JPS5834544A - Multi-stage collector type traveling wave tube - Google Patents
Multi-stage collector type traveling wave tubeInfo
- Publication number
- JPS5834544A JPS5834544A JP13132881A JP13132881A JPS5834544A JP S5834544 A JPS5834544 A JP S5834544A JP 13132881 A JP13132881 A JP 13132881A JP 13132881 A JP13132881 A JP 13132881A JP S5834544 A JPS5834544 A JP S5834544A
- Authority
- JP
- Japan
- Prior art keywords
- collector
- pole piece
- thickness
- traveling wave
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/02—Electrodes; Magnetic control means; Screens
- H01J23/027—Collectors
- H01J23/0275—Multistage collectors
Landscapes
- Microwave Tubes (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は進行波管、特に周期永久磁石集束装置を用いた
多Rコレクタ形進行波管に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to traveling wave tubes, and more particularly to multi-R collector traveling wave tubes using periodic permanent magnet focusing devices.
進行波管の効率改曽には、電子ビームから高周波回路へ
の変換効率を高める方法と、高周波回路へエネルギーを
与えた後コレクタに流入する電子ビームを直流電界で減
速させ、電子ビームの運動エネルギーを直流電源に還流
し、総合効率を高める方法がある。後者の方法は、高周
波回路に印加される電圧より低い電圧をコレクタに印加
することにより実現できる。コレクタに流入する電子ビ
ームの運動エネルギーには大きな分散があるためコレク
タ電極を複数個に分割し、高周波回路から遠ざかるに従
って順次低い電圧を印加することにより、電子ビームの
エネルギー分布に従ったエネルギーの還流ができ、総合
効率を一層高めることができる。To improve the efficiency of traveling wave tubes, there is a method to increase the conversion efficiency from the electron beam to the high-frequency circuit, and a method to decelerate the electron beam flowing into the collector after giving energy to the high-frequency circuit using a DC electric field to reduce the kinetic energy of the electron beam. There is a way to increase the overall efficiency by circulating it back into the DC power supply. The latter method can be realized by applying a voltage to the collector that is lower than the voltage applied to the high frequency circuit. Since the kinetic energy of the electron beam flowing into the collector has a large dispersion, the collector electrode is divided into multiple parts, and by sequentially applying lower voltages as the distance from the high-frequency circuit increases, the energy is refluxed according to the energy distribution of the electron beam. can be achieved, further increasing overall efficiency.
しかし1通常コレクタ内では電子ビームを集束する磁界
が弱まるため、電子ビームは径方向に発散し、より低い
電圧が印加されたコレクタ電極に到達する以前に、比較
的高い電圧が印加された手前の;レクタ電極に捕捉され
、総合効率の低下が生じるという1kliiiがあった
。However, because the magnetic field that focuses the electron beam usually weakens within the collector, the electron beam diverges in the radial direction, and before reaching the collector electrode to which a lower voltage is applied, the electron beam reaches the collector electrode to which a relatively high voltage is applied. ;1kliii was trapped in the rectifier electrode, resulting in a decrease in overall efficiency.
実願昭55−6091には、高周波回路に最も近い第1
コレクタの周囲に周期永久磁石集束装置を設け、電子ビ
ームの拡散を防止し、総合効率を高めるという内容が記
載されている。しかし、この従来技術では、コレクタの
周囲に集束装置を設ける構造のためjll:iレクタの
径が小さくflJ@されるとか、第1:Iレクタの冷却
が十分に出来ない。In Utility Application No. 55-6091, the first circuit closest to the high frequency circuit is
It is stated that a periodic permanent magnet focusing device is provided around the collector to prevent the electron beam from spreading and to increase the overall efficiency. However, in this conventional technique, since the focusing device is provided around the collector, the diameter of the jll:i collector is small and flJ@ is not possible, and the first:I collector cannot be cooled sufficiently.
コレクタ用として金分の周期永久磁石が必要であるとい
った欠点があり、その適用は小電力の進行波管に制限さ
れていた。It has the disadvantage of requiring a periodic permanent magnet made of gold for the collector, and its application has been limited to small-power traveling wave tubes.
本発明の目的は、周期乗入磁石集束装置を用いた多段コ
レクタ形進行波管において、コレクタの形状に制限され
ることなくまた、冷却が制限されることなく;レクタ内
に強い集束磁界を得るための手段を提供することである
。The object of the present invention is to obtain a strong focusing magnetic field in a multi-stage collector type traveling wave tube using a periodic magnet focusing device without being limited by the shape of the collector and without limiting cooling. The goal is to provide a means for achieving this goal.
本発明によれば、高周波回路の*Wに設けられた周期乗
入磁石集束装置において、コレクタに最も迂い端に配置
したポールピースの厚みを他のポールピースの厚みより
薄くすることにより、ポールピース内で磁気飽和させ、
増大したコレクタ内の反転漏洩磁界を電子ビームの集束
に利用するものである。According to the present invention, in the periodic magnet focusing device provided at *W of the high frequency circuit, the thickness of the pole piece disposed at the roundest end of the collector is made thinner than the thickness of the other pole pieces. Magnetically saturated within the piece,
The increased reversal leakage magnetic field within the collector is used to focus the electron beam.
本発明によるへりクス進行波管の高周波回路出力部と2
9=yレタタ部の構成を第1図に示す。2段フレクタ形
ヘリックス進行波管lにおいて、高周波回路部はパイプ
状真空外囲器2の中でヘリックス3を誘電体棒4で支持
した構造であり、ヘリックス3の出力端は、真空気密窓
5を介して同軸線路6に接続されている。周期永久磁界
集束装置はパイプ状真空外@器2に沿って永久磁石7と
ポールピース8,9を交互に配置した構造である。High frequency circuit output section of helix traveling wave tube according to the present invention and 2
9=y The configuration of the letter section is shown in FIG. In the two-stage flexor-type helix traveling wave tube l, the high-frequency circuit section has a structure in which a helix 3 is supported by a dielectric rod 4 in a pipe-shaped vacuum envelope 2, and the output end of the helix 3 is connected to a vacuum-tight window 5. It is connected to the coaxial line 6 via. The periodic permanent magnetic field focusing device has a structure in which permanent magnets 7 and pole pieces 8 and 9 are alternately arranged along a pipe-shaped vacuum external device 2.
2段コレクタ部は高周波回路部に近い第1フレクタ10
と遠い方の第2コレクタ11が絶縁体12により、:ル
クタ真空外ff1113の中で支持された構造であり、
ヘリックス3に印加されている電圧をVとすれば、第1
コレクタ10には0.5V。The second stage collector section is the first reflector 10 near the high frequency circuit section.
It has a structure in which the second collector 11 which is further away from the collector 11 is supported by the insulator 12 inside the Lucta vacuum outside ff1113,
If the voltage applied to helix 3 is V, then the first
Collector 10 has 0.5V.
第2コレクタ11には0.25Vの電圧が印加されてい
る。A voltage of 0.25V is applied to the second collector 11.
ここでは、It:iレクタ10に最も近いポールピース
9の厚みを残りのメールピース8の厚みの約半分近(ま
で薄くしている。こうすることによって、ポールピース
9で磁気飽和が生じ、漏洩した磁気が第1コレクタlO
の内部に強い反転磁界を発生する。この強い反転磁界は
コレクタに流入した電子ビームの急速な発散を防止し、
より電位の低い第2コレクタ11まで電子ビー^を導び
き総会効率を高める。Here, the thickness of the pole piece 9 closest to the It:i rector 10 is reduced to about half the thickness of the remaining mail piece 8. By doing this, magnetic saturation occurs in the pole piece 9, causing leakage. The magnetic field generated by the first collector lO
generates a strong reversal magnetic field inside. This strong reversal magnetic field prevents the rapid divergence of the electron beam entering the collector,
The electron beams are guided to the second collector 11, which has a lower potential, thereby increasing the overall efficiency.
猷−ルヒース8の厚みをtl、ポールピース9の厚みを
1. とするとき、磁気飽和を有効に生じさせるため
にはs Q、5 tl〉hなる条件が必要である。The thickness of the bolt heath 8 is tl, and the thickness of the pole piece 9 is 1. In order to effectively generate magnetic saturation, the following condition is required: s Q, 5 tl>h.
第2!1iiIは、ポールピース9の厚みを変えたとき
の軸上磁束密度分布を示す。B−Bは第1図の第1コレ
クタ開始点人−人に相当する点である。曲線21はtl
mt、の場合の軸上磁束密度分布を示し、曲41122
は0.4 tl = Ltの場合を示す。曲線21.2
2の比較から、t、をtlより薄くした場合、高周波回
路部の集束磁界が少し低下するものの、jli:xレジ
タ10の領域では電子ビームの急速な発散を防止するの
に十分な強さの反転磁界が得られることが分かる。2nd!1iiiI shows the axial magnetic flux density distribution when the thickness of the pole piece 9 is changed. BB is a point corresponding to the first collector starting point person-person in FIG. Curve 21 is tl
shows the axial magnetic flux density distribution in the case of mt, and the song 41122
indicates the case of 0.4 tl = Lt. Curve 21.2
From the comparison in 2, it can be seen that if t is made thinner than tl, the focusing magnetic field in the high frequency circuit section will decrease a little, but in the area of the jli:x register 10, it will be strong enough to prevent the rapid divergence of the electron beam. It can be seen that a reversal magnetic field can be obtained.
本発明は1周期永久磁石集束装置のコレクタ端部のポー
ルピースの厚みを薄くするだけでよく、コレクタの形状
は自由に設計することができるだけでなく、コレクタの
外側に放熱翼やヒートシンクなども自由に取付けること
ができるので、大電力進行波管にも適用可能である。In the present invention, it is only necessary to reduce the thickness of the pole piece at the end of the collector of a one-period permanent magnet focusing device, and the shape of the collector can be freely designed, as well as heat dissipation blades and heat sinks can be freely installed on the outside of the collector. It can also be applied to high-power traveling wave tubes.
第1図は、本発明を実施した2段コレクタ形進行波管の
高周波回路出力部とコレクタ部の構造を示す断面図、第
2図は、コレクタに最も近いポールピースの厚みを変え
たときの軸上磁束密度分布を示す線図である。
1・・・2段コレクタ形進行波管、2・・・パイプ状外
囲器、3・・・ヘリックス、4・・・Ij電体軸、5・
・・真空気密室、6・・・同軸線路、7・・・永久磁石
、8・・・ポールピース、9・・・ポールピース、10
・・・第1コレクタ、11・・・s2コレクタ、12−
・・・絶縁物、13・・・コレクタ真空外囲器、21・
・・i、=gt、のときの軸上磁束密度分布、22・・
・0.4t、=t、のときの軸上磁束密度分布。Figure 1 is a cross-sectional view showing the structure of the high-frequency circuit output part and collector part of a two-stage collector type traveling wave tube in which the present invention is implemented, and Figure 2 shows the structure of the pole piece closest to the collector when the thickness is changed. FIG. 3 is a diagram showing an axial magnetic flux density distribution. DESCRIPTION OF SYMBOLS 1... Two-stage collector type traveling wave tube, 2... Pipe-shaped envelope, 3... Helix, 4... Ij electric body axis, 5...
... Vacuum sealed room, 6... Coaxial line, 7... Permanent magnet, 8... Pole piece, 9... Pole piece, 10
...first collector, 11...s2 collector, 12-
... Insulator, 13 ... Collector vacuum envelope, 21.
... On-axis magnetic flux density distribution when i, = gt, 22...
・On-axis magnetic flux density distribution when 0.4t, = t.
Claims (1)
タ電極を有する進行波管において、前記周期原人磁石ビ
ーム集束装置を111t&するl−ルビースのうち、コ
レクタに最も近いが一ルビースの厚みを%残りのポール
ピースの厚みより薄くしたことを特徴とする多段;レジ
タ形進行波管。In a traveling wave tube having a beam focusing device using a periodic permanent magnet and am collector electrodes, the thickness of the one ruby closest to the collector is % of the periodic permanent magnet beam focusing device. A multi-stage; register type traveling wave tube characterized by being thinner than the thickness of the pole piece.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13132881A JPS5834544A (en) | 1981-08-21 | 1981-08-21 | Multi-stage collector type traveling wave tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13132881A JPS5834544A (en) | 1981-08-21 | 1981-08-21 | Multi-stage collector type traveling wave tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5834544A true JPS5834544A (en) | 1983-03-01 |
Family
ID=15055375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13132881A Pending JPS5834544A (en) | 1981-08-21 | 1981-08-21 | Multi-stage collector type traveling wave tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5834544A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5780970A (en) * | 1996-10-28 | 1998-07-14 | University Of Maryland | Multi-stage depressed collector for small orbit gyrotrons |
JP2016207336A (en) * | 2015-04-17 | 2016-12-08 | 三菱電機株式会社 | Collector for electronic tube |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5448151A (en) * | 1977-09-22 | 1979-04-16 | Nec Corp | Straight-going beam type multi-cavity klystron |
-
1981
- 1981-08-21 JP JP13132881A patent/JPS5834544A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5448151A (en) * | 1977-09-22 | 1979-04-16 | Nec Corp | Straight-going beam type multi-cavity klystron |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5780970A (en) * | 1996-10-28 | 1998-07-14 | University Of Maryland | Multi-stage depressed collector for small orbit gyrotrons |
JP2016207336A (en) * | 2015-04-17 | 2016-12-08 | 三菱電機株式会社 | Collector for electronic tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3764850A (en) | Electron beam controller | |
US3297907A (en) | Electron tube with collector having magnetic field associated therewith, said field causing electron dispersion throughout the collector | |
Saraph et al. | Design of a single-stage depressed collector for high-power, pulsed gyroklystron amplifiers | |
JPS5834544A (en) | Multi-stage collector type traveling wave tube | |
US3930182A (en) | Traveling-wave tube having improved electron collector | |
JP2904308B2 (en) | Method for increasing the efficiency of a gyrotron and gyrotron implementing the method | |
US3443146A (en) | Conductive elements interconnecting adjacent members of the delay structure in a traveling wave tube | |
JPS624999Y2 (en) | ||
JPS5830039A (en) | Multi-stage collector type traveling wave tube | |
Ohkubo et al. | The C-band 50MW klystron using traveling-wave output structure | |
Myasnikov | Soviet industrial gyrotrons | |
US3155866A (en) | Magnetic focusing structure for traveling wave tubes | |
Barnett | Large bore electropermagnets for high power millimeter-wave gyrotrons | |
Konrad | High efficiency, CW, high power klystrons for storage ring applications | |
RU73125U1 (en) | RUNNING WAVE LAMP WITH MAGNETIC PERIODIC FOCUSING SYSTEM | |
US3141992A (en) | Focusing system for omicron-type travelling wave tubes | |
Wang et al. | Design of Electron Collector Magnetic Field for 0.67 THz Traveling Wave Tube | |
Merdinian et al. | High power permanent magnet focused S-band klystron for linear accelerator use | |
CHEN | Focusing of an Electron Beam from a Low-noise Gun with Different Magnet Systems†: Fart I‡. Trajectories of the Outermost Electron in an Initially Unperturbed Beam Focused by a Uniform Magnetic Field | |
Gammino et al. | Advanced ECR sources for highly charged ions | |
Matsumoto et al. | High power test of the first C-band (5712 MHz) 50 MW PPM klystron | |
JPH1167110A (en) | Linear beam type microwave tube device | |
RU2074448C1 (en) | Magnetic focusing system of o-type microwave device | |
Kasugai et al. | Development of a high power and long pulse gyrotron with collector potential depression | |
Shpak et al. | A 70-GHz high-power repetitive backward wave oscillator with a permanent-magnet-based electron-optical system |