動が少なくなるため、その評価電圧値|E−E’|が、上記式(4)または式(5)で示す遮断電圧値に達することは、電解槽内の液位の低下などの異常時ということができる。また、通常時はE×1.0≦E’×1.1、E’×1.0≦E×1.1であるので、式(4)から式(5)、式(6)、式(7)を得ることができ、より簡便に運用できる。また、通常時、それぞれの組にほぼ同じ電流が流れるので、電流量を変化させても評価電圧値|E−E’|は安定して運用できる利点を有する。 In this evaluation method, since the absolute value |E−E′| of the difference between the voltages applied to the set in which the same number of electrolytic cells are connected in series is used as the evaluation voltage value, the fluctuation of the evaluation voltage value is reduced, so that evaluation It can be said that the voltage value |EE′| reaches the cutoff voltage value represented by the above formula (4) or formula (5) at the time of an abnormality such as a decrease in the liquid level in the electrolytic cell. In addition, since E×1.0≦E′×1.1 and E′×1.0≦E×1.1 are normally satisfied, the equations (4) to (5), (6), and (7) can be obtained, and it can be more easily operated. Further, in the normal state, almost the same current flows in each set, so that the evaluation voltage value |E−E′| has an advantage that it can be stably operated even if the current amount is changed.

(組が多数ある場合)
複数の電解槽から構成される組を多数、備える電解精錬設備では、組同士の組み合わせが無数に存在するため、評価電圧値や遮断電圧値の運用に困難が予想される。
(When there are many pairs)
In an electrolytic refining facility that includes a large number of sets composed of a plurality of electrolytic cells, it is expected that it will be difficult to operate the evaluation voltage value and the cutoff voltage value because there are numerous combinations of the sets.

例えば、上記式(4)では、|E−E’|の最大値や最小値は、平均値と異なり、Eの平均値やE’の平均値からは求めることができないという困難がある。この困難は、遮断電圧値を下記式(8)とすることで軽減できる。 For example, in the above equation (4), the maximum value and the minimum value of |E−E′| are different from the average value, and cannot be obtained from the average value of E or the average value of E′. This difficulty can be reduced by setting the cutoff voltage value to the following equation (8).

Figure 0006726411
Figure 0006726411

複数の電解槽から構成される組が多数ある場合は、組同士を組み合わせたさまざまな評価電圧値|E−E’|を用いながら、遮断電圧値としては、いずれかの組み合わせから得た遮断電圧値で代表させてもよい。これによって、遮断電圧値の記録や計算にかかるコストと時間が大幅に軽減できる。
なお、このとき、遮断電圧値の計算には、遮断電圧値が最も大きくなるようにEおよびE’を選ぶことで、誤検出を防止できる。
When there are a large number of sets composed of a plurality of electrolytic cells, the cutoff voltage value obtained from any combination is used as the cutoff voltage value while using various evaluation voltage values |EE′| It may be represented by a value. As a result, the cost and time required for recording and calculating the cutoff voltage value can be significantly reduced.
At this time, erroneous detection can be prevented by selecting E and E′ so that the breaking voltage value becomes the largest in the calculation of the breaking voltage value.

(計測期間)
本発明の平均値、最大値、最小値の計算に用いるデータの始期は、「10日前」、「電解槽を直列につなげた組のすべての電解槽の液位が安定した時点」、「通電槽数が変化した時点」、「電解電流を意図的に変化させた時点」のいずれかの遅い時刻とするのがよい。
さらにデータの終期は、計算時点または計算時点の直前とするのがよい。
(Measurement period)
The starting point of the data used for the calculation of the average value, the maximum value, and the minimum value of the present invention is “10 days ago”, “the time when the liquid levels of all the electrolytic cells of the group in which the electrolytic cells are connected in series are stable”, “energization” It is preferable to be the later one of "the time when the number of cells changes" and "the time when the electrolytic current is intentionally changed".
Furthermore, the end of the data should be at the time of calculation or immediately before the time of calculation.

(組を構成する電解槽)
1つの組を構成する電解槽は、電源に直列接続された全ての電解槽で構成するのではなく、一部の電解槽だけとするのがよい。このようにすることで、電圧の変化を鋭敏にして高感度に検出することができる。
1つの組を構成する電解槽の数mは、1槽以上でもよいが、好ましくは2槽以上とする。測定に時間を要する場合は、9槽以上、または18槽以上とするのがよい。これによって、測定すべき組が減るので、時間内に測定を終えることが容易になる。
(Electrolyzers that make up a set)
It is preferable that the electrolyzers constituting one set are not all of the electrolyzers connected in series to the power source, but only some of the electrolyzers. By doing so, it is possible to make the voltage change sensitive and detect it with high sensitivity.
The number m of electrolytic cells constituting one set may be one or more, but is preferably two or more. If the measurement takes time, it is recommended that the number of tanks is 9 or more, or 18 or more. This makes it easier to finish the measurement in time, since there are fewer sets to measure.

また、設定する組の数nについては、従来の電解工程の等価回路を示す概略図である図6に見られるように、電解槽は建屋内を行ったり来たりと折り返しながら回路を構成している事情から、折り返し地点から折り返し地点までの電解槽を一組とするのがよい。奇数回折り返して戻ってくるまでの電解槽を組とすることがさらに好ましい。具体的には、図1のEやEの電圧がかかっている部分を組とする。
図1は、本発明の電源制御装置を用いた電解工程の一具体例の等価回路を示す概略図である。
Regarding the number n of sets to be set, as shown in FIG. 6 which is a schematic diagram showing an equivalent circuit of a conventional electrolysis process, the electrolytic cell is formed by folding back and forth inside the building. Due to the circumstances, it is better to have one set of electrolytic cells from the turning point to the turning point. It is more preferable to make a set of electrolytic cells until they are returned with an odd number of turns. Specifically, the parts to which the voltages E a and E b in FIG. 1 are applied are set.
FIG. 1 is a schematic diagram showing an equivalent circuit of a specific example of an electrolysis step using the power supply control device of the present invention.

図1、図6において、Vjkは電解槽(j組、k番の電解槽)、jは組番号、kは組内の電解槽番号、Nは一組の電解槽、3は電源装置、4は遮断部、5は変圧機能部、6は交流電源、E11、E12は一槽の電解槽に掛かる電圧、E、Eは電解槽の一組に掛かる電圧、Eallは直列に接続された全電解槽に掛かる電圧である。
ここで、E11、E12、E、E、Eallは上記測定電圧値を表し、E11、E12はそれぞれ第1組の第1番電解槽、第2番電解槽の測定電圧値、E、Eは12槽の電解槽からなる組と、その隣り合う組の測定電圧値、Eallは全電解槽を一組とした場合の測定電圧値であり、電解槽に掛かる電圧である。
In FIG. 1 and FIG. 6, V jk is an electrolytic cell (j group, k-th electrolytic cell), j is a group number, k is an electrolytic cell number in the group, N is a single electrolytic cell, 3 is a power supply device, Reference numeral 4 is a cutoff portion, 5 is a transformer function portion, 6 is an AC power source, E 11 and E 12 are voltages applied to one electrolytic cell, E a and E b are voltages applied to a pair of electrolytic cells, and E all is a series. It is the voltage across all electrolyzers connected to.
Here, E 11 , E 12 , E a , E b , and E all represent the measured voltage values, and E 11 and E 12 are the measured voltages of the first set of the first electrolytic cell and the second set of electrolytic cell, respectively. The values, E a and E b, are the measured voltage values of a group consisting of 12 electrolytic cells and their adjacent groups, and E all is the measured voltage value when all the electrolytic cells are combined, and is applied to the electrolytic cells. Voltage.

本発明における電解精錬設備を備える電解工場の電源装置3は、図1に示されるように内部に変圧機能部5を備え、変圧機能部5は、高圧電流を受電してこれを降圧し、得られた大量の低圧電流を電解槽に供給している。
そこで、電源から電解槽への電解電流の供給を停止するに際して、変圧機能部5への高圧電流を遮断することによって停止させる。このようにすることによって、遮断部4(いわゆるスイッチ)に通る電流は、高圧側の電流であり、低圧電流を遮断する場合に比べて少なくすむので、遮断部の容量が少なくすみ、遮断部の消耗も少なくすむ。
なお、高圧電流が交流である場合、電源装置3は、図1のように降圧と同時に直流に変換(整流)してもよく、降圧の前に直流に変換(整流)してもよく、降圧のあとで直流に変換(整流)してもよい。
As shown in FIG. 1, the power supply device 3 of the electrolysis plant equipped with the electrolytic refining equipment according to the present invention includes a transformer function unit 5 therein, and the transformer function unit 5 receives a high-voltage current to step down the voltage to obtain a high voltage current. The generated large amount of low-voltage current is supplied to the electrolytic cell.
Therefore, when the supply of the electrolytic current from the power supply to the electrolytic cell is stopped, the high-voltage current to the transformer function unit 5 is cut off to stop it. By doing so, the current passing through the breaking unit 4 (so-called switch) is a high-voltage side current, which is smaller than that in the case of breaking the low-voltage current. Therefore, the capacity of the breaking unit can be reduced, and It consumes less.
When the high-voltage current is alternating current, the power supply device 3 may convert (rectify) to direct current at the same time as stepping down as shown in FIG. 1, or may convert (rectify) to direct current before stepping down. After that, it may be converted (rectified) to direct current.

図2は、一般的な電解槽を示す図で、(a)は断面図、(b)は銅イオン(黒片矢印)と電流(黒片矢印)の流路を示す概略図で、銅イオンと電流は同じ向きの流路を通る。図2において、Vは電解槽、Lは電解液、Aはアノード、Cはカソード、11は電解液の液位である。
電解槽V内の電解液Lは、図2(b)のように銅イオンと電流の通る回路を構成しているので、その液位11が高いほど、銅イオンと電流の通る断面積が大きくなる。導体の抵抗値が断面積に反比例することは広く知られており、電解槽内の電解液の液位が一定速度で低下していても、抵抗値は加速度的に増大する。これが、組に掛かる電圧が加速度的に増大する第一の要因である。
FIG. 2 is a view showing a general electrolytic cell, (a) is a cross-sectional view, (b) is a schematic view showing flow paths of copper ions (black single-headed arrow) and current (black single-headed arrow). And current flow through the flow path in the same direction. In FIG. 2, V is an electrolytic cell, L is an electrolytic solution, A is an anode, C is a cathode, and 11 is a liquid level of the electrolytic solution.
Since the electrolytic solution L in the electrolytic cell V constitutes a circuit through which copper ions and current pass as shown in FIG. 2B, the higher the liquid level 11, the larger the cross-sectional area through which copper ions and current pass. Become. It is widely known that the resistance value of the conductor is inversely proportional to the cross-sectional area, and the resistance value increases at an accelerating rate even if the liquid level of the electrolytic solution in the electrolytic cell decreases at a constant speed. This is the first factor that causes the voltage applied to the group to increase at an accelerating rate.

また電解槽V内の電解液Lが減少していくと、残った少量の電解液に電解電流が集中し、電解液の蒸発が加速度的に進む。その結果、アノードAの表面やカソードCの表面に結晶が析出して通電を妨げる。電解液の蒸発が加速度的に進むことと、結晶が析出することによっても、抵抗値は加速度的に増大する。これが、組に掛かる電圧が加速度的に増大する第二の要因である。 Further, as the amount of the electrolytic solution L in the electrolytic cell V decreases, the electrolytic current concentrates on the remaining small amount of electrolytic solution, and the evaporation of the electrolytic solution proceeds at an accelerated rate. As a result, crystals are deposited on the surface of the anode A and the surface of the cathode C to prevent energization. The resistance value also increases at an accelerated rate due to the accelerated evaporation of the electrolytic solution and the precipitation of crystals. This is the second factor that causes the voltage applied to the group to increase at an accelerating rate.

先に述べた第一の要因又は第二の要因により、抵抗値が加速度的に増大しながら、定電流電解を行うと、電解槽にかかる電圧は抵抗値に比例するため、電圧は加速度的に増大する。このことを利用して、電圧または電圧差が加速度的に増加するときに限り、電源から電解槽への電解電流の供給を停止させるものである。
このようにすれば、電解液が減少していない場合に、誤って電解電流の供給を停止させることがないので、無駄な停止が減って生産量を増大させることができる。
When constant current electrolysis is performed while the resistance value is acceleratedly increased by the first factor or the second factor described above, the voltage applied to the electrolytic cell is proportional to the resistance value. Increase. This is utilized to stop the supply of the electrolytic current from the power source to the electrolytic cell only when the voltage or the voltage difference increases at an accelerating rate.
By doing so, the supply of the electrolytic current is not erroneously stopped when the amount of the electrolytic solution has not decreased, so that unnecessary stop can be reduced and the production amount can be increased.

また、電圧又は電圧差の増大を検知し、電源から電解槽への電解電流の供給を停止した後は、その原因箇所を特定し、電解液量の減少した槽を迂回する通電経路を構築し、電解電流の供給を再開する。このようにすれば、電解液量の減少した槽を補修したり電解液を補充したりする間、ほかの電解槽に電流を供給して生産をすることができる。
具体的には、例えば図7のように点線内の電解槽V22の電解液が流失したときに、本発明においては電解電流の供給を停止した後、図3の黒塗り部を短絡器10により短絡することにより、電流を白抜き矢印のごとく迂回させ、電解電流の供給を再開する。図3において、「白抜き×」は図7の第2組第2番の電解槽V22に相当し、電解液が流失したため機能していない電解槽である。
In addition, after detecting an increase in voltage or voltage difference and stopping the supply of electrolytic current from the power supply to the electrolytic cell, identify the cause of it and build an energizing path that bypasses the electrolytic solution-reduced cell. , Restart the supply of electrolytic current. By doing so, while repairing a tank having a reduced amount of electrolytic solution or supplementing the electrolytic solution, it is possible to supply current to another electrolytic cell for production.
More specifically, for example, when the electrolyte of the electrolytic cell V 22 within the dotted line is washed away as in Figure 7, after stopping the supply of electrolysis current in the present invention, a short circuit 10 the black part of FIG. 3 By short-circuiting, the current is diverted as shown by the white arrow, and the supply of electrolytic current is restarted. In FIG. 3, “white x” corresponds to the second electrolyzer V 22 of the second set in FIG. 7, and is an electrolyzer that is not functioning because the electrolytic solution has flowed out.

(蒸発した電解液)
電解液の蒸発が加速度的に進むと、それに伴い、電解槽の上方には多量の水蒸気が供給される。電解建屋では電解槽から水蒸気が蒸発しており湿度が高いので、多量に供給された水蒸気は、空中で結露して霧となる。この霧は、例えば光電管など、光を用いて検出することができる。このように検出した場合に限り、電源から電解槽への電解電流の供給を停止させてもよい。このようにすれば、電解液が減少していない場合に、誤って電解電流の供給を停止させることがないので、無駄な停止が減って生産量を増大させることができる。
このような光を用いた検出は、電解槽が多数ある場合に好適に使用できるうえ、電解液が減少した槽を特定するのも容易にする。
(Evaporated electrolyte)
As the evaporation of the electrolytic solution accelerates, a large amount of water vapor is supplied above the electrolytic cell. Since water vapor is evaporated from the electrolytic cell in the electrolytic building and the humidity is high, a large amount of supplied water vapor forms dew in the air to form fog. This fog can be detected using light, such as a photocell. Only when such detection is performed, the supply of the electrolytic current from the power source to the electrolytic cell may be stopped. By doing so, the supply of the electrolytic current is not erroneously stopped when the amount of the electrolytic solution has not decreased, so that unnecessary stop can be reduced and the production amount can be increased.
Such detection using light can be suitably used when there are a large number of electrolytic cells, and also makes it easy to identify the cell in which the electrolytic solution has decreased.

以上、述べた通りに本発明は、直流電源に複数の電解槽が直列に接続された電解工場において、電解槽内の液位の低下を検出でき、確実に危険を防止できるシステムを提供することができる。なお、直流電源から供給される電流は、直流電流が望ましいが、脈流があったり、電流方向が一時的に反転したりしてもよい。 As described above, the present invention provides a system capable of detecting a decrease in the liquid level in an electrolytic cell in an electrolytic plant in which a plurality of electrolytic cells are connected in series to a DC power source and reliably preventing a danger. You can The current supplied from the DC power source is preferably a DC current, but may have a pulsating current or the current direction may be temporarily reversed.

以下、本発明を、実施例を用いてさらに説明する。 Hereinafter, the present invention will be further described with reference to examples.

本発明の電源制御装置として、図4の実施例1に係る電源制御装置を示す概略フロー図に示す電源制御装置を使用して銅の電解精製を行った。
この図4に示す電源制御装置は、複数の電解槽を直列につなげた組の電圧を測定し、この組の電圧をそれぞれ計器用変圧器を介してアラームセッターに送り、アラームセッターの入力値が設定値を超えたときに直流過電圧信号を出力する。
さらに、この直流過電圧信号が出力されると、重故障警報を発報するとともに保護回路を動作させ電源装置を自動的に停止するように構成されている。
なお、電源装置には、各電解槽が直列につながって接続され、閉回路をなしている。
As the power supply control device of the present invention, electrolytic purification of copper was performed using the power supply control device shown in the schematic flowchart of the power supply control device according to the first embodiment of FIG.
The power supply control device shown in FIG. 4 measures the voltage of a group in which a plurality of electrolytic cells are connected in series, and sends the voltage of this group to an alarm setter via a transformer for an instrument, and the input value of the alarm setter is Outputs a DC overvoltage signal when the set value is exceeded.
Further, when the DC overvoltage signal is output, a serious failure alarm is issued and the protection circuit is operated to automatically stop the power supply device.
In addition, each electrolyzer is connected to the power supply device in series to form a closed circuit.

電源装置で高圧電流を降圧、整流して各電解槽に通電し、アラームセッターの設定値として、このときの組の電圧の1.1倍に相当する値を設定した。通電したまま、ある電解槽の底部にある栓を抜いたところ、その電解槽内の電解液が減少していき、通電が自動的に停止された。
通電が停止された時点の組の電圧は、アラームセッターの設定時点の電圧であった。
A high-voltage current was stepped down and rectified by a power supply unit to energize each electrolytic cell, and a value corresponding to 1.1 times the voltage of the set at this time was set as the set value of the alarm setter. When the plug at the bottom of a certain electrolytic cell was removed while electricity was still flowing, the amount of electrolyte in the electrolytic cell gradually decreased, and electricity was automatically stopped.
The voltage of the set at the time when the energization was stopped was the voltage at the time when the alarm setter was set.

本発明の図5の本発明の実施例2に係る電源制御装置を示す概略フロー図に示す電源制御装置を使用して銅の電解精製を行った。
この図5の電源制御装置は、18槽の電解槽を直列につなげた組の電圧を測定し、各組の電圧差のうち最大のものを計器用変圧器を介してアラームセッターに送り、アラームセッターの入力値が設定値を超えたときに直流過電圧信号を出力する。また、直流過電圧信号が出力されると、重故障警報を発報するとともに保護回路を動作させ電源装置を自動的に停止するようになっている。
なお、電源装置には、各組が直列につながって接続され、閉回路をなしている。
Electrolytic refining of copper was performed using the power supply control device shown in the schematic flow chart showing the power supply control device according to the second embodiment of the present invention in FIG. 5 of the present invention.
The power supply control device of FIG. 5 measures the voltage of a group in which 18 electrolytic cells are connected in series, and sends the maximum of the voltage difference of each group to the alarm setter via the instrument transformer, Outputs a DC overvoltage signal when the input value of the setter exceeds the set value. Further, when a DC overvoltage signal is output, a serious failure alarm is issued and the protection circuit is activated to automatically stop the power supply device.
Each pair is connected in series to the power supply device to form a closed circuit.

電源装置で高圧電流を降圧、整流して各電解槽に通電し、アラームセッターの設定値として、このときの組の電圧の0.1倍に相当する値を設定した。その後、各電解槽に通電したまま、ある電解槽の底部にある栓を抜いたところ、その電解槽内の電解液が減少していき、通電が自動的に停止した。
その通電が停止した時点の各組の電圧差のうち最大のものは、アラームセッターの設定時点の電圧であった。
A high-voltage current was stepped down and rectified by a power supply unit to energize each electrolytic cell, and a value corresponding to 0.1 times the voltage of the set at this time was set as the set value of the alarm setter. Then, when the plug at the bottom of a certain electrolytic cell was removed while energizing each electrolytic cell, the electrolytic solution in the electrolytic cell decreased and the energization automatically stopped.
The largest voltage difference among the groups at the time when the energization was stopped was the voltage at the time when the alarm setter was set.

本発明の電源制御装置として、図4の実施例1に係る電源制御装置を示す概略フロー図に示す電源制御装置を使用して銅の電解精製を行った。
この図4に示す電源制御装置は、複数の電解槽を直列につなげた組の電圧を測定し、この組の電圧をそれぞれ計器用変圧器を介してアラームセッターに送り、アラームセッターの入力値が設定値を超えたときに直流過電圧信号を出力する。
さらに、この直流過電圧信号が出力されると、重故障警報を発報するとともに保護回路を動作させ電源装置を自動的に停止するように構成されている。
なお、電源装置には、2槽の電解槽を直列に接続した組を1組と、4槽の電解槽を直列に接続した組を1組とが直列につながって接続されて閉回路をなしている。
As the power supply control device of the present invention, electrolytic purification of copper was performed using the power supply control device shown in the schematic flowchart of the power supply control device according to the first embodiment of FIG.
The power supply control device shown in FIG. 4 measures the voltage of a group in which a plurality of electrolytic cells are connected in series, and sends the voltage of this group to an alarm setter via a transformer for an instrument, and the input value of the alarm setter is Outputs a DC overvoltage signal when the set value is exceeded.
Further, when the DC overvoltage signal is output, a serious failure alarm is issued and the protection circuit is operated to automatically stop the power supply device.
It should be noted that the power supply device is connected in series with one set in which two electrolytic cells are connected in series and one set in which four electrolytic cells are connected in series to form a closed circuit. ing.

電源装置で高圧電流を降圧、整流して各電解槽に通電し、アラームセッターの設定値として、それぞれ槽数の0.4ボルト倍に相当する値を設定した。通電したまま、2槽の組に属する電解槽の底部にある栓を抜いたところ、その電解槽内の電解液が減少していき、通電が自動的に停止された。
通電が停止された時点の組の電圧は、アラームセッターの設定時点の電圧であった。
A high-voltage current was stepped down and rectified by a power supply unit to energize each electrolytic cell, and the set value of the alarm setter was set to a value corresponding to 0.4 times the number of cells. When the plug at the bottom of the electrolytic cell belonging to the group of two tanks was removed while the power was on, the electrolytic solution in the electrolytic cell gradually decreased, and the power was automatically stopped.
The voltage of the set at the time when the energization was stopped was the voltage at the time when the alarm setter was set.

電解槽に20kAの電流を流し、銅の電解精製を行った。
電流を流しながら、ある電解槽の底部にある栓を抜いたところ、その電解槽内の電解液が減少していき、栓を抜いてから5分毎に電解槽にかかる電圧を測定した。
電圧は7回測定したが、電圧は単調増加し、その増加速度は、測定回数が増えるほど加速していた。
A current of 20 kA was passed through the electrolytic cell to carry out electrolytic refining of copper.
When a plug at the bottom of a certain electrolytic cell was removed while applying an electric current, the electrolytic solution in the electrolytic cell decreased, and the voltage applied to the electrolytic cell was measured every 5 minutes after the plug was removed.
The voltage was measured 7 times, but the voltage increased monotonously, and the rate of increase was accelerated as the number of measurements was increased.

実施例1のあと、短絡器を配置することにより、栓を抜いた電解槽を迂回する回路を形成後、通電を再開した。
通電中の電解槽のカソード表面をルーペで定期的に観察したところ、特段の問題なく、銅の電着が進行しつつあることを確認した。
After Example 1, a short-circuiting device was arranged to form a circuit bypassing the electrolytic cell from which the plug was removed, and then energization was restarted.
Periodically observing the cathode surface of the electrolyzing cell under electricity with a magnifying glass, it was confirmed that the electrodeposition of copper was progressing without any particular problems.

jk、V 電解槽
j 電解槽の組番号
k 組内の電解槽番号
L 電解液
A アノード
C カソード
3 電源装置
4 遮断部
5 変圧機能部
6 交流電源
10 短絡器
11 電解液の液位
V jk , V Electrolyzer j Number of electrolyzer set k Number of electrolyzer in set L Electrolyte A Anode C Cathode 3 Power supply unit 4 Breaking unit 5 Transformer function unit 6 AC power supply 10 Short circuiter 11 Liquid level of electrolyte

Claims (3)

受電した高圧電流を降圧して低圧電流を給電する変圧機能部を備えた電源と、前記電源に直列に接続されて閉回路をなす複数の電解槽からなる電解部とを備え、前記電源から電解部に電解電流を供給する電解精錬設備に用いる電源制御装置であって、
前記電解部が、直列接続された1個以上、m個の電解槽からなる組を2組以上、n組、直列接続した構成からなり、
前記n組のいずれか一組に掛かる電圧と、前記一組と異なる他の一組に掛かる電圧との差が、遮断電圧値以上の電圧を示した場合、前記電源から電解部への電解電流の供給を停止することを特徴とする電解精錬設備に用いる電源制御装置。
The power supply includes a transformer function unit that reduces the received high-voltage current to supply a low-voltage current, and an electrolysis unit including a plurality of electrolytic cells that are connected in series to the power supply to form a closed circuit. Is a power supply control device used in an electrolytic refining facility for supplying an electrolytic current to a section,
The electrolysis section has a configuration in which one or more sets connected in series, two or more sets consisting of m electrolysis cells, and n sets are connected in series,
When a difference between a voltage applied to any one of the n sets and a voltage applied to another set different from the one set indicates a voltage equal to or higher than a cutoff voltage value, an electrolytic current from the power source to the electrolysis unit A power supply control device for use in electrolytic refining equipment, characterized in that the supply of electricity is stopped.
前記電解電流の供給を停止することが、前記変圧機能部への高圧電流を遮断することによって、行われることを特徴とする請求項1に記載の電解精錬設備に用いる電源制御装置。 The power supply control device used in the electrolytic refining equipment according to claim 1, wherein the supply of the electrolytic current is stopped by interrupting a high-voltage current to the transformer function unit. 請求項1又は2に記載の電源制御装置を用いて直列接続されたm個の電解槽からなる組に掛かる電圧増加を検出し、電源から電解部への電解電流の供給を停止した後、
前記電圧増加が検出された組が電解液量の減少した槽を含み、この槽を迂回する通電経路を構築し、
前記電解電流の供給を再開することを特徴とする電解精錬設備に用いる電源制御方法。
After detecting an increase in voltage applied to a set of m electrolytic cells connected in series using the power supply control device according to claim 1 or 2 , and stopping the supply of electrolytic current from the power supply to the electrolysis section,
The set in which the voltage increase is detected includes a tank with a reduced amount of electrolyte, and an energization path that bypasses the tank is constructed.
A power supply control method used for electrolytic refining equipment, characterized in that the supply of the electrolytic current is restarted.
JP2018243346A 2018-12-26 2018-12-26 Power control device and power control method for use in electrolytic refining equipment Active JP6726411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243346A JP6726411B2 (en) 2018-12-26 2018-12-26 Power control device and power control method for use in electrolytic refining equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243346A JP6726411B2 (en) 2018-12-26 2018-12-26 Power control device and power control method for use in electrolytic refining equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015193834A Division JP6493128B2 (en) 2015-09-30 2015-09-30 Electrolytic power supply control apparatus and power supply control method

Publications (2)

Publication Number Publication Date
JP2019070198A JP2019070198A (en) 2019-05-09
JP6726411B2 true JP6726411B2 (en) 2020-07-22

Family

ID=66441123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243346A Active JP6726411B2 (en) 2018-12-26 2018-12-26 Power control device and power control method for use in electrolytic refining equipment

Country Status (1)

Country Link
JP (1) JP6726411B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113003892A (en) * 2021-03-25 2021-06-22 中建环能科技股份有限公司 Coking wastewater treatment system and treatment process

Also Published As

Publication number Publication date
JP2019070198A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
US9255338B2 (en) Permanent system for continuous detection of current distribution in interconnected electrolytic cells
JP6138283B2 (en) Current measurement of individual electrodes in an electrolysis system.
US20070095672A1 (en) Method of controlling aluminum reduction cell with prebaked anodes
US10309023B2 (en) Anode structure for metal electrowinning cells
US20160115608A1 (en) System for evaluation of current distribution in electrodes of electrochemical plants
JP6726411B2 (en) Power control device and power control method for use in electrolytic refining equipment
KR100840163B1 (en) Method for the improvement of current efficiency in electrolysis
JP2015040327A (en) Electrolytic smelting installation and method of feeding electrolytic solution
EP2959038B1 (en) Device for monitoring current distribution in interconnected electrolytic cells
GB1505223A (en) Method of and apparatus for detecting and eliminating short-circuits in an electrolytic tank
CN113073361A (en) Electrolytic polar plate short-circuit early warning detection method and device and electrolytic system
JP6493128B2 (en) Electrolytic power supply control apparatus and power supply control method
KR20170038880A (en) Cell for metal electrowinning
CN108286060A (en) Cathode current abnormity detection method and system
CN109457276B (en) Electrode short circuit detection method and system
NO139566B (en) PROCEDURE AND DEVICE FOR PROTECTING ELECTRODES AGAINST CURRENT OVERCOME OR CURRENT UNDER LOADS IN AN ELECTROLYSIS CELL
KR20130130504A (en) Electrode wiring sturcture of electrolysis device and electrode defect detecting method using thereof
US3689398A (en) Automatic anode raising device
CN109507546B (en) Detection circuit of crust breaking cylinder of aluminum electrolytic cell and insulation detection method based on differential pressure
US3406103A (en) Method and apparatus for monitoring lining damage of alkali metal chlorate bipolar cells
JP3371443B2 (en) Short circuit detection method
JP2019167564A (en) Electrolysis device
US10751820B2 (en) Wire electrical discharge machine with deterioration detection function for feeder
JP2003160893A (en) Method for controlling voltage of electrolytic vessel
JPH05156482A (en) Quality control method for electrolytically refining metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200611

R150 Certificate of patent or registration of utility model

Ref document number: 6726411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150