JPS5835111B2 - Electrification treatment method for wastewater containing sulfur-containing reducing anions - Google Patents

Electrification treatment method for wastewater containing sulfur-containing reducing anions

Info

Publication number
JPS5835111B2
JPS5835111B2 JP54021977A JP2197779A JPS5835111B2 JP S5835111 B2 JPS5835111 B2 JP S5835111B2 JP 54021977 A JP54021977 A JP 54021977A JP 2197779 A JP2197779 A JP 2197779A JP S5835111 B2 JPS5835111 B2 JP S5835111B2
Authority
JP
Japan
Prior art keywords
sulfur
wastewater
activated carbon
treatment tank
caustic soda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54021977A
Other languages
Japanese (ja)
Other versions
JPS55114386A (en
Inventor
士 高田
博久 日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Kawasaki Steel Corp filed Critical Shimizu Construction Co Ltd
Priority to JP54021977A priority Critical patent/JPS5835111B2/en
Publication of JPS55114386A publication Critical patent/JPS55114386A/en
Publication of JPS5835111B2 publication Critical patent/JPS5835111B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 本発明は、含硫黄還元性の陰イオンを含む排水の電化処
理法、とくに、高炉スラグ浸出水等を、活性炭を充填し
て成る処理槽中で電極を介して、微弱電流を通電しつつ
浄化処理する電化処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for electrification of wastewater containing sulfur-containing reducing anions, in particular, a method for electrification of wastewater containing sulfur-containing reducing anions, in particular a method for electrification of wastewater containing sulfur-containing reducing anions. This invention relates to an electrification processing method that performs purification processing while passing a weak current.

一般に、含硫黄還元性陰イオンを含む排水(以下原水と
呼ぶ)は、例えば、硫黄ならびにチオ硫酸イオン等のC
OD成分のため、CODが高くそのまま排出することが
できないため、事前にCOD戒分の除去または酸化によ
って排水基準に適合させ、その後、排水されることが望
まれている。
Generally, wastewater containing sulfur-containing reducing anions (hereinafter referred to as raw water) contains carbon dioxide such as sulfur and thiosulfate ions.
Since the OD component has a high COD and cannot be discharged as is, it is desired that the COD component be removed or oxidized in advance to meet wastewater standards and then be discharged.

また、この処理法の一つとしてこの電化処理法では、活
性炭が充填された処理槽中に炭素製の電極を配置し、こ
れら電極間に微弱な直流電流を通電しつつ、原水中から
電解反応によってCOD成分を除去するのみならず、活
性炭表面の持つ酸化能と含硫黄還元性陰イオンの持つ酸
性分解性によって、COD成分等を除去している。
In addition, in this electrification treatment method, carbon electrodes are placed in a treatment tank filled with activated carbon, and while a weak direct current is passed between these electrodes, an electrolytic reaction occurs from the raw water. Not only does this remove COD components, but also the oxidizing ability of the activated carbon surface and the acidic decomposition properties of the sulfur-containing reducing anions remove COD components and the like.

このため、電解処理法では、直流電流の通電による電解
反応と活性炭表面の酸化能及びCODの主成分であるチ
オ硫酸イオンの不均化反応とによって原水が浄化される
ため、浄化能はきわめて大きく、他の浄化法に較べて優
れているといわれている。
Therefore, in the electrolytic treatment method, raw water is purified by an electrolytic reaction caused by the application of direct current, the oxidation ability of the surface of activated carbon, and the disproportionation reaction of thiosulfate ions, which are the main components of COD, so the purification ability is extremely high. It is said to be superior to other purification methods.

しかし、電化処理法では処理時に原水中に含まれる浮遊
物や析出スケール等が、活性炭の表面や電極の表面に付
着、若しくは活性炭間に捕捉され、電極の有効表面積、
活性炭の有効表面積が減少し、徐々に処理能力が低下し
、このため、所要時間処理すると、定期的に処理槽中に
空気または水等の洗浄媒体を送り込み、洗浄することが
行なわれている。
However, in the electrification treatment method, suspended matter and precipitated scale contained in the raw water during treatment adhere to the surface of the activated carbon or the surface of the electrode, or are trapped between the activated carbon, reducing the effective surface area of the electrode.
The effective surface area of the activated carbon decreases and the processing capacity gradually decreases. Therefore, after the required time of processing, a cleaning medium such as air or water is periodically pumped into the processing tank for cleaning.

しかしながら、このように処理槽に空気等を吹込んで洗
浄しても活性炭間のスケール等は除去できるが、活性炭
表面に付着したスケール等や、とくに固く付着したスケ
ール等は除去することができず、通常は、スケール等の
付着が相当進行すると、新しい活性炭と交換することが
行なわれているが、活性炭が高価であるため、交換には
経費がかさみ、交換作業に手数を要し、処理コストがか
かり、その改善が望まれている。
However, although cleaning by blowing air into the treatment tank can remove scale between the activated carbon, it cannot remove scale that has adhered to the surface of the activated carbon, or particularly scale that has adhered firmly. Normally, when the adhesion of scale etc. has progressed considerably, activated carbon is replaced with new activated carbon, but since activated carbon is expensive, replacement is expensive, time-consuming, and processing costs are high. Improvements are desired.

このため、活性炭を新しく交換することなく、活性炭表
面に付着したスケール等を洗浄除去できる洗浄法も提案
され、その一つとして、処理槽中に下部から塩酸を含む
溶液を送り込んで活性炭表面を洗浄することが提案され
ている。
For this reason, a cleaning method has been proposed that can remove scale and other substances adhering to the activated carbon surface without having to replace the activated carbon with a new one.One method is to clean the activated carbon surface by pumping a solution containing hydrochloric acid into the treatment tank from the bottom. It is proposed to do so.

しかし、このように活性炭の表面を希塩酸を含む溶液で
洗浄する場合には、電化処理反応中に生成するスケール
は希塩酸により除去できても、長期にわたる運転中には
還元性陰イオンの酸性分解によって硫黄等が生威し、こ
の硫黄等が活性炭に付着して電化処理法に悪影響を及ぼ
す。
However, when cleaning the surface of activated carbon with a solution containing diluted hydrochloric acid in this way, even though the scale generated during the electrification reaction can be removed with diluted hydrochloric acid, during long-term operation, the scale may be removed due to acidic decomposition of reducing anions. Sulfur, etc. are present, and this sulfur, etc. adheres to activated carbon and adversely affects the electrification process.

このため、活性炭の表面を希塩酸を含む溶液で洗浄して
も、活性炭の表面の硫黄等の付着量が限度に達したとき
は、活性炭を新しいものに交換せざるを得ない。
Therefore, even if the surface of the activated carbon is cleaned with a solution containing dilute hydrochloric acid, when the amount of sulfur, etc. attached to the surface of the activated carbon reaches its limit, the activated carbon must be replaced with a new one.

しかし、この交換は、活性炭の取出し、詰込み等に手間
がかかるうえ、活性炭再生費用も高価であって、活性炭
表面の硫黄等が除去できることが望まれている。
However, this replacement requires time and effort to take out and pack the activated carbon, and the cost of regenerating the activated carbon is also expensive, so it is desired to be able to remove sulfur and the like from the surface of the activated carbon.

本発明は、上記欠点の解決を目的とし、とくに、電化処
理法において、活性炭の表面にスケール等のほかに硫黄
等が蓄積した場合でも、活性炭を取り出すことな(処理
槽内の活性炭が洗浄でき、除去能力を回復させて電化処
理する方法を提案する。
The present invention aims to solve the above-mentioned drawbacks, and in particular, in the electrification treatment method, even if sulfur etc. accumulates on the surface of activated carbon in addition to scale etc., the activated carbon cannot be taken out (the activated carbon in the treatment tank cannot be cleaned). , we propose a method for recovering removal capacity and electrification processing.

すなわち、本発明は活性炭が充填された処理槽中で、電
極を介して微弱電流を通電しつつ、含硫黄還元性陰イオ
ンを含む排水を浄化する電化処理法において、この処理
槽中の活性炭表面に硫黄が所定量まで蓄積したときには
、排水の浄化を停止して処理槽中から排水を除去し、そ
の後、処理槽中に、苛性ソーダを含む水溶液を送り込ん
で硫黄を洗浄し、その洗浄後、再び排水の浄化を開始す
ることを特徴とする。
That is, the present invention provides an electrification treatment method for purifying wastewater containing sulfur-containing reducing anions while passing a weak current through an electrode in a treatment tank filled with activated carbon. When sulfur has accumulated to a predetermined amount, wastewater purification is stopped and the wastewater is removed from the treatment tank. After that, an aqueous solution containing caustic soda is pumped into the treatment tank to wash away the sulfur, and after that cleaning, the wastewater is removed again. It is characterized by starting purification of wastewater.

また、本発明法は活性炭が充填された処理槽中で、電極
を介して微弱電流を通電しつつ、含硫黄還元性陰イオン
を含む排水を浄化する電化処理法において、この処理槽
中の活性炭表面に硫黄が所定量まで蓄積したときには、
排水の浄化を停止して処理槽中から排水を除去し、その
後、処理槽中に、苛性ソーダを含む水溶液を送り込んで
硫黄を洗浄し、その洗浄後、再び排水の浄化を開始し、
更に、この排水浄化の間、処理槽中の活性炭ならびに電
極の表面にスケール等が所定量まで蓄積したときは、処
理槽中に塩酸を含む水溶液を送り込んでスケール等を洗
浄し、排水の浄化を行なうことを特徴とする。
In addition, the method of the present invention is an electrification treatment method that purifies wastewater containing sulfur-containing reducing anions while passing a weak current through an electrode in a treatment tank filled with activated carbon. When sulfur accumulates to a certain amount on the surface,
The wastewater purification is stopped and the wastewater is removed from the treatment tank, and then an aqueous solution containing caustic soda is sent into the treatment tank to wash away the sulfur. After that cleaning, the wastewater purification is started again.
Furthermore, during this wastewater purification, if scale, etc. accumulates to a predetermined amount on the surface of the activated carbon and electrodes in the treatment tank, an aqueous solution containing hydrochloric acid is pumped into the treatment tank to wash away the scale, etc., and purify the wastewater. It is characterized by doing.

以下、本発明法について詳しく説明する。The method of the present invention will be explained in detail below.

なお、第1図は本発明法を実施する装置の一例の配置図
であって、図面中で、符号1は原水導入口、2は処理槽
、3は炭素電極、4は活性炭、5はツースバー、6は水
供給バルク、7は空気供給バルブ、8は苛性ソーダ供給
バルク、9は苛性ソーダ循環ポンプ、10は苛性ソーダ
希釈タンク、11は苛性ソーダ出口バルブ、12は苛性
ソーダ移送ポンプ、13は苛性ソーダ循環バルブ、14
は苛性ソーダ受槽、15はブロア管、16は処理水出口
、17はドレンバルブヲ示ス。
FIG. 1 is a layout diagram of an example of an apparatus for carrying out the method of the present invention, and in the drawing, reference numeral 1 indicates a raw water inlet, 2 indicates a treatment tank, 3 indicates a carbon electrode, 4 indicates activated carbon, and 5 indicates a tooth bar. , 6 is a water supply bulk, 7 is an air supply valve, 8 is a caustic soda supply bulk, 9 is a caustic soda circulation pump, 10 is a caustic soda dilution tank, 11 is a caustic soda outlet valve, 12 is a caustic soda transfer pump, 13 is a caustic soda circulation valve, 14
15 shows a caustic soda receiving tank, 15 shows a blower pipe, 16 shows a treated water outlet, and 17 shows a drain valve.

まず、第1図において、原水導入口1から処理槽2の中
に原水を導入し、処理槽2の中の炭素電極3間で微弱な
電流を流し、炭素電極30間の活性炭4中を原水が通過
する間に、微弱の電流と活性炭表面の酸化能とによって
原水は処理され、処理後は処理水出口16からとり出さ
れる。
First, in FIG. 1, raw water is introduced into the treatment tank 2 from the raw water inlet 1, a weak current is passed between the carbon electrodes 3 in the treatment tank 2, and the raw water flows through the activated carbon 4 between the carbon electrodes 30. While the water passes through the water, the raw water is treated by a weak electric current and the oxidizing ability of the activated carbon surface, and after the treatment is taken out from the treated water outlet 16.

すなわち、処理槽2中において、原水中に含まれる溶存
硫黄およびチオ硫酸イオンは、微弱な電流作用によって
電極3と活性炭4とが一体となった陽極域において、次
の反応により硫黄を生成する。
That is, in the treatment tank 2, dissolved sulfur and thiosulfate ions contained in the raw water generate sulfur through the following reaction in the anode area where the electrode 3 and activated carbon 4 are integrated by the action of a weak current.

S2−→S0+2e−・・・・・・・・・・・・・・−
(1)8203′=十H十→S0+H8O,−・・・(
2)生じた硫黄は活性炭内に留まり、そして長期に亘る
操業中にこの硫黄が蓄積して、活性炭表面を覆い、原水
の浄化作用は徐々に低下してい(。
S2−→S0+2e−・・・・・・・・・・・・・−
(1) 8203'=10H10→S0+H8O, -...(
2) The generated sulfur remains in the activated carbon, and during long-term operation, this sulfur accumulates and covers the surface of the activated carbon, gradually reducing its ability to purify raw water.

このように活性炭表面に硫黄が付着し、その付着量が所
定値以上になったときは、原水の流入を停止し、ドレン
バルブ17を用いて処理槽2内の原水を排水する。
When sulfur adheres to the activated carbon surface and the amount of the adhesion exceeds a predetermined value, the inflow of raw water is stopped and the raw water in the treatment tank 2 is drained using the drain valve 17.

この場合、活性炭40間に捕捉物が存在するときは、空
気供給バルブ7を開いて、洗浄用空気を導入して洗浄し
、更に、水供給バルプ6を開いて洗浄水を上向きに導入
する。
In this case, when there is a trapped substance between the activated carbons 40, the air supply valve 7 is opened to introduce cleaning air for cleaning, and the water supply valve 6 is further opened to introduce cleaning water upward.

次に、以上の通りに活性炭40間の捕捉物を除去してか
ら、所定濃度に希釈された苛性ソーダ溶液を処理槽2の
中に導入し、この苛性ソーダ溶液を循環させて、活性炭
40表面に付着蓄積した硫黄を除去する。
Next, after removing the trapped substances between the activated carbons 40 as described above, a caustic soda solution diluted to a predetermined concentration is introduced into the treatment tank 2, and this caustic soda solution is circulated to adhere to the surface of the activated carbon 40. Removes accumulated sulfur.

この場合、苛性ンーダ溶液は何れの態様によっても導入
することができるが、第1図で示す通りに導入するのが
好ましい。
In this case, the caustic soda solution can be introduced in any manner, but is preferably introduced as shown in FIG.

すなわち、濃度45%程度の苛性ソーダ溶液を希釈槽1
0に受入れ、希釈槽10で4〜20%に希釈調整し、こ
の苛性ソーダ溶液を苛性ソーダ供給バルブ8を用いて苛
性ソーダ循環ポンプ9により、ブロア管15を介して電
化処理槽2に送り込んで活性炭と十分に接触させる。
In other words, a caustic soda solution with a concentration of about 45% is placed in dilution tank 1.
The caustic soda solution is fed to the electrification treatment tank 2 via the blower pipe 15 using the caustic soda supply valve 8 and the caustic soda circulation pump 9, and is then diluted to 4-20% in the dilution tank 10. contact with.

この接触によって活性炭表面に付着蓄積していた硫黄が
溶解して洗浄溶液に移る。
This contact dissolves the sulfur that has accumulated on the surface of the activated carbon and transfers it to the cleaning solution.

このようにして苛性ソーダ溶液を次々と電化処理槽2内
に送り込めば、洗浄廃液は電化処理槽上部よりオーバフ
ローして、トラフを通じて苛性ソーダ受槽14に送り込
まれる。
When the caustic soda solution is successively fed into the electrification treatment tank 2 in this manner, the cleaning waste liquid overflows from the upper part of the electrification treatment tank and is sent into the caustic soda receiving tank 14 through the trough.

洗浄廃液が苛性ソーダ受槽14に流れ出た段階で苛性ソ
ーダ移送ポンプ12を動かして希釈槽10に戻せば苛性
ソーダを循環使用することができる。
When the washing waste liquid flows into the caustic soda receiving tank 14, the caustic soda transfer pump 12 is operated to return it to the dilution tank 10, so that the caustic soda can be recycled.

この場合、苛性ソーダ溶液の濃度は硫黄分の付着度合に
応じ4〜20%範囲内で適宜決定される。
In this case, the concentration of the caustic soda solution is appropriately determined within the range of 4 to 20% depending on the degree of adhesion of sulfur content.

4%以下では洗浄能力が十分でなく、20%を越えるこ
とはコスト的に不利であるばかりでなく、洗浄後の電化
処理が有利に行なえなくなるので、4〜20%の範囲で
採用すべきである。
If it is less than 4%, the cleaning ability will not be sufficient, and if it exceeds 20%, it will not only be disadvantageous in terms of cost, but also the electrification treatment after cleaning will not be advantageous, so it should be used in the range of 4 to 20%. be.

本発明者等の実験によれば、8%前後で十分な洗浄効果
が得られた。
According to experiments conducted by the present inventors, a sufficient cleaning effect was obtained at around 8%.

また、以上の通りに活性炭40表面の硫黄を洗浄除去し
たのちは、再び原水を原水導入口1から導入し、上記の
通りに電極3間に微弱の電流を流動させつつ原水を処理
するが、この際、活性炭40表面にスケール等が付着蓄
積したときには、希塩酸溶液で洗浄すれば十分である。
In addition, after washing and removing sulfur on the surface of the activated carbon 40 as described above, raw water is introduced again from the raw water inlet 1, and the raw water is treated while flowing a weak current between the electrodes 3 as described above. At this time, if scale or the like accumulates on the surface of the activated carbon 40, it is sufficient to clean it with a dilute hydrochloric acid solution.

また、このようにスケールを除去しながら原水を電化処
理する場合に、所定期間を経過すると活性炭40表面の
硫黄蓄積量が多くなるが、この際は上記の通りに洗浄す
るのは当然である。
Further, when raw water is electrified while removing scale in this way, the amount of sulfur accumulated on the surface of the activated carbon 40 increases after a predetermined period of time, but in this case it is natural to clean it as described above.

すなわち、処理槽2において、陽極域では上記の通り(
1)ならびに(2)の式によって硫黄を析出分離するが
、陰極を威す電極30表面は難水溶性の水酸化マグネシ
ウムや水酸化カルシウムが生成し、これらがスケールと
なって析出し、更に、スケールは電極面や活性炭の表面
に付着し、洗浄能力が低下する。
That is, in the treatment tank 2, in the anode area, as described above (
Sulfur is precipitated and separated according to the formulas 1) and (2), but poorly water-soluble magnesium hydroxide and calcium hydroxide are generated on the surface of the electrode 30, which acts as a cathode, and these precipitate as scales. Scale adheres to the electrode surface and activated carbon surface, reducing cleaning performance.

また、スケールは、空気供給バルブ7等から導入される
洗浄用空気では除去できない。
Further, scale cannot be removed by cleaning air introduced from the air supply valve 7 or the like.

このため、塩酸を含む溶液を洗浄として処理槽2の中に
導入し、活性炭、電極等の表面に付着したスケール等を
除去する。
For this purpose, a solution containing hydrochloric acid is introduced into the processing tank 2 as a cleaning agent to remove scales and the like adhering to the surfaces of activated carbon, electrodes, and the like.

この塩酸を含む溶液は、通常、苛性ソーダを含む溶液と
同様に水で塩酸を希釈して導入すれば十分である。
It is usually sufficient to dilute the hydrochloric acid with water and introduce the solution containing hydrochloric acid, similarly to the solution containing caustic soda.

また、塩酸を含む溶液の濃度は、スケールの付着度合と
関連させて決めれば十分であるが、通常の場合は塩酸濃
度は0.1%以上であれば、スケール等の除去効果が大
きく短時間で溶解でき、5%以上になると、処理装置等
を侵食する危険があり、一般には1〜3%前後で十分で
ある。
In addition, it is sufficient to determine the concentration of the solution containing hydrochloric acid in relation to the degree of scale adhesion, but in normal cases, if the concentration of hydrochloric acid is 0.1% or more, the removal effect of scale etc. is large and short. If it exceeds 5%, there is a risk of corroding processing equipment, etc., and generally around 1 to 3% is sufficient.

次に実施例について説明する。Next, an example will be described.

実施例 1 まず、第1図に示す装置において、高炉スラグからの浸
出水を電化処理し、処理能力の低下が認められたので処
理を停止し、第1槽A、第2槽Bならびに第3槽Cの各
活性炭を水洗した。
Example 1 First, in the apparatus shown in FIG. 1, leachate from blast furnace slag was electrified, and as a decrease in treatment capacity was observed, the treatment was stopped and the Each activated carbon in tank C was washed with water.

この水洗後の付着硫黄量(rn9/S’)を求めたとこ
ろ次表の通りであって、第1槽Aにおける付着硫黄量が
最も多いため、続いて、各種溶液を用いて第1槽Aの活
性炭についてのみ洗浄したところ、次表の通りであった
The amount of attached sulfur (rn9/S') after this water washing was calculated as shown in the following table, and since the amount of attached sulfur in the first tank A was the largest, the amount of attached sulfur in the first tank A was subsequently When only the activated carbon was washed, the results were as shown in the table below.

この結果、20%苛性ソーダ溶液の場合は付着硫黄をほ
とんど除去できることがわかったので、第2槽Bならび
に第3槽Cの活性炭も20%苛性ソーダ溶液で洗浄した
ところ、上記表の通り、付着硫黄はほとんど除去できた
As a result, it was found that most of the attached sulfur could be removed using a 20% caustic soda solution, so when the activated carbon in the second tank B and the third tank C were also washed with the 20% caustic soda solution, the attached sulfur was removed as shown in the table above. I was able to remove most of it.

実施例 2 第1図に示す装置によって、実施例1と同様な浸出水を
処理したところ、浸出水のCOD濃度と通水量との関係
は第2図の点線の通りであった。
Example 2 When the same leachate as in Example 1 was treated using the apparatus shown in FIG. 1, the relationship between the COD concentration of the leachate and the water flow rate was as shown by the dotted line in FIG.

このため、通水量が1000m’附近で10%苛性ソー
ダ溶液で洗浄し、その後、更に浸出水を処理したところ
、第2図の実線の通りであった。
Therefore, when the water flow rate was around 1000 m', cleaning was performed with a 10% caustic soda solution, and then the leachate was further treated, as shown by the solid line in FIG.

電化処理装置における活性炭の処理能力は、浸出水の処
理量の増加とともに徐々に劣化するが、洗浄によって再
生し、洗浄後のそれは通水量800m3あたりまでは殆
んど劣化せず、通水量が800m3を越えるころから劣
化が始まることが解った。
The treatment capacity of activated carbon in the electrification treatment equipment gradually deteriorates as the amount of leachate processed increases, but it is regenerated by cleaning, and after cleaning it hardly deteriorates until the water flow rate reaches 800 m3. It was found that deterioration begins when the temperature exceeds this point.

また、このときに、2%塩酸溶液で洗浄したところ、処
理能力は第2図の実線に近づけることができ、この塩酸
溶液の洗浄操作を繰り返すうちに、処理能力は第2図の
点線に近づき、この状態になったときに、苛性ソーダ溶
液で洗浄を行なったところ、第2図の点線のところに戻
すことができた。
At this time, when cleaning with a 2% hydrochloric acid solution, the processing capacity could approach the solid line in Figure 2, and as the washing operation with this hydrochloric acid solution was repeated, the processing capacity approached the dotted line in Figure 2. When this state was reached, cleaning was performed with a caustic soda solution, and the state could be returned to the dotted line in FIG.

以上詳しく説明した通り、本発明法は、含硫黄環元性陰
イオンを含む排水を活性炭で電化処理する際に、苛性ソ
ーダ溶液で活性炭の表面に付着する硫黄を除去して再生
するものであって、活性炭表面に付着蓄積した硫黄はほ
とんど溶解除去され、活性炭の処理能力はほぼ完全に回
復できる。
As explained in detail above, the method of the present invention is to regenerate wastewater containing sulfur-containing cyclic anions by removing sulfur adhering to the surface of the activated carbon with a caustic soda solution when electrifying it with activated carbon. Most of the sulfur deposited and accumulated on the surface of the activated carbon is dissolved and removed, and the treatment capacity of the activated carbon can be almost completely restored.

また、このことから、高価な活性炭を新1. <取替え
る必要がなく、その取替作業もな(、きわめて経済的に
含硫黄還元性陰イオンを含む排水を処理できる。
Also, from this reason, expensive activated carbon can be used as a new 1. (There is no need to replace the product, and there is no need to replace it.) Wastewater containing sulfur-containing reducing anions can be treated very economically.

また、このように苛性ソーダを含む溶液で、硫黄等を除
去し、活性炭の能力を回復したのちは、塩酸を含む溶液
による活性炭の表面の洗浄をくり返すと、常に、活性炭
、電極等は良好な状態で原水が処理でき、高価な活性炭
を新しく取替える必要がな(、その取替作業もなく、き
わめて経済的に原水を処理できる。
In addition, after removing sulfur and other substances with a solution containing caustic soda and restoring the activated carbon's ability, if the surface of the activated carbon is repeatedly washed with a solution containing hydrochloric acid, the activated carbon, electrodes, etc. will always remain in good condition. Raw water can be treated in a very economical manner without the need to replace expensive activated carbon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法を実施する装置の一例の配置図、第2
図は苛性ソーダ洗浄前後の排水処理能力推移グラフであ
る。 符号、1・・・・・・原水導入口、2・・・・・・処理
槽、3・・・・・・炭素電極、4・・・・・・活性炭、
5・・・・・・ブースバー、6・・・・・・水供給バル
ブ、7・・・・・・空気供給バルブ、8・・・・・・苛
性ソーダ供給バルブ、9・・・・・・苛性ソーダ循環ポ
ンプ、10・・・・・・苛性ソーダ希釈タンク、11・
・・・・・苛性ソーダ出口バルブ、12・・・・・・苛
性ソーダ移送ポンプ、13・・・・・・苛性ソーダ循環
バルブ、14・・・・・・苛性ソーダ受槽、15・・・
・・・ブロア管、16・・・・・・処理水出口、17・
・・・・・ドレンバルブ。
Figure 1 is a layout diagram of an example of a device for carrying out the method of the present invention;
The figure is a graph of changes in wastewater treatment capacity before and after washing with caustic soda. Code, 1... Raw water inlet, 2... Treatment tank, 3... Carbon electrode, 4... Activated carbon,
5... Booth bar, 6... Water supply valve, 7... Air supply valve, 8... Caustic soda supply valve, 9... Caustic soda Circulation pump, 10... Caustic soda dilution tank, 11.
... Caustic soda outlet valve, 12 ... Caustic soda transfer pump, 13 ... Caustic soda circulation valve, 14 ... Caustic soda receiving tank, 15 ...
... Blower pipe, 16 ... Treated water outlet, 17.
·····drain valve.

Claims (1)

【特許請求の範囲】 1 活性炭が充填された処理槽中で、電極を介して微弱
電流を通電しつつ、含硫黄還元性陰イオンを含む排水を
浄化する電化処理法において、この処理槽中の活性炭表
面に硫黄が所定量まで蓄積したときには、排水の浄化を
停止して処理槽中から排水を除去し、その後処理槽中に
苛性ソーダを含む水溶液を送り込んで硫黄を洗浄し、そ
の洗浄後再び排水の浄化を開始する含硫黄還元性陰イオ
ンを含む排水の電化処理法。 2 活性炭が充填された処理槽中で、電極を介して微弱
電流を通電しつつ、含硫黄還元性陰イオンを含む排水を
浄化する電化処理法において、この処理槽中の活性炭表
面に硫黄が所定量まで蓄積したときには、排水の浄化を
停止して処理槽中から排水を除去し、その後、処理槽中
に苛性ソーダを含む水溶液を送り込んで硫黄を洗浄し、
その洗浄後再び排水の浄化を開始し、更に、この排水浄
化の間、処理槽中の活性炭ならびに電極の表面にスケー
ル等が所定量まで蓄積したときは、処理槽中に塩酸を含
む水溶液を送り込んでスケール等を洗浄し、排水の浄化
を行なうことを特徴とする含硫黄還元性陰イオンを含む
排水の電化処理法。
[Scope of Claims] 1. In an electrification treatment method for purifying wastewater containing sulfur-containing reducing anions while passing a weak current through an electrode in a treatment tank filled with activated carbon, When sulfur accumulates to a certain amount on the surface of activated carbon, the purification of the wastewater is stopped and the wastewater is removed from the treatment tank. After that, an aqueous solution containing caustic soda is sent into the treatment tank to wash away the sulfur, and after this cleaning, the wastewater is drained again. An electrification treatment method for wastewater containing sulfur-containing reducing anions that starts the purification of sulfur-containing reducing anions. 2 In an electrification treatment method that purifies wastewater containing sulfur-containing reducing anions while passing a weak current through an electrode in a treatment tank filled with activated carbon, sulfur is located on the surface of the activated carbon in this treatment tank. When a certain amount has been accumulated, wastewater purification is stopped and the wastewater is removed from the treatment tank, and then an aqueous solution containing caustic soda is sent into the treatment tank to wash away the sulfur.
After cleaning, the purification of the wastewater is started again, and during this wastewater purification, if scale, etc. accumulates to a certain amount on the surface of the activated carbon and electrodes in the treatment tank, an aqueous solution containing hydrochloric acid is pumped into the treatment tank. An electrification method for treating wastewater containing sulfur-containing reducing anions, which purifies the wastewater by washing away scale, etc.
JP54021977A 1979-02-28 1979-02-28 Electrification treatment method for wastewater containing sulfur-containing reducing anions Expired JPS5835111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54021977A JPS5835111B2 (en) 1979-02-28 1979-02-28 Electrification treatment method for wastewater containing sulfur-containing reducing anions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54021977A JPS5835111B2 (en) 1979-02-28 1979-02-28 Electrification treatment method for wastewater containing sulfur-containing reducing anions

Publications (2)

Publication Number Publication Date
JPS55114386A JPS55114386A (en) 1980-09-03
JPS5835111B2 true JPS5835111B2 (en) 1983-07-30

Family

ID=12070077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54021977A Expired JPS5835111B2 (en) 1979-02-28 1979-02-28 Electrification treatment method for wastewater containing sulfur-containing reducing anions

Country Status (1)

Country Link
JP (1) JPS5835111B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707432A (en) * 2020-12-28 2021-04-27 宜宾天原海丰和泰有限公司 Method for comprehensively utilizing artificial rutile mother liquor in zinc concentrate treatment

Also Published As

Publication number Publication date
JPS55114386A (en) 1980-09-03

Similar Documents

Publication Publication Date Title
US3973987A (en) Water recycle treatment system for use in metal processing
JPH05195298A (en) Method and system for recovering metal from electroplating waste
EP0472705A1 (en) Method and apparatus for treatment of liquid photographic processing wastes.
JPH10118390A (en) Washing machine with electrolytic waste water treating device
US5879546A (en) Water purification and recovery system
JPS5835111B2 (en) Electrification treatment method for wastewater containing sulfur-containing reducing anions
JPH0794005B2 (en) Treatment method of cleaning water from gas cleaning system of iron ore reduction plant
KR101392243B1 (en) Deodorizing treatment system having wastewater recycling device
WO2000046156A1 (en) Method of removing calcium from water containing calcium hydrogen carbonate in high concentration
JP5202208B2 (en) Deodorizing system, deodorizing apparatus and deodorizing method
JP4538881B2 (en) Membrane module cleaning method
CN209193692U (en) A kind of shale gas fracturing outlet liquid electrolytic sterilizing apparatus sledge
JPH08141582A (en) Method and apparatus for treating industrial waste water
JP4774617B2 (en) Cleaning method of activated carbon
CN1451615A (en) Method for removing ammonia nitrogen from reused sewage
RU6945U1 (en) INSTALLATION FOR CONTINUOUS LIQUID CHEMICAL ETCHING AND CLEANING OF PRODUCTS, PREVIOUSLY SEMICONDUCTOR PLATES
JP2004261734A (en) Method for treating ammonia-containing waste water
RU6469U1 (en) INSTALLATION FOR CONTINUOUS CHEMICAL CLEANING OF THE SURFACE OF PRODUCTS, PREFERREDLY, SEMICONDUCTOR PLATES
JPS5850155B2 (en) Improved wastewater treatment method
CN115124171A (en) Treatment method and treatment system for gold-containing waste liquid
JP2024145546A (en) Chromium plating solution purification device and purification method
SU1475952A1 (en) Method of surface nickel-plating of parts
JP2001300556A (en) Method and apparatus for treating liquid waste containing chemicals
KR200417003Y1 (en) An Ozone oxidizing device
CN109081482A (en) A kind of shale gas fracturing outlet liquid electrolytic sterilizing apparatus sledge