JPS5834493B2 - Polyester manufacturing method - Google Patents

Polyester manufacturing method

Info

Publication number
JPS5834493B2
JPS5834493B2 JP49097440A JP9744074A JPS5834493B2 JP S5834493 B2 JPS5834493 B2 JP S5834493B2 JP 49097440 A JP49097440 A JP 49097440A JP 9744074 A JP9744074 A JP 9744074A JP S5834493 B2 JPS5834493 B2 JP S5834493B2
Authority
JP
Japan
Prior art keywords
reaction
titanium
phase polymerization
solid phase
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49097440A
Other languages
Japanese (ja)
Other versions
JPS5124696A (en
Inventor
正路 渡辺
哲也 杉田
修一 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP49097440A priority Critical patent/JPS5834493B2/en
Publication of JPS5124696A publication Critical patent/JPS5124696A/en
Publication of JPS5834493B2 publication Critical patent/JPS5834493B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】 本発明はポリエステルの製造法に関し、更に詳しくはポ
リブチレンテレフタレート(以下、「P B TJとい
う。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyester, and more particularly to polybutylene terephthalate (hereinafter referred to as "P B TJ").

)の固相重合による製造法に関するもの**である。) is related to the production method by solid phase polymerization**.

従来、高重合度ポリエステルを製造する方法として、固
相重合法が知られているが、固相重合は真空下又は不活
性気流下で行なわれており装置的、経済的に不利なこと
が多い。
Solid-phase polymerization is conventionally known as a method for producing polyester with a high degree of polymerization, but solid-phase polymerization is carried out under vacuum or under an inert gas flow, which is often disadvantageous in terms of equipment and economics. .

本発明者らはこのような不利益をなくす為に研究した結
果本発明に至った。
The present inventors conducted research to eliminate such disadvantages, and as a result, they arrived at the present invention.

すなわち本発明は、一般式 %式%) で表わされるフェノール化合物を固有粘度0.5〜1.
1のポリブチレンテレフタレートの溶融反応終了までに
添加してなる組成物を固相重合することを特徴とするポ
リエステルの製造法にある。
That is, the present invention uses a phenol compound represented by the general formula (%) with an intrinsic viscosity of 0.5 to 1.
The present invention provides a method for producing a polyester, characterized in that a composition obtained by adding polybutylene terephthalate (1) to the polybutylene terephthalate until the end of the melting reaction is solid-phase polymerized.

本発明でいうPBTとは10モル饅までの他の共重合成
分を含んでいてもよい。
PBT as used in the present invention may contain up to 10 moles of other copolymer components.

これらの共重合成分としては、エチレングリコール、プ
ロピレングリコール、ヘキサメチレングリコール等のグ
リコール成分、イソフタル酸、ナックレンジカルボン酸
、アジピン酸などのジカルボン酸、ペンタエリスリトー
ル、トリメチロールプロパン、トリメリット酸、ピロメ
リット酸等の多官能性化合物が挙げられる。
These copolymerized components include glycol components such as ethylene glycol, propylene glycol, and hexamethylene glycol, dicarboxylic acids such as isophthalic acid, knack dicarboxylic acid, and adipic acid, pentaerythritol, trimethylolpropane, trimellitic acid, and pyromellitic acid. Examples include polyfunctional compounds such as acids.

テレフタル酸と1,4−ブタンジオール(以下「1,4
8Glという。
Terephthalic acid and 1,4-butanediol (hereinafter referred to as “1,4
It's called 8Gl.

)のエステル化反応は、通常テレフタル酸1モルに対し
、1.48G1〜5モルの割合で常圧又は加圧下200
〜240’Cの温度で、連続的に生成する水を除去しな
がら行なわれる。
) is usually carried out at a ratio of 1 to 5 moles of 1.48G to 1 mole of terephthalic acid at 200 °C under normal pressure or increased pressure.
It is carried out at a temperature of ~240'C with continuous removal of the water produced.

この時チタン化合物等の触媒が存在していると好都合な
ことが多い。
At this time, it is often advantageous if a catalyst such as a titanium compound is present.

エステル交換反応は通常テレフタル酸ジメチル(以下、
「DMTJという。
The transesterification reaction is usually carried out using dimethyl terephthalate (hereinafter referred to as
“It’s called DMTJ.

)と1.48Gをモル比1:1〜1:2で、常圧下温度
150〜220°Cで連続的に生成するメタノールを除
去しながら行う。
) and 1.48G in a molar ratio of 1:1 to 1:2 under normal pressure and at a temperature of 150 to 220°C while continuously removing generated methanol.

実用的な反応速度を得るには触媒を必要とし、触媒とし
てはチタン化合物、酸化鉛、酢酸鉛、酸化亜鉛、酢酸亜
鉛、酢酸マンガンなどがよい。
A catalyst is required to obtain a practical reaction rate, and suitable catalysts include titanium compounds, lead oxide, lead acetate, zinc oxide, zinc acetate, and manganese acetate.

特に有機チタネート、四塩化チタン加水分解物が好適で
ある。
Particularly suitable are organic titanates and titanium tetrachloride hydrolysates.

使用量はTiとして10〜11000pp対ポリマー、
好ましくは30〜200 p pmがよい。
The amount used is 10 to 11000 pp as Ti vs. polymer,
Preferably it is 30 to 200 ppm.

触媒の添加は反応中数回以上にわけて添加するのが好ま
しい。
It is preferable to add the catalyst several times or more during the reaction.

重縮合反応は上記エステル化反応もしくはエステル交換
反応によって得られ、生成物を200〜260℃で反応
系を減圧にし1.48Gを連続的に除去しながら所望の
重合度が得られるまで溶融重縮合を行ないプレポリマー
を得る。
The polycondensation reaction is obtained by the above-mentioned esterification reaction or transesterification reaction, and the product is subjected to melt polycondensation at 200 to 260°C while reducing the pressure of the reaction system and continuously removing 1.48G until the desired degree of polymerization is obtained. to obtain a prepolymer.

重縮合反応時に実用的な反応速度を得るためには触媒を
必要とする。
A catalyst is required to obtain a practical reaction rate during the polycondensation reaction.

例えば、好適には、テトラブチルチタネート、テトラプ
ロピルチタネート、テトラエチルチタネート、テトラメ
チルチタネート等の有機チタネート及びそのカ日水分解
物、四塩化チタン及び硫酸チタンのカ日水分解物、チタ
ン弗化カリ、チタン弗化亜鉛、チタン弗化コバルトなど
の無機チタン化合物、シュウ酸チタン、シュウ酸チタン
カリ等ポリエステル製造触媒として公知のチタン化合物
が挙げられる。
For example, suitable organic titanates such as tetrabutyl titanate, tetrapropyl titanate, tetraethyl titanate, and tetramethyl titanate and their daily water decomposition products, daily water decomposition products of titanium tetrachloride and titanium sulfate, titanium potassium fluoride, Examples include inorganic titanium compounds such as titanium zinc fluoride and titanium cobalt fluoride, and titanium compounds known as polyester production catalysts such as titanium oxalate and titanium potassium oxalate.

特に好ましくは、テトラブチルチタネート、テトラプロ
ピルチタネート、四塩化チタンの加水分解物である。
Particularly preferred are hydrolysates of tetrabutyl titanate, tetrapropyl titanate, and titanium tetrachloride.

チタン化合物触媒のほかに他の添カロ剤、例えば二酸化
チタン等の顔料、リン酸エステル等の安定前りが添力目
されていてもよい。
In addition to the titanium compound catalyst, other color additives such as pigments such as titanium dioxide, and stabilizers such as phosphoric esters may be added.

触媒はエステル化あるいはエステル交換工程で使用され
ている場合は、重縮合時にさらに添カ目する必要はない
If the catalyst is used in the esterification or transesterification step, there is no need for further addition during the polycondensation.

化合物(I)はプレポリマー製造反応工程のいずれの段
階で添加してもよいが、添加後溶融反応終了までの時間
が6時間以内、好ましくは4.5時間以内であることが
必要である。
Compound (I) may be added at any stage of the prepolymer production reaction process, but it is necessary that the time from addition to completion of the melting reaction be within 6 hours, preferably within 4.5 hours.

溶融重合によって得られた〔η)−0,5〜1.1のプ
レポリマーを粉末状又はペレット状にし、常法に従って
固相重合を行なう。
The prepolymer of [η)-0.5 to 1.1 obtained by melt polymerization is made into a powder or pellet form, and solid phase polymerization is performed according to a conventional method.

〔η) > 1.1あるいは〔η:]<0.5の場合に
は固相重合を円滑に行なうことが困難である。
When [η)>1.1 or [η:]<0.5, it is difficult to carry out solid phase polymerization smoothly.

ペレットの大きさは5山以下がよい。The size of the pellets is preferably 5 or less.

固相重合は190〜210°Cの空気流通下で混合しな
がら行なう。
The solid phase polymerization is carried out at 190 to 210°C under air flow and with mixing.

空気は窒素などで希釈されてもよいが、空気のまま用い
るのが最も効果的である。
Air may be diluted with nitrogen or the like, but it is most effective to use air as is.

190°C以下では重合速度が小さすぎ、210℃以上
ではポリマーの劣化がはげしいので適当でない。
If the temperature is below 190°C, the polymerization rate is too low, and if it is above 210°C, the polymer deteriorates rapidly, so it is not suitable.

以下、実施例によって本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 I DMT100部、1.48G83部、テトラnブチルチ
タネート0.05部を精留塔のついた反応器に入れ15
0℃から210°Cでエステル交換反応を行なった。
Example I 100 parts of DMT, 83 parts of 1.48G, and 0.05 part of tetra-n-butyl titanate were placed in a reactor equipped with a rectification column.
The transesterification reaction was carried out at 0°C to 210°C.

反応中生成するメタノールは精留塔から反応系外へ留去
した。
Methanol produced during the reaction was distilled out of the reaction system from the rectification column.

反応時間2時間でテトラn−ブチルチタネート0.02
部を添加し3時間30分で反応を終了した。
Tetra n-butyl titanate 0.02 in 2 hours reaction time
The reaction was completed in 3 hours and 30 minutes.

得られたモノマーを重縮合反応器に移し、テトラn−プ
チルチタネー1−0.02部及び化合物(I)(X=2
)を0.06部添カロし、重縮合反応を行なった。
The obtained monomers were transferred to a polycondensation reactor, and 1-0.02 parts of tetra n-butyl titanate and compound (I) (X = 2
) was added to carry out a polycondensation reaction.

反応は210から2500Cへ徐徐に昇温しつつ、系を
減圧にし1時間15分で250°C,0,2mmHgに
した、さらに2500C10、2mmHgで2.5時間
まで反応しポリマーを3%9!fX3mmのペレット状
にとりだした、〔η) = 0.87であった。
The reaction was carried out by gradually increasing the temperature from 210C to 2500C and reducing the pressure of the system to 250C and 0.2mmHg for 1 hour and 15 minutes.The reaction was then continued at 2500C10 and 2mmHg for up to 2.5 hours until the polymer was 3%9! It was taken out in the form of a pellet with fX3 mm, and [η) = 0.87.

(〔η〕はフェノール:四塩化エタン、1:1溶媒で3
0°Cで測定)。
([η] is phenol:tetrachloroethane, 3
(measured at 0°C).

このペレットをロータリーキルン型固相重合装置で空気
を流通させなから205°C4時間固相重合を行なった
結果〔η〕=1.35のポリマーを得た。
This pellet was subjected to solid phase polymerization in a rotary kiln type solid phase polymerization apparatus at 205 DEG C. for 4 hours without air circulation, resulting in a polymer having [η]=1.35.

比較例 1 実施例1と同じ条件で、但し化合物I)だけ添加しない
でプレポリマーを得た。
Comparative Example 1 A prepolymer was obtained under the same conditions as in Example 1, except that compound I) was not added.

〔η)=0.83であった。[η)=0.83.

これを実施例1と同じ固相重合条件で重合したところ、
〔η〕は低下し、〔η)−0,45であった0 実施例 2 実施例1と同様の条件で、但し化合物(1)の添加時期
をエステル交換反応の開始時にした場合及びエステル交
換反応2時間の時点にした場合及び溶融重縮合反応終了
時に添カロした場合の3通りでプレポリマーを得た。
When this was polymerized under the same solid phase polymerization conditions as in Example 1,
[η] decreased and was [η)-0.450 Example 2 Under the same conditions as Example 1, except that compound (1) was added at the start of the transesterification reaction, and transesterification Prepolymers were obtained in three ways: when the reaction time was 2 hours, and when the temperature was added at the end of the melt polycondensation reaction.

溶融重縮合反応時間2時間30分で〔η〕はそれぞれ0
.86 、0.87 、0.83であった。
When the melt polycondensation reaction time was 2 hours and 30 minutes, [η] was 0.
.. 86, 0.87, and 0.83.

これを実施例1と同じ条件で固相重合したところ〔η〕
はそれぞれ0.88 、1.20 、1.37であった
This was subjected to solid phase polymerization under the same conditions as Example 1 [η]
were 0.88, 1.20, and 1.37, respectively.

これによって化合物(I)添加後プレポリマー製造終了
までの時間が長いと好ましくないことがわかる。
This shows that it is undesirable to take a long time to complete the production of the prepolymer after addition of compound (I).

実施例 4 テレフタル酸100部、1.48G120部、四塩化チ
タン加水分解物をチタンとして0.01部を反応器に仕
込み土族する水を留去しつつ2300Cまで昇温した。
Example 4 100 parts of terephthalic acid, 120 parts of 1.48G, and 0.01 part of titanium tetrachloride hydrolyzate were charged into a reactor, and the temperature was raised to 2300C while distilling off water.

120分で反応系は透明になった。The reaction system became transparent in 120 minutes.

これを重縮合反応器に移し、化合物(I) (Xl)を
0.04部添カロし、実施例1の溶融重縮合条件と同じ
条件で重合を行い、2時間30分で〔η〕=0.85の
プレポリマーを得た。
This was transferred to a polycondensation reactor, 0.04 parts of compound (I) (Xl) was added, and polymerization was carried out under the same conditions as the melt polycondensation conditions of Example 1. [η]= A prepolymer of 0.85 was obtained.

これを実施例1と同じ条件で固相重合し〔η〕1.36
のポリマーを得た。
This was subjected to solid phase polymerization under the same conditions as Example 1 [η] 1.36
of polymer was obtained.

Claims (1)

【特許請求の範囲】 1一般式 (式中Xは1〜4の整数を示す。 )で表わされるフェノール化合物を固有粘度0.5〜1
.1のポリブチレンテレフタレートの溶融反応終了まで
に添加してなる組成物を固相重合することを特徴とする
ポリエステルの製造方法。
[Claims] 1. A phenol compound represented by the general formula (in the formula, X represents an integer of 1 to 4) having an intrinsic viscosity of 0.5 to 1
.. 1. A method for producing polyester, which comprises solid-phase polymerizing a composition obtained by adding polybutylene terephthalate in step 1 before the melting reaction is completed.
JP49097440A 1974-08-24 1974-08-24 Polyester manufacturing method Expired JPS5834493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49097440A JPS5834493B2 (en) 1974-08-24 1974-08-24 Polyester manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49097440A JPS5834493B2 (en) 1974-08-24 1974-08-24 Polyester manufacturing method

Publications (2)

Publication Number Publication Date
JPS5124696A JPS5124696A (en) 1976-02-28
JPS5834493B2 true JPS5834493B2 (en) 1983-07-27

Family

ID=14192397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49097440A Expired JPS5834493B2 (en) 1974-08-24 1974-08-24 Polyester manufacturing method

Country Status (1)

Country Link
JP (1) JPS5834493B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023113U (en) * 1989-03-02 1990-01-10
ZA9710542B (en) * 1996-11-27 1999-07-23 Shell Int Research Modified 1,3-propanediol-based polyesters.
US6093786A (en) * 1996-11-27 2000-07-25 Shell Oil Company Process for preparing polytrimethylene terephthalate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1318449A (en) * 1969-09-30 1973-05-31 Goodyear Tire & Rubber Solid state polymerization of linear polyester resins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1318449A (en) * 1969-09-30 1973-05-31 Goodyear Tire & Rubber Solid state polymerization of linear polyester resins

Also Published As

Publication number Publication date
JPS5124696A (en) 1976-02-28

Similar Documents

Publication Publication Date Title
US6472500B2 (en) Crystalline polyester resins and processes for their preparation
JP4125591B2 (en) Process for producing poly (1,4-cyclohexylenedimethylene 1,4-cyclohexanedicarboxylate) and polyester therefrom
JP5711667B2 (en) Method for producing polyester resin copolymerized with isosorbide
JP2003128775A (en) Method for producing copolyester using titanium dioxide/ silicon dioxide coprecipitate catalyst in form of suspension in glycol
KR20010013607A (en) Method for producing polyesters and copolyesters
JPH01117A (en) Method for producing polybutylene terephthalate
US4131601A (en) Process for the preparation of polyesters
JPH0360849B2 (en)
JPH0820638A (en) Production of polyester
JP3442555B2 (en) Preparation of polyester and copolyester
JPS60147430A (en) Production of polyester copolymerized with adipic acid and having high whiteness and high polymerization degree
JP4691750B2 (en) Polyester production method
US4439597A (en) Process for the preparation of polybutylene terephthalate
JPS5834493B2 (en) Polyester manufacturing method
JP4306038B2 (en) Process for producing polybutylene terephthalate
JPS60252622A (en) Preparation of novel lactone polymer
JPH08208816A (en) Production of polybutylene terephthalate polymer
JPS62292833A (en) Polyester polycarbonate elastomer
JPS58120633A (en) Coordinate complex compound as polyesterifying catalyst
JP2531584B2 (en) Method for producing polyester
JP2004035742A (en) Crystalline polyester resin and method for producing the same
KR0122003B1 (en) Method for manufacturing polyester
KR0121977B1 (en) Method for manufacturing high molecule aliphatic polyester
JPS6134449B2 (en)
JP2001200042A (en) Manufacturing method for polyester