JPS5834539A - Impregnation-type cathode - Google Patents

Impregnation-type cathode

Info

Publication number
JPS5834539A
JPS5834539A JP56131329A JP13132981A JPS5834539A JP S5834539 A JPS5834539 A JP S5834539A JP 56131329 A JP56131329 A JP 56131329A JP 13132981 A JP13132981 A JP 13132981A JP S5834539 A JPS5834539 A JP S5834539A
Authority
JP
Japan
Prior art keywords
cathode
layer
porosity
porosity rate
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56131329A
Other languages
Japanese (ja)
Inventor
Kenichi Tsujikawa
辻川 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56131329A priority Critical patent/JPS5834539A/en
Publication of JPS5834539A publication Critical patent/JPS5834539A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To obtain a long life impregnated-type cathode secular-change of whose electron emission characteristic is small, by a using a tungsten layer of large porosity rate as the lower layer and by using tungsten layer of small porosity rate as the surface layer of the captioned cathode. CONSTITUTION:The figure shows as impregnated-type cathode 10 designed by the present invention, a holding cylinder 3 made of molybdenum, and a cathode structure 11 of a heater 4 buried in sintered alumina 5. The captioned cathode 10 is a laminated structure consisting of two layers, that is, the surface layer 1 with the porosity rate of 20% and the lower layer 2 with the porosity rate of 40%. In the captioned cathode 10, the evaporation amount of Ba can be suppressed and the necessary amount of Ba can be supplied by reducing the porosity rate of the surface layer 1, so that the consumption-time of Ba can be prolonged. On the other hand, by enlarging the porosity rate of the lower layer 2, the supply amount of Ba from the inside of the vacant-hole to the surface layer can be increased, the depreciation of Ba-covering degree necessary for electron emission can be suppressed, and the secular-change of current can be minimized.

Description

【発明の詳細な説明】 この発明は、長寿命の含浸ffi@極の構造に関する。[Detailed description of the invention] This invention relates to the construction of long-life impregnated ffi@poles.

一般の含浸型陰極は、15〜45チの空孔率を有するポ
ーラスタングステンのベレットに電子放射物質として例
えば5B&0会2A40.・3CaOが溶融含浸されて
つくられる。
A general impregnated cathode is made of a porous tungsten pellet having a porosity of 15 to 45 cm and an electron emitting material such as 5B&0 2A40.・Produced by melting and impregnating 3CaO.

この陰極は、真空中で1200℃、数時間加熱ちことに
よシ活性化される。このとき遊離B1が以下の反応で生
成される。
This cathode is activated by heating at 1200° C. for several hours in a vacuum. At this time, free B1 is generated by the following reaction.

SB ao ・2A40s ・3CaO+3/4W= 
3/4Ca*BaWO5+3/4CatBaA40s+
 5/48 mA404 +9/4 B *この遊離B
aは、ポーラスタングステンの空孔を通りてタングステ
ン表面に吸着し、単原子層を形成する結果、仕事関数が
低下する1表面に到達するBaの速度は、空孔の有効半
径、長さに関係する。
SB ao ・2A40s ・3CaO+3/4W=
3/4Ca*BaWO5+3/4CatBaA40s+
5/48 mA404 +9/4 B *This free B
a passes through the pores of porous tungsten and adsorbs to the tungsten surface, forming a monoatomic layer, resulting in a decrease in work function.1 The speed of Ba reaching the surface is related to the effective radius and length of the pores. do.

一方、タングステン表面の吸着B a (Ba十B10
)は、陰極温度によって蒸発するが、常にタングステン
内部からBaの供給をうけている。しかしながら動作時
間と共に含浸材(Ba化合物)が消耗しタングステン孔
内部から表面への8m拡散に時間がかかや、その結果B
1吸着If(被覆度とも云う)が小さくなりて仕事関数
が上昇していく、シたがって、この陰極の寿命は孔内部
からの8m供給と表面からの蒸発のバランスによって決
定される。
On the other hand, adsorption B a (Ba + B10
) evaporates depending on the cathode temperature, but Ba is always supplied from inside the tungsten. However, the impregnating material (Ba compound) is consumed with the operating time, and it takes time for the tungsten to diffuse 8m from the inside of the hole to the surface, resulting in B
1 Adsorption If (also referred to as coverage) decreases and the work function increases. Therefore, the life of this cathode is determined by the balance between the 8 m supply from the inside of the hole and the evaporation from the surface.

無1図はタングステンの空孔率を14.7−〜29%迄
変化させえ場合の電子放射特性を示し次ものである。初
期データであるが空孔率の大きい方−bX経時変化が少
ない、これは前述した様に電子放射に必要な表面被覆を
維持するのに充分な量のBaが空孔内部から供給される
ためである。空孔率が小さい方は、表面に調達するBa
量が少なく表面1[1[[の減少によりて、電流の減少
が大急い。
Figure 1 shows the electron emission characteristics when the porosity of tungsten can be varied from 14.7% to 29%. Although the initial data shows that the larger porosity - bX changes over time, this is because, as mentioned above, a sufficient amount of Ba is supplied from inside the pores to maintain the surface coverage necessary for electron emission. It is. If the porosity is small, Ba is procured on the surface.
Due to the small amount of surface 1[1[[, the current decreases rapidly.

一方、長時間動作、即ち電子管の寿命について考えて見
ると全く反対の結果となる場合がある。
On the other hand, if we consider long-term operation, that is, the lifespan of the electron tube, the opposite result may be obtained.

空孔率が大急い場合は、Ba (Ba+Ba0)の表面
への拡散量が多くポーラスタングステン内部の含浸材1
*%A厘す時間が早くなることである。第2図は長時間
動作の場合の空孔率の影響を示したものである。ここで
ムは空孔率が20%の陰極、Bは空孔率が40−の陰極
の特性を示している。電流値が初期値の50%に低下し
た時を46と仮定すると陰極人は陰極Bよシ数倍の寿命
を持っていると云える。それに対して寿命を初期値の9
5−とすれは全く逆の結果となCm陰極の方が長寿命と
なる。
If the porosity is urgent, the amount of Ba (Ba+Ba0) diffused to the surface is large and the impregnation material 1 inside the porous tungsten is used.
*The time to remove %A is faster. FIG. 2 shows the influence of porosity in the case of long-term operation. Here, M indicates the characteristics of a cathode with a porosity of 20%, and B indicates the characteristics of a cathode with a porosity of 40. Assuming that the time when the current value drops to 50% of the initial value is 46, it can be said that the cathode man has a lifespan several times longer than the cathode B. On the other hand, the lifespan is set to the initial value of 9.
5- and the results are completely opposite; the Cm cathode has a longer life.

以上述べた如く、ポーラスタングステンの空孔率は電子
放射特性、特に経時特性に非常に大きな影響を与える。
As mentioned above, the porosity of porous tungsten has a very large effect on the electron emission characteristics, especially the aging characteristics.

従来の含浸型陰極では、使用される電子管の要求特性に
合わせ%ある一定の空孔率を有するタングステンベレッ
トを使用していた。
A conventional impregnated cathode uses a tungsten pellet having a certain porosity in accordance with the required characteristics of the electron tube used.

従って初期より電流の経時変化が少なく(11tI記陰
極BK@尚)かつ長寿命である(前記−極ムに和尚)陰
極、即ち空孔内部からのBa供給が早く。
Therefore, from the initial stage, the change in current over time is small (11tI cathode BK@sho) and has a long life (said cathode BK), and Ba is quickly supplied from the cathode, that is, from inside the pores.

表面からOBm蒸発量が少ない陰極を同時に得ることは
、Toる定りた空孔率から作られた従来の陰極からは本
質的Kli!51難であった。
At the same time, obtaining a cathode with a low amount of OBm evaporation from the surface is essential compared to a conventional cathode made from a fixed porosity. It was 51 difficulties.

本発明の目的は長寿命の含浸型陰極¥r提供することで
ある。
It is an object of the present invention to provide a long-life impregnated cathode.

本発明は、空孔率が異なるタングステンペレットを少な
く共二つ以上重ねて陰極を形成した事を特徴としている
The present invention is characterized in that the cathode is formed by stacking at least two or more tungsten pellets having different porosity.

こOR#4による含浸型陰極の一実施例として空孔率の
大きいタングステン層管下層に用い、空孔率の小さいタ
ングステン層管陰極表面層に用いたことを特徴とする。
An example of the impregnated cathode according to OR#4 is characterized in that it is used in the lower layer of the tungsten layer tube with a high porosity and in the surface layer of the tungsten layer tube with a small porosity.

この発明によれば、空孔内部から表面へのB&供給を早
くするために例えば空孔率の大龜いタングステン層を下
層とし、又表面から過剰に蒸発するBa量抑えるために
空孔率の小さいタングステン層t−m極表面層として用
いて、電子放射特性の経時変化が少なく長寿命な含浸製
陰極が得られる。
According to this invention, in order to speed up the supply of B& from the inside of the pores to the surface, a tungsten layer with a high porosity is used as the lower layer, and in order to suppress the amount of Ba evaporating excessively from the surface, the porosity is reduced. By using a small tungsten layer as the t-m electrode surface layer, an impregnated cathode with a long life and little change in electron emission characteristics over time can be obtained.

以下図面を参照して本発明の一実施例を説明する。11
3WJは本発明による含浸型陰極lOとモリブデン製の
支持円筒3およびアルイナ焼結体5の中に埋め込まれた
ヒーI4の陰極構体11を示している。含浸臘陰@lO
は空孔率が20チから成る表面層lと空孔率が40−か
ら成る下層2の二層を積層形成した構造から成9、次の
ような工程で作られる。
An embodiment of the present invention will be described below with reference to the drawings. 11
3WJ shows the cathode structure 11 of the impregnated cathode IO according to the present invention, the support cylinder 3 made of molybdenum, and the HE I4 embedded in the Alina sintered body 5. Impregnated yin @lO
It has a structure in which two layers are laminated: a surface layer 1 having a porosity of 20 cm and a lower layer 2 having a porosity of 40 cm, and is produced by the following process.

まず、約4建クロンの粒径のタングステン粉末をプレス
し2200℃で焼結して空孔率20tsの多孔質タング
ステンのインゴy)を作る。ついで例えば無酸素銅を含
浸させて機械加工性を良くし、所定の寸法に加工する。
First, tungsten powder having a particle size of about 4 square meters is pressed and sintered at 2200°C to produce a porous tungsten ingot with a porosity of 20ts. Then, it is impregnated with, for example, oxygen-free copper to improve machinability and processed into predetermined dimensions.

鋼は1800℃の真空処理を行なうことによって完全に
除去される。これで表面層lが出来る。空孔率4011
から成る下層24表面層lと同様の方法で形成される。
Steel is completely removed by vacuum treatment at 1800°C. This creates the surface layer l. Porosity 4011
The lower layer 24 is formed in the same manner as the surface layer l.

尚、この場合1表面層lは下層2と比較して同等または
薄くした方がよい。
In this case, it is preferable that the first surface layer 1 be equal to or thinner than the lower layer 2.

次にモリブデン円筒3内に下層2、表面層1と積み重ね
る様にして設置しロー付あるいは溶接によって側面を接
合させる。そのおと、Toらかじめメンゲステンの細線
をコイル状に巻回して作られたヒータ4をアルオナ粉末
と有機バインダの混線物と一緒にモリブデン円筒3の中
に設置して約−1700℃で混線物を焼結させる。つい
で酸化バリウム・酸化カルシウム・酸化アルt=ウムを
5:3:20モル比に鉤合した含浸械を、表面層l。
Next, the lower layer 2 and the surface layer 1 are placed in a stacked manner in a molybdenum cylinder 3, and the side surfaces are joined by brazing or welding. After that, a heater 4 made by pre-winding a thin Mengesten wire into a coil shape was installed in a molybdenum cylinder 3 together with a mixture of aluona powder and an organic binder, and the mixture was heated to about -1700°C. Sinter things. Next, an impregnating machine containing barium oxide, calcium oxide, and aluminum oxide in a molar ratio of 5:3:20 was used to coat the surface layer.

上にのせ、約1600℃で溶融・含浸させる。Place it on top and melt and impregnate it at about 1600°C.

このようKして陰極構体11が完成する。In this manner, the cathode assembly 11 is completed.

この製造工程において、含浸型陰極1oが表面層lと下
層2の二層から形成されている以外は。
In this manufacturing process, the impregnated cathode 1o is formed from two layers, a surface layer 1 and a lower layer 2.

従来の製法と何ら変シはない。There is no difference from the conventional manufacturing method.

このようにして作られた本発明の含浸m陰極1゜ではI
II面層1の空孔率を小さくすることによりてBiJi
liJit低く抑え必要量だけのB&を供給出来ること
からBaの消耗時間全長くすることが出来る。−劣下層
2の空孔率を大きくしたことによって空孔内部から!!
両面層のB&供給量を多くシ。
In the impregnated m cathode 1° of the present invention made in this way, I
By reducing the porosity of II plane layer 1, BiJi
Since only the required amount of B& can be supplied while keeping the liJit low, the total consumption time of Ba can be lengthened. -From inside the pores by increasing the porosity of the inferior layer 2! !
Increase the amount of B&supply on both sides.

電子放射に必要なりa被榎匿の低下管抑え、電流の経時
変化を小さくする事が出来る大き゛な利点を有してiる
It has the great advantage of suppressing the downcomer tube required for electron emission and reducing the change in current over time.

鎗記実施例による含浸型陰極全相いた場合の電子放射4
11性tjK2図に陰極Cとして示した。空孔率一定の
陰極に比べて経時特性が小さくなっている。
Electron emission 4 when there is an impregnated cathode with all phases according to the Yaki example
It is shown as cathode C in the 11th tjK2 diagram. Compared to a cathode with constant porosity, its aging characteristics are smaller.

尚、#M記笑施例においては、二層の場合について説明
したが空孔率が異なる三層以上で陰極を構成しても良く
電子管の特性によって種々選択する事が出来る。更に前
記実施例とは逆に、電子放射特性を高くすべく空孔重大
なる層を電子放射面に。
In the #M example, the case of two layers was explained, but the cathode may be composed of three or more layers having different porosity, and various choices can be made depending on the characteristics of the electron tube. Further, contrary to the previous embodiment, a layer with large pores is provided on the electron emitting surface in order to improve the electron emission characteristics.

空孔率小なる層を下地層として用いても良く、8i々組
合せる事が可能である。
A layer with a low porosity may be used as the base layer, and it is possible to combine 8i.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空孔率を変えて製作した含浸m陰極の初期電子
放射特性、l!2図は空孔率201gと40−の陰極の
寿命特性、第3図は本発明の一実施例における含浸m陰
極の断面図である。 1・・・表面層(電子放射面)%2・・・下層(空孔重
大)、3・・・モリブデン製支持円筒、4・・・ヒータ
、5・・・アルンナ焼結体%10・・・含浸型陰極% 
11・・・陰極構体。 筋 初 U300 /1lX) l初勝崎間(長し)隼
I II、ヵ、−41お(q3p*4b、χ) 本2阻 和嘴庄唱情シイ匍 JE、3  閉
Figure 1 shows the initial electron emission characteristics of impregnated m cathodes fabricated with different porosity, l! Figure 2 shows the life characteristics of a cathode with a porosity of 201 g and 40 -, and Figure 3 is a sectional view of an impregnated m cathode in an embodiment of the present invention. 1...Surface layer (electron emitting surface) %2...Lower layer (significant voids), 3...Molybdenum support cylinder, 4...Heater, 5...Arunna sintered body%10...・Impregnated cathode%
11... Cathode structure. Musi first U300 /1l

Claims (1)

【特許請求の範囲】[Claims] (1)?!孔率の異なるポーラスタングステンt−少す
くとも二層以上積層して構成し電子放射源としたことt
特徴とする含浸型陰極。 儲)前記積層構成として空孔事大なる方を下層に空孔率
小なる方を電子放射面として形成したこと141黴とす
る特許請求の範囲第0項記載の含浸型陰極。 ・)前記積層構成として空孔率小なる方を下層に、空孔
事大なる方を電子放射面として形成したことt特徴とす
る特許請求の範囲第α)項記載の含浸型陰極。
(1)? ! Porous tungsten with different porosity - constituted by laminating at least two or more layers and used as an electron emission source
Features an impregnated cathode. 141. The impregnated cathode according to claim 0, wherein the laminated structure is such that the layer with larger pores is formed as a lower layer and the layer with smaller porosity is formed as an electron emitting surface. -) The impregnated cathode according to claim α), characterized in that, in the laminated structure, the layer with smaller porosity is formed as a lower layer, and the layer with larger porosity is formed as an electron emitting surface.
JP56131329A 1981-08-21 1981-08-21 Impregnation-type cathode Pending JPS5834539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56131329A JPS5834539A (en) 1981-08-21 1981-08-21 Impregnation-type cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56131329A JPS5834539A (en) 1981-08-21 1981-08-21 Impregnation-type cathode

Publications (1)

Publication Number Publication Date
JPS5834539A true JPS5834539A (en) 1983-03-01

Family

ID=15055396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56131329A Pending JPS5834539A (en) 1981-08-21 1981-08-21 Impregnation-type cathode

Country Status (1)

Country Link
JP (1) JPS5834539A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100233A (en) * 1988-10-06 1990-04-12 Toshiba Corp Manufacture of impregnated type cathode
EP0890972A1 (en) * 1997-07-09 1999-01-13 Matsushita Electronics Corporation Impregnated cathode and method for manufacturing the same
US6351061B1 (en) 1997-09-26 2002-02-26 Matsushita Electric Industrial Co., Ltd. Cathode, method for manufacturing the cathode, and picture tube
CN102315062A (en) * 2010-07-07 2012-01-11 中国科学院电子学研究所 Long-life filmed impregnated barium-tungsten cathode and preparation method thereof
CN102522297A (en) * 2011-12-26 2012-06-27 中国电子科技集团公司第十二研究所 Porosity-controllable cathode and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100233A (en) * 1988-10-06 1990-04-12 Toshiba Corp Manufacture of impregnated type cathode
EP0890972A1 (en) * 1997-07-09 1999-01-13 Matsushita Electronics Corporation Impregnated cathode and method for manufacturing the same
US6306003B1 (en) 1997-07-09 2001-10-23 Matsushita Electric Industrial Co., Ltd. Impregnated cathode and method for manufacturing the same
KR100308218B1 (en) * 1997-07-09 2001-12-17 모리시타 요이찌 Impregnated cathod and manufacturing method thereof
US6376975B1 (en) 1997-07-09 2002-04-23 Matsushita Electric Industrial Co., Ltd. Impregnated cathode and method for manufacturing the same
EP1267377A1 (en) * 1997-07-09 2002-12-18 Matsushita Electric Industrial Co., Ltd. Method for manufacturing an impregnated cathode
US6705913B2 (en) 1997-07-09 2004-03-16 Matsushita Electric Industrial Co., Ltd. Method for manufacturing impregnated cathode having a cathode pellet
US6351061B1 (en) 1997-09-26 2002-02-26 Matsushita Electric Industrial Co., Ltd. Cathode, method for manufacturing the cathode, and picture tube
US6565402B2 (en) 1997-09-26 2003-05-20 Matsushita Electric Industrial Co., Ltd. Cathode, method for manufacturing the cathode, and picture tube
CN102315062A (en) * 2010-07-07 2012-01-11 中国科学院电子学研究所 Long-life filmed impregnated barium-tungsten cathode and preparation method thereof
CN102522297A (en) * 2011-12-26 2012-06-27 中国电子科技集团公司第十二研究所 Porosity-controllable cathode and preparation method thereof

Similar Documents

Publication Publication Date Title
US4007393A (en) Barium-aluminum-scandate dispenser cathode
JPS58154131A (en) Impregnation type cathode
US4400648A (en) Impregnated cathode
US2297454A (en) Cathode
JPS58177484A (en) Manufacture of dispenser cathode
US3558966A (en) Directly heated dispenser cathode
JPS5834539A (en) Impregnation-type cathode
EP0053867A1 (en) Thermionic electron emitters and methods of making them
US3056061A (en) Method of manufacturing nickel supports for oxide cathodes and cathodes provided with such supports
US2830917A (en) Cathode for electron discharge devices
US3088851A (en) Method of manufacturing oxide cathodes and cathodes manufactured by such methods
JPH03173036A (en) Dispenser cathode
US5266414A (en) Solid solution matrix cathode
US2995674A (en) Impregnated cathodes
JPS6134218B2 (en)
US2273763A (en) Incandescible cathode
KR100259298B1 (en) Impregnation-type cathode for crt
US2417458A (en) Electrode
KR920006820Y1 (en) Dispensor-type cathode
JPH06223776A (en) Electrode for fluorescent lamp
US4939411A (en) Composite vacuum evaporation coil
JPS5918539A (en) Impregnated cathode
SU643990A1 (en) Thermo-emission cathode for electronic devices
JP2696348B2 (en) Electrode material and its manufacturing method
US3327158A (en) Semi-dispenser cathode with overlying emissive coating