JPH05156482A - Quality control method for electrolytically refining metal - Google Patents

Quality control method for electrolytically refining metal

Info

Publication number
JPH05156482A
JPH05156482A JP3344077A JP34407791A JPH05156482A JP H05156482 A JPH05156482 A JP H05156482A JP 3344077 A JP3344077 A JP 3344077A JP 34407791 A JP34407791 A JP 34407791A JP H05156482 A JPH05156482 A JP H05156482A
Authority
JP
Japan
Prior art keywords
cathode
weight
electrolysis
electrolytic
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3344077A
Other languages
Japanese (ja)
Other versions
JP2783027B2 (en
Inventor
Masato Sugimoto
誠人 杉本
Koji Ando
孝治 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3344077A priority Critical patent/JP2783027B2/en
Publication of JPH05156482A publication Critical patent/JPH05156482A/en
Application granted granted Critical
Publication of JP2783027B2 publication Critical patent/JP2783027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To provide a quality control method capable of relatively easily judging whether a cathode plate is good or bad, capable of being easily mechanized or automated and also used for improving the electrolytic operation. CONSTITUTION:The quality is judged from the average current density of a cathode calculated from the weight of a cathode plate or the weight difference between the cathode plates before and after electrolysis and electrolyzing time, and the current distribution in the succeeding stage is uniformized to conduct electrolysis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属の電解精製における
カソード板の良否判別及び電解条件の改善のための品質
管理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quality control method for determining the quality of a cathode plate and improving electrolysis conditions in electrolytic refining of metals.

【0002】[0002]

【従来の技術】金属の電解精製の実際を銅の場合につい
て説明する。銅の電解精製は、粗銅又は精製粗銅をアノ
ードとし、電着銅種板をカソードとし、これらを交互に
電解槽に吊り下げ、硫酸銅溶液を主成分とする電解液中
で電解し、種板上に純銅を電着せしめるのが一般的であ
る。このようにして種板上に所定の厚さに銅が電着した
カソードを電気銅と称している。
2. Description of the Related Art The actual case of electrolytic refining of metal will be described in the case of copper. Electrolytic refining of copper uses crude copper or purified crude copper as an anode and an electrodeposited copper seed plate as a cathode, which are alternately suspended in an electrolytic cell and electrolyzed in an electrolytic solution containing a copper sulfate solution as a main component to form a seed plate. It is common to electrodeposit pure copper on top. The cathode in which copper is electrodeposited to a predetermined thickness on the seed plate in this manner is called electrolytic copper.

【0003】粗銅にはもちろんのこと、精製粗銅にも不
純物元素が存在し、電解に従って銅と共にこれらの不純
物も電解液中に溶出し、一部はスライムとなって槽底に
沈降する。このため電解中、電解液を一定量ずつ抜き取
り、その一部に浄液処理を施して電解槽に繰り返すよう
にしている。
Impurity elements are present not only in the crude copper but also in the refined crude copper, and these impurities are eluted with the copper into the electrolytic solution in accordance with the electrolysis, and a part thereof becomes slime and settles on the bottom of the tank. For this reason, a certain amount of the electrolytic solution is extracted during electrolysis, and a part of the electrolytic solution is purified so that the electrolytic solution is repeated.

【0004】このようにして得られる電気銅は、洗浄後
クロスバーが抜き取られ、所定枚数ずつ束ねて出荷に供
される。この電気銅は純度が99.99%以上である
が、表面の凹凸の大きいものは一般に不純物含有率が幾
分高く、そのため外観検査を最終的に行い、不良と判別
された電気銅は製錬工程に繰り返すようにしている。
The electrolytic copper thus obtained is washed and the crossbars are taken out, bundled in a predetermined number of sheets and shipped. This electrolytic copper has a purity of 99.99% or more, but those with large surface irregularities generally have a somewhat high impurity content, so a visual inspection is finally performed and electrolytic copper judged to be defective is smelted. I am trying to repeat the process.

【0005】[0005]

【発明が解決しようとする課題】上記外観検査は従来目
視により行ってきたが、この検査を自動化するには目に
代る何らかのセンサーが必要である。しかしながらこの
目視検査はカソード板表面の凹凸の具合を総合的に評価
しているのであり、そのような評価の可能なセンサーを
別途に開発しなければ代用手段となり得ない。
Conventionally, the visual inspection has been conducted by visual inspection, but some sort of sensor is necessary to automate the visual inspection. However, this visual inspection comprehensively evaluates the degree of unevenness on the surface of the cathode plate, and cannot be used as a substitute unless a sensor capable of such evaluation is separately developed.

【0006】本発明の目的は比較的簡便にカソード板の
良否を判別できて機械化、自動化が容易であり、しかも
電解操業の改善にも使用することができる、品質管理方
法を提供することにある。
It is an object of the present invention to provide a quality control method which can determine the quality of a cathode plate relatively easily, is easy to mechanize and automate, and can be used for improving electrolytic operation. ..

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明者らは、カソード板表面が荒れるのは電流密度が
過大になっているためで、電流密度が高ければ電着量が
多く、従ってカソード板の重量と不良品には相関関係が
あると考え、種々実験の結果このことを確認し本発明に
到達した。
In order to achieve the above object, the present inventors have found that the surface of the cathode plate is rough because the current density is too high. If the current density is high, the amount of electrodeposition is large. Therefore, it was thought that there is a correlation between the weight of the cathode plate and the defective product, and as a result of various experiments, this was confirmed and the present invention was reached.

【0008】即ち本発明品質管理方法の第一は、電解精
製後のカソード板の重量を1枚ずつ測定し、該測定値の
大小によりカソード板の品質を判別するものである。
That is, the first quality control method of the present invention is to measure the weight of each cathode plate after electrolytic refining one by one and determine the quality of the cathode plate based on the magnitude of the measured value.

【0009】又本発明の第二は、電解精製開始前のカソ
ード重量を1枚ずつ測定しておき、電解後にカソード重
量を測定して各カソードの電着金属量を算出すると共に
電解時間から各カソードの平均電流密度を求め、該電流
密度の大小によりカソード板の品質を判別するものであ
る。
In the second aspect of the present invention, the weight of the cathode is measured one by one before the start of electrolytic refining, and the weight of the cathode is measured after electrolysis to calculate the amount of electrodeposited metal of each cathode, and at the same time from the electrolysis time. The average current density of the cathode is obtained, and the quality of the cathode plate is determined by the magnitude of the current density.

【0010】更に本発明の第三は、前記平均電流密度か
ら各電解槽における電流分布状態を知り、次回の電解精
製の電流分布が均一になるようにして電解するものであ
る。
A third aspect of the present invention is to carry out electrolysis so that the current distribution state in each electrolytic cell is known from the average current density and the current distribution in the next electrolytic refining is made uniform.

【0011】[0011]

【作用】電流密度は電解の最も重要な条件の一つであ
る。これがあまり小さいと生産性が低くなるので、でき
るだけ高くするのが望ましいが、品質の良いカソード板
を得るには自ずと限界がある。電流密度が高過ぎると不
純物がカソードに析出し易くなり、又金属の異常析出も
起り易く、短絡を生ずることもあるからである。そのよ
うな不純物析出や異常析出の起らない経済的条件を選ん
で実際には操業されるのであるが、種々の要因の変動で
電解操業中の極板間の短絡を皆無にすることができず、
短絡を早期に発見して修正する必要から、電解中の監視
が欠かせない。
[Function] Current density is one of the most important conditions for electrolysis. If this is too small, the productivity will be low, so it is desirable to make it as high as possible, but naturally there is a limit to obtaining a good quality cathode plate. This is because if the current density is too high, impurities are likely to be deposited on the cathode, abnormal metal deposition is likely to occur, and a short circuit may occur. Although economic conditions are selected to prevent such precipitation of impurities and abnormal precipitation, operation is actually carried out, but due to changes in various factors, it is possible to eliminate short circuits between electrode plates during electrolytic operation. No
Monitoring during electrolysis is essential because of the need to detect and correct short circuits early.

【0012】このように監視し、修正しても同一の電解
槽から得られたカソード板の中には外観検査で不良と判
別されるものも時として発生する。この原因は何らかの
事情で局部的に電流密度の高い部分が生じ、不純物析出
や異常析出に至ったものと推測される。電流密度が高く
なれば当然電着量も増えるので、電着量を外観検査に代
る手段に用いることが可能となる。
Even if the cathode plates obtained from the same electrolytic cell are monitored and corrected as described above, some cathode plates may be determined to be defective by visual inspection. It is presumed that the cause of this is that a portion with a high current density locally occurred for some reason, resulting in impurity precipitation or abnormal precipitation. As the current density increases, the electrodeposition amount naturally increases, so that the electrodeposition amount can be used as a means instead of the visual inspection.

【0013】電着量はカソード板の重量で近似すること
ができ、このカソード板の重量を1枚ずつ測定し、重量
が異常に大きいカソード板を不良と判別することとすれ
ば良い。実際に外観検査と重量測定を行ってみると良い
相関関係があり、重量法が有効であることが判った。こ
の重量法によれば機械化、自動化も比較的容易に行うこ
とができる。
The amount of electrodeposition can be approximated by the weight of the cathode plate, and the weight of each cathode plate may be measured one by one, and a cathode plate having an abnormally large weight may be determined to be defective. When the appearance inspection and the weight measurement were actually performed, there was a good correlation, and it was found that the gravimetric method was effective. According to this gravimetric method, mechanization and automation can be performed relatively easily.

【0014】電着量を正確に測定するには、電解精製開
始前にカソード重量を1枚ずつ測定しておき、電解後の
カソード板の重量との差から算出するのが良い。カソー
ド重量はクロスバーを含んだ重量で測定しても良い。電
着金属量と電解時間から各カソードの電解中の平均電流
密度を計算でき、この電流密度が異常に大きいものを不
良と判別すれば良い。この方法によればより正確な良否
判別が可能となる。
In order to accurately measure the electrodeposition amount, it is preferable to measure the cathode weights one by one before starting the electrorefining and to calculate the difference from the weight of the cathode plate after electrolysis. The cathode weight may be measured by the weight including the crossbar. The average current density during electrolysis of each cathode can be calculated from the amount of electrodeposited metal and the electrolysis time, and an abnormally large current density can be determined to be defective. According to this method, it is possible to more accurately determine the quality.

【0015】更にこの方法は次のようにも利用できる。
即ち、前記各カソードの電解中の平均電流密度の配列は
電解槽全体における電流分布状態を示すことになる。従
って1ライフの電解操業の結果異常に大きい電流密度又
は異常に小さい電流密度を示すカソード位置を知ること
ができ、この位置の給電設備の調整を次回の操業前に行
うことで電流分布の平均化を図ることができる。電流分
布の異常に小さいカソードの存在は、他のカソードへの
電流量を増加させ、異常析出を誘発することにもなる。
Further, this method can be used as follows.
That is, the array of the average current densities of the cathodes during electrolysis indicates the current distribution state in the entire electrolytic cell. Therefore, it is possible to know the cathode position that shows an abnormally large current density or an abnormally small current density as a result of one-life electrolysis operation, and adjust the power supply equipment at this position before the next operation to average the current distribution. Can be planned. The presence of a cathode having an abnormally small current distribution also increases the amount of current flowing to the other cathode, and also induces abnormal deposition.

【0016】本発明法は銅の電解精製に限らず、他の金
属の電解精製においても同様に適用することができる。
The method of the present invention can be applied not only to electrolytic refining of copper but also to electrolytic refining of other metals.

【0017】[0017]

【実施例】【Example】

実験No.1…電解槽1槽分のカソード23枚(1枚当
り長さ1050mm、巾1070mm、厚さ約0.6mm、重
量約7kg)についてその両端部のカソードを除いて全数
の重量(クロスバーを含む)を配列順に測定してから電
解槽に装入し、又、精製アノードを22枚装入し、電解
槽全体のカソード電流密度を260A/m2として216時
間電解した後、得られた電気銅について両端部を除いて
同様に重量を測定し、重量差から各カソードの電着銅量
を求めた。電気銅は又目視による外観検査を行い、満点
を100として採点した。その結果21枚中、3枚の不
合格品があった。
Experiment No. 1 ... 23 cathodes for one electrolysis tank (length: 1050 mm, width: 1070 mm, thickness: about 0.6 mm, weight: about 7 kg), excluding the cathodes at both ends, the total weight (including crossbar) ) Was charged in the electrolytic cell, and 22 purified anodes were charged, and electrolysis was performed for 216 hours with the cathode current density of the entire electrolytic cell set to 260 A / m 2 and then obtained. Was measured in the same manner except for both ends, and the amount of electrodeposited copper of each cathode was determined from the weight difference. The electrolytic copper was also visually inspected and scored with a perfect score of 100. As a result, 3 out of 21 rejected products were rejected.

【0018】クロスバーを含む電気銅重量と外観評点を
図1にプロットして示す。図1において白抜き角点は合
格品、黒角点は不合格品を示す。この図から電気銅重量
と外観評点に相関関係があり、電気銅重量180kgを基
準に合否判定を行えば良いことが分る。
The weight of electrolytic copper including the crossbar and the appearance rating are plotted in FIG. In FIG. 1, open corner points indicate acceptable products, and black corner points indicate rejected products. It can be seen from this figure that there is a correlation between the weight of electrolytic copper and the external appearance score, and the pass / fail judgment may be made on the basis of 180 kg of electrolytic copper.

【0019】又、上記各カソードの電着銅量から電解中
の平均電流密度を算出した。図2はこの電流密度と外観
評点をプロットしたものである。図2からもこれら要因
の間に良い相関があり、電流密度で外観検査に代え得る
ことが分る。なおこの場合電流分布率(σn-1 /平均値
x)は0.092であった。
The average current density during electrolysis was calculated from the amount of electrodeposited copper on each cathode. FIG. 2 is a plot of the current density and the appearance rating. It can be seen from FIG. 2 that there is a good correlation between these factors and the appearance inspection can be replaced by the current density. In this case, the current distribution ratio (σ n-1 / average value x) was 0.092.

【0020】実験No.2…実験No.1において電流
密度が小さく、電着銅量の小さい電気銅が認められ、電
流分布率も大きいことが分ったので、これを改善するた
めアノードの耳部、カソードのクロスバー及びこれらと
接触するブスバー接点部を良く研磨し、他は実験No.
1と同様にして電解を行った。ただしカソードは27
枚、アノードは26枚とし、電解時間は231時間とし
た。
Experiment No. 2 ... Experiment No. In No. 1, electric copper having a small current density and a small amount of electrodeposited copper was observed, and it was found that the current distribution rate was also large. Therefore, in order to improve this, contact with the ears of the anode, the crossbar of the cathode, and these The bus bar contact part was well polished, and the others were the same as the experimental No.
Electrolysis was performed in the same manner as 1. However, the cathode is 27
The number of sheets and the number of anodes were 26, and the electrolysis time was 231 hours.

【0021】得られた電気銅について目視による外観検
査を行ったが、不合格品はなかった。電気銅重量と外観
評点及び電流密度と外観評点の関係をそれぞれ図3及び
図4にプロットして示す。
The appearance of the obtained electrolytic copper was visually inspected, but no rejected product was found. The relationship between the weight of electrolytic copper and the appearance score and the relationship between the current density and the appearance score are plotted in FIGS. 3 and 4, respectively.

【0022】図3及び図4によれば電気銅重量又は電流
密度のデータのバラツキが小さくなり、これらと外観評
点との相関関係は小さくなったが、評点は総じて高く、
本発明第3の方法が極めて有効であることを示してい
る。なお電流分布率は0.039であった。
According to FIGS. 3 and 4, the variations in the data of electrolytic copper weight or current density became small, and the correlation between these and the appearance scores became small, but the scores were generally high,
It shows that the third method of the present invention is extremely effective. The current distribution ratio was 0.039.

【0023】[0023]

【発明の効果】本発明により、電気銅の品質を判別する
簡便な手段を得られることになったが、それに留まら
ず、品質のバラツキを改善する手段も同時に得ることが
できた。これにより電気銅の品質向上に大きく貢献する
ことができる。
As described above, according to the present invention, a simple means for discriminating the quality of electrolytic copper can be obtained. However, it is possible to obtain not only the simple means but also the means for improving the quality variation. This can greatly contribute to the quality improvement of electrolytic copper.

【図面の簡単な説明】[Brief description of drawings]

【図1】実験No.1における電気銅重量と外観評点の
プロット図。
FIG. 1 Experiment No. FIG. 2 is a plot diagram of electrolytic copper weight and appearance score in FIG.

【図2】実験No.1におけるカソード電流密度と外観
評点のプロット図。
2] Experiment No. 2 is a plot diagram of the cathode current density and the appearance score in FIG.

【図3】実験No.2における電気銅重量と外観評点の
プロット図。
[Fig. 3] Experiment No. 2 is a plot diagram of electrolytic copper weight and appearance score in FIG.

【図4】実験No.2におけるカソード電流密度と外観
評点のプロット図。
4] Experiment No. 2 is a plot diagram of the cathode current density and the appearance score in FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解精製後のカソード板の重量を1枚ず
つ測定し、該重量の大小によりカソード板の品質を判別
することを特徴とする金属の電解精製における品質管理
方法。
1. A quality control method in electrolytic refining of metal, wherein the weight of each cathode plate after electrolytic refining is measured one by one, and the quality of the cathode plate is discriminated by the size of the weight.
【請求項2】 電解精製開始前にカソード重量を1枚ず
つ測定しておき、電解後のカソード板の重量との差から
各カソードの電着金属量を算出し、該電着金属量と電解
時間から各カソードの平均電流密度を求め、該電流密度
の大小によりカソード板の品質を判別することを特徴と
する金属の電解精製における品質管理方法。
2. The weight of each cathode is measured one by one before the start of electrolytic refining, and the amount of electrodeposited metal of each cathode is calculated from the difference between the weight of the cathode plate after electrolysis and the amount of electrodeposited metal and electrolysis. A quality control method in electrolytic refining of a metal, characterized in that the average current density of each cathode is obtained from time, and the quality of the cathode plate is determined by the magnitude of the current density.
【請求項3】 電解槽各槽毎に電解精製開始前にカソー
ド重量を1枚ずつ測定しておき、電解後のカソード板の
重量との差から各カソードの電着金属量を算出し、該電
着金属量と電解時間から各カソードの平均電流密度を求
めて上記電解槽における電流分布状態を知り、次回の電
解精製の電流分布が均一になるようにして電解すること
を特徴とする金属の電解精製における品質管理方法。
3. The cathode weight is measured one by one before starting electrorefining in each electrolytic cell, and the amount of electrodeposited metal of each cathode is calculated from the difference with the weight of the cathode plate after electrolysis, Knowing the current distribution state in the electrolytic cell by obtaining the average current density of each cathode from the amount of electrodeposited metal and the electrolysis time, the next step of electrorefining the current distribution of the metal is characterized by uniform electrolysis Quality control method in electrolytic refining.
JP3344077A 1991-12-03 1991-12-03 Quality control method in electrolytic refining of metals Expired - Lifetime JP2783027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3344077A JP2783027B2 (en) 1991-12-03 1991-12-03 Quality control method in electrolytic refining of metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3344077A JP2783027B2 (en) 1991-12-03 1991-12-03 Quality control method in electrolytic refining of metals

Publications (2)

Publication Number Publication Date
JPH05156482A true JPH05156482A (en) 1993-06-22
JP2783027B2 JP2783027B2 (en) 1998-08-06

Family

ID=18366482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3344077A Expired - Lifetime JP2783027B2 (en) 1991-12-03 1991-12-03 Quality control method in electrolytic refining of metals

Country Status (1)

Country Link
JP (1) JP2783027B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials
WO2013015032A1 (en) * 2011-07-26 2013-01-31 Jx日鉱日石金属株式会社 Method for producing indium hydroxide or compound containing indium hydroxide
JP2013023761A (en) * 2011-07-26 2013-02-04 Jx Nippon Mining & Metals Corp Method for producing indium hydroxide
CN113881974A (en) * 2021-10-12 2022-01-04 云南大泽电极科技股份有限公司 Hydrometallurgy electrolysis simulation experiment system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials
WO2013015032A1 (en) * 2011-07-26 2013-01-31 Jx日鉱日石金属株式会社 Method for producing indium hydroxide or compound containing indium hydroxide
JP2013023761A (en) * 2011-07-26 2013-02-04 Jx Nippon Mining & Metals Corp Method for producing indium hydroxide
CN103857830A (en) * 2011-07-26 2014-06-11 吉坤日矿日石金属株式会社 Method for producing indium hydroxide or compound containing indium hydroxide
CN113881974A (en) * 2021-10-12 2022-01-04 云南大泽电极科技股份有限公司 Hydrometallurgy electrolysis simulation experiment system and method
CN113881974B (en) * 2021-10-12 2023-06-02 云南大泽电极科技股份有限公司 Hydrometallurgical electrolysis simulation experiment system and method

Also Published As

Publication number Publication date
JP2783027B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
KR100840163B1 (en) Method for the improvement of current efficiency in electrolysis
US3712857A (en) Method for controlling a reduction cell
AU2002350349A1 (en) Method for the improvement of current efficiency in electrolysis
US3625842A (en) Alumina feed control
JPH05156482A (en) Quality control method for electrolytically refining metal
GB1505223A (en) Method of and apparatus for detecting and eliminating short-circuits in an electrolytic tank
US3864227A (en) Method for the electrolytic refining of copper
CN109799415B (en) Method and system for judging cathode short circuit mode
CA1126684A (en) Bipolar refining of lead
CN108411342B (en) Method and system for predicting electrode short circuit based on pseudo resistance
CN109457276A (en) Electrode short circuit detection method and system
CA1174199A (en) Bipolar refining of lead
CN108914162B (en) Method and system for controlling feeding amount of aluminum oxide
JP2019026866A (en) Electrorefining method of copper
AU558737B2 (en) Method of thiourea addition to electrolytic solutions useful
JPH0625882A (en) Electrolytic refining method for copper
JP2003119587A (en) Method for electrolytically refining copper
JP2017214612A (en) Electrolytic refining method for copper
CA1046799A (en) Electrowinning of zinc using aluminum alloy
JPH06101084A (en) Electrolytic device for nonferrous metal
Nora THE DE NORA SOLUTION–PART I, DSA® ANODES FOR COPPER ELECTROWINNING
CN118048663A (en) Method for recovering gold by electrolytic refining
JPH08170190A (en) Electrolytical refining of copper
JPH05271977A (en) Detection of short circuit
Ware et al. The Electrodeposition of Zinc on Zinc Starting Sheets