JPS5834490B2 - Polyester polymerization reaction equipment - Google Patents

Polyester polymerization reaction equipment

Info

Publication number
JPS5834490B2
JPS5834490B2 JP4021373A JP4021373A JPS5834490B2 JP S5834490 B2 JPS5834490 B2 JP S5834490B2 JP 4021373 A JP4021373 A JP 4021373A JP 4021373 A JP4021373 A JP 4021373A JP S5834490 B2 JPS5834490 B2 JP S5834490B2
Authority
JP
Japan
Prior art keywords
polymerization
polyester
distillate
condenser
polymerization reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4021373A
Other languages
Japanese (ja)
Other versions
JPS49132187A (en
Inventor
玄 栗栖
隆幸 小林
武男 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4021373A priority Critical patent/JPS5834490B2/en
Publication of JPS49132187A publication Critical patent/JPS49132187A/ja
Publication of JPS5834490B2 publication Critical patent/JPS5834490B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Description

【発明の詳細な説明】 本発明は線状飽和ポリエステルの縮重合、更に詳しくは
ポリエステルをアルキレングリコールの脱離条件下で縮
重合せしめて製造する際にアルキレングリコール以外の
揮発性の物質を副生ずるが如き添加剤を添加し縮重合を
行なうのに適した重合反応装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves the condensation polymerization of linear saturated polyesters, more specifically, the production of polyesters by condensation polymerization under alkylene glycol elimination conditions, in which volatile substances other than alkylene glycol are produced as by-products. The present invention relates to a polymerization reaction apparatus suitable for adding such additives and carrying out condensation polymerization.

従来、ジカルボン酸例えばコハク酸、アジピン酸、セパ
チン酸、テレフタル酸、イソフタル酸、ジフェニルジカ
ルボン酸、ナフタレンジカルボン酸、ジフェニルエーテ
ルジカルボン酸、ジフェニルスルホン酸、ジフェノキシ
メタンジカルボン酸、ジフェノキシエタンジカルボン酸
、スチルベンジカルボン酸、ジフェニルエタンジカルボ
ン酸等の脂肪族及び芳香族ジカルボン酸の1種又は2種
以上とグリコール例えばエチレングリコール、トリメチ
レングリコール、フロピレンゲリコール、フチレンゲリ
コール、シクロヘキサン−1,2−ジオール、シクロヘ
キサン−1,3−ジオール、ネオペンチレンゲリコール
、■、4−シクロヘキサンジメチロール等の1種又は2
種以上とからなるポリエステルが知られている。
Conventionally, dicarboxylic acids such as succinic acid, adipic acid, sepatic acid, terephthalic acid, isophthalic acid, diphenyl dicarboxylic acid, naphthalene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfonic acid, diphenoxymethane dicarboxylic acid, diphenoxyethane dicarboxylic acid, stilbene dicarboxylic acid acids, one or more aliphatic and aromatic dicarboxylic acids such as diphenylethanedicarboxylic acid, and glycols such as ethylene glycol, trimethylene glycol, propylene gelicol, futhylene gelicol, cyclohexane-1,2-diol, cyclohexane One or two of -1,3-diol, neopentylene gellicol, ■, 4-cyclohexane dimethylol, etc.
Polyesters consisting of more than one species are known.

この内でも特にテレフタル酸、ナフタレン−ジカルボン
酸とエチレングリコール、テトラメチレングリコールと
から得られるポリエステルは繊維ξフィルム、樹脂等と
して工業的に大きな価値を有する事もよく知られて居る
Among these, it is well known that polyesters obtained from terephthalic acid, naphthalene dicarboxylic acid, and ethylene glycol or tetramethylene glycol have great industrial value as fiber ξ films, resins, etc.

1般にジカルボン酸とグリコールとからなるポリエステ
ルは、例えばジカルボン酸の低級ジアルキルエステルと
グリコールとのエステル交換反応、ジカルボン酸とアル
キレンオキサイドとの付加反応、ジカルボン酸とグリコ
ールとのエステル反応等によって、ビス−ヒドロキシア
ルキルジカルボキシレート及び/又はその低重合体を製
造する第1段階の反応とこの初期縮重合物を減圧下及び
/又は不活性気流下加熱してグリコールを離脱せしめて
重縮合し高重合体とする第2段階の反応とにより製造さ
れる。
In general, polyesters made of dicarboxylic acids and glycols are made into bis-containers by, for example, transesterification reactions between lower dialkyl esters of dicarboxylic acids and glycols, addition reactions between dicarboxylic acids and alkylene oxides, and ester reactions between dicarboxylic acids and glycols. - The first step of reaction to produce hydroxyalkyl dicarboxylate and/or its low polymer, and the initial condensation product is heated under reduced pressure and/or in an inert gas stream to remove glycol, resulting in polycondensation and high polymerization. It is produced by a second stage reaction of coalescence.

との重縮重合反応は無触媒でも進行するが、その場合極
めて反応が遅いので1般には、例えば二酸化アンチモン
、チタニウムアルコキシド等の触媒を使用して重縮合反
応速度を向上せしめている。
Although the polycondensation reaction proceeds without a catalyst, in that case the reaction is extremely slow, so generally a catalyst such as antimony dioxide or titanium alkoxide is used to improve the polycondensation reaction rate.

しかしながら、この重縮合反応は触媒を用いてもかなり
長時間を要し、且つ200’C〜350℃での高温で行
なわれる為、熱分解等の副反応をさけることはできず、
その結果、末端カルボキシル基量がまし、熱安定性の劣
ったポリエステルしか得られない。
However, even if a catalyst is used, this polycondensation reaction takes quite a long time and is carried out at a high temperature of 200'C to 350°C, so side reactions such as thermal decomposition cannot be avoided.
As a result, only a polyester with a high terminal carboxyl group content and poor thermal stability is obtained.

例えばポリエチレンテレフタレートを工業生産する場合
、0.lmmHg〜0.5mmHgの高真空下で270
0C〜290℃の高温で2〜10時間反応させる必要が
ある。
For example, when industrially producing polyethylene terephthalate, 0. 270 under high vacuum of lmmHg to 0.5mmHg
It is necessary to react at a high temperature of 0C to 290C for 2 to 10 hours.

その為に1定の生産量をあげる為には巨大な設備が必要
であると共に長時間高温に曝される為に得られるポリマ
ーの末端カルボキシル基量の増大を避ける事はできない
Therefore, in order to increase production at a certain level, huge equipment is required, and it is impossible to avoid an increase in the amount of terminal carboxyl groups in the resulting polymer due to prolonged exposure to high temperatures.

斯る欠点を克服する為にポリエステルの重縮合反応過程
でジアリールカーボネート、ジカルボン酸ジアリールエ
ステル類、アリールオルソカーボネート類、アリールオ
ルソエステル類等の1種以上を添加し極めて短かい反応
時間で末端カルボキシル基量の少ない高重合度のポリエ
ステルを製造する改良されたポリエステルの製造方法が
知られている。
In order to overcome this drawback, one or more types of diaryl carbonates, diaryl dicarboxylic acid esters, aryl orthocarbonates, aryl orthoesters, etc. are added during the polycondensation reaction process of polyester to form terminal carboxyl groups in an extremely short reaction time. Improved polyester production processes are known that produce low amounts of high degree of polymerization polyesters.

斯る方法は、品質の良い高重合度のポリエステルを得る
には極めて有効であるが、上記の如きアリールエステル
、アリールオルソエステル類を添加するため縮重合中に
フェノール類や場合によりエチレンカーボネート、ヒド
ロキシアルキルホルメート等が生成、留出しこの後の留
出、回収操作において種々のトラブルを発生する欠点が
あった。
Such a method is extremely effective in obtaining a high-quality polyester with a high degree of polymerization, but since the above-mentioned aryl esters and aryl orthoesters are added, phenols and, in some cases, ethylene carbonate and hydroxyl are added during the condensation polymerization. There was a drawback that various troubles occurred during the production and distillation of alkyl formates and subsequent distillation and recovery operations.

すなわち、従来の重合反応装置では、重合槽−基に対応
して一系列の留出、凝縮、回収系が設けられ留出物はす
べて単一経路で処理されているため、上述の如く反応過
程で留出物の成分に変化が生じグリコール類からこれと
フェノール類等との混合成分になると留出管路、凝縮器
等に付着固化し易すく真空吸引の劣化、凝縮能力の低下
等のトラブルが発生するという欠点があった。
In other words, in conventional polymerization reactors, one series of distillation, condensation, and recovery systems is provided corresponding to each polymerization tank, and all distillates are treated in a single path. If the components of the distillate change from glycols to mixed components with phenols, etc., they tend to stick to distillation pipes, condensers, etc., causing problems such as deterioration of vacuum suction and reduction in condensing capacity. There was a drawback that this occurred.

又単一留出経路のため留出物の混入が生じ、グリコール
類とフェノール類等の沸点が近いことから分離精製が極
めて難かしく又煩雑であり、回収グリコール類の品質が
劣る欠点と共にフェノールとともに廃棄されるグリコー
ル類の量が増大し生産コストの上昇をもたらす欠陥があ
った。
In addition, the single distillation route causes contamination of distillate, and since the boiling points of glycols and phenols are close, separation and purification is extremely difficult and complicated. There was a defect that increased the amount of glycols that were discarded, leading to an increase in production costs.

本発明者らはかかる欠点を除き上述のアリールエステル
、アリールオルソエステル類を添加して重合を実施する
場合においても、グリコール類にフェノール類等の混入
する恐れのない重合反応装置について検討を行った結果
本発明に到ったものである。
The present inventors have investigated a polymerization reaction apparatus that eliminates the possibility of contamination of phenols with glycols even when polymerization is carried out by adding the above-mentioned aryl esters and aryl orthoesters. As a result, we have arrived at the present invention.

すなわち、本発明はポリエステル重縮合反応過程におい
てアルキレングリコール以外の揮発性物質を副生ずるよ
うな添加剤を添加して縮重合を行なう際に重合槽より発
生する留出物を凝縮器によって冷却回収するようにした
重合反応装置において、冷却温度の異なる複数の凝縮器
を設けると共に、重合槽の留出管を強制保温しかっ流路
の切換手段を介して前記各凝縮器に分岐連通せしめ、留
出物成分の変化に応じて凝縮器を切換使用するようにな
したことを特徴とするものである。
That is, the present invention cools and collects the distillate generated from the polymerization tank when performing condensation polymerization by adding additives that produce volatile substances other than alkylene glycol as by-products in the polyester polycondensation reaction process. In such a polymerization reaction apparatus, a plurality of condensers with different cooling temperatures are provided, and the distillation pipe of the polymerization tank is forcibly kept warm and connected to each of the condensers through a flow path switching means, so that the distillate is It is characterized in that the condenser is switched and used according to changes in the components.

以下、本発明を図面によって説明する。Hereinafter, the present invention will be explained with reference to the drawings.

第1図は本発明の具体例を示す工程図で、反応過程でグ
リコール類の外フェノール類等が発生するポリエステル
重合反応に適用したものである。
FIG. 1 is a process diagram showing a specific example of the present invention, which is applied to a polyester polymerization reaction in which phenols other than glycols are generated during the reaction process.

第1図において、1は撹拌翼2を有する重合槽、3は撹
拌翼の駆動装置、4は添加剤の供給槽、5は加熱流体で
強制保温するようにしたジャケット式の留出管で、流路
の切換弁6によって分岐され一方は低温凝縮器7、他方
は高温凝縮器8に連結している。
In FIG. 1, 1 is a polymerization tank having a stirring blade 2, 3 is a driving device for the stirring blade, 4 is an additive supply tank, and 5 is a jacket-type distillation pipe that is forcibly kept warm by heating fluid. The flow path is branched by a switching valve 6, and one side is connected to a low temperature condenser 7 and the other side is connected to a high temperature condenser 8.

低、高温凝縮器7,8は共に多管式で、前者は20℃の
冷却水、後者は40℃の温水が冷却液として供給される
The low and high temperature condensers 7 and 8 are both multi-tube type, and the former is supplied with 20°C cooling water, and the latter is supplied with 40°C hot water as a cooling liquid.

9はフェノール類等の凝縮液の取出ポット、10.11
はグリコール類の取出ポット、12は真空吸引管で真空
発生装置(図示せず)に連なっている。
9 is a pot for removing condensate such as phenols, 10.11
1 is a glycol removal pot, and 12 is a vacuum suction tube connected to a vacuum generator (not shown).

かかる構成よりなる重合反応装置の重合槽1にビス−β
−ヒドロキシエチルテレフタレートおよびその低重合体
を仕込み縮重合反応を行なわせ発生するグリコール類の
留出物は留出管5から切換弁6を経て低温凝縮器7に流
し従来と同様に取出ボッN0,11に回収する。
Bis-β is placed in the polymerization tank 1 of the polymerization reactor having such a configuration.
-Hydroxyethyl terephthalate and its low polymer are charged and a condensation polymerization reaction is carried out, and the resulting glycol distillate is passed from the distillation pipe 5 through the switching valve 6 to the low temperature condenser 7, and as in the conventional case, the distillate is sent to the take-out box N0, Collected on 11th.

このような状態で重合反応を進めた後、一定条件に達す
ると供給槽4より添加剤としてジフェニルテレフタレー
トが投入され、同時に切換弁6が作動され留出流路は高
温凝縮器8側に切換えられる。
After the polymerization reaction proceeds under these conditions, when a certain condition is reached, diphenyl terephthalate is introduced as an additive from the supply tank 4, and at the same time, the switching valve 6 is operated and the distillate flow path is switched to the high temperature condenser 8 side. .

従ってこの後の留出物は高温凝縮器8から取出ポット9
に変るため、前記の如き混入或は閉塞等のトラブルが完
全に防止され安定した重合反応が行なわれる。
Therefore, the subsequent distillate is taken out from the high-temperature condenser 8 and placed in a pot 9.
Therefore, troubles such as contamination or clogging as described above are completely prevented, and a stable polymerization reaction is carried out.

すなわち、低温凝縮器7の冷却温度はグリコール類の回
収率を高めかつ重合真空度を高めるためには低ければ低
いほどよく、経済的および設備的見地から通常工業用水
或いは循環再生水が用いられているが、フェノール類等
においてはグリコール類に比較して極めて強い付着性が
あり同等の条件においては凝縮時の急冷によって付着成
長し閉塞等のトラブルを発生する。
In other words, the lower the cooling temperature of the low-temperature condenser 7 is, the better in order to increase the recovery rate of glycols and the degree of polymerization vacuum, and industrial water or recycled recycled water is usually used from an economical and facility standpoint. However, phenols and the like have extremely strong adhesive properties compared to glycols, and under similar conditions, they will adhere and grow due to rapid cooling during condensation, causing problems such as blockage.

しかしながらこのような凝縮時の付着性は一定温度以上
に加熱された高温凝縮器8によって冷却条件が緩和され
ているため、前記の如きトラブルは完全に防止されるの
である。
However, since the cooling conditions for such adhesion during condensation are relaxed by the high temperature condenser 8 heated above a certain temperature, the above-mentioned troubles can be completely prevented.

又、ポリエステルの縮重合反応においては、初期縮重合
、とりわけポリエステルの極限粘度が0.2以前に副生
ずるグリコール類の大部分が留出し、その後は極めて少
量のグリコール類しか虫取しない。
In addition, in the polycondensation reaction of polyester, most of the glycols produced as by-products are distilled off during the initial polycondensation, particularly before the intrinsic viscosity of the polyester reaches 0.2, and thereafter only a very small amount of glycols is removed.

従ってこのような極限粘度が比較的高い段階で前記の如
き添加剤を加えた場合、副生ずるフェノール類等が留出
管に付着或は滞留し多量に発生するグリコール類で洗い
流されることがないため、次バッチの初期縮重合におい
て発生するグリコール類に混入汚染することとなるが、
本発明では留出管5が強制保温(加熱)され付着、滞留
が防止されており前記のように混入することもない。
Therefore, if the above-mentioned additives are added at a stage where the intrinsic viscosity is relatively high, the by-products such as phenols will adhere to or remain in the distillation tube and will not be washed away by the large amount of glycols generated. However, it will contaminate the glycols generated during the initial polycondensation of the next batch.
In the present invention, the distillation tube 5 is forcibly kept warm (heated) to prevent adhesion and retention, and there is no chance of contamination as described above.

第2図は本発明の他の具体例で、高温凝縮器をスプレ一
式凝縮器13とし加熱、冷却手段を内蔵した循環タンク
14を設は凝縮液を単独又は溶媒と共に再循環使用する
ようにしたものである。
Figure 2 shows another embodiment of the present invention, in which the high-temperature condenser is a spray condenser 13, and a circulation tank 14 with built-in heating and cooling means is installed so that the condensate can be recycled alone or together with a solvent. It is something.

15.16は各々単独に設けた切換弁でその他は第1図
と同様である。
Reference numerals 15 and 16 designate switching valves provided individually, and the rest are the same as in FIG. 1.

尚、本具体例における添加剤とは縮重合反応時殊にポリ
エステルの極限粘度が0.2に到達した時点以后で添加
し、揮発性化合物を副生ずる添加剤一般を伝い、例えば
ジフェニルカーボネート、ジフェニルテレフタレート、
ジフェニルナフタリンジカルボキシレート、ジフェニル
オキザレート、ポリエチレンオキザレート、ジーn−プ
チルネキザレート、フェニルオルソカーボネート、ヘキ
サフェニルオルソテレフタレート、トリフエノキシ−酢
酸フェニルエステル、ジーP−クロロフェニルテレフタ
レート、ジーP−クーシャリープチルフェニルナフクレ
ン−2,6−ジカルボキシレート、β−ナフブチオルソ
カーホネート等を掲げる事ができる。
The additives used in this example refer to general additives that are added during the polycondensation reaction, particularly after the intrinsic viscosity of the polyester reaches 0.2, and produce volatile compounds as by-products, such as diphenyl carbonate and diphenyl. terephthalate,
Diphenylnaphthalene dicarboxylate, diphenyl oxalate, polyethylene oxalate, di-n-butyl nexalate, phenyl orthocarbonate, hexaphenyl orthoterephthalate, triphenoxy-acetic acid phenyl ester, di-P-chlorophenyl terephthalate, di-P-cushary Examples include butylphenylnafucrene-2,6-dicarboxylate, β-nafbuthiorthocarbonate, and the like.

亦ビスーヒドロキシアルキルジカルボキシレート及び/
又はその低重合体の例としては、ビス−β−ヒドロキシ
エチルテレフタレート、ビス−δ−ヒドロキシテトラメ
チレンテレフタレート、ビス−β−ヒドロキシエチル−
ナフタレン2,6ジカルボキシレート、ビス−δ−ヒド
ロキシテーラメチレンナフタレン2,6−ジカルボキシ
レート、ビス−β−ヒドロキシエチル44/ジフエニル
ジカルボキシレート等及び/又はそれらとそれらの低重
合体の混合物を掲げることができ亦場合により、ジカル
ボン酸の1部、グリコールの1部を他種のものとおきか
えてもよい。
Bis-hydroxyalkyl dicarboxylate and/or
Examples of low polymers thereof include bis-β-hydroxyethyl terephthalate, bis-δ-hydroxytetramethylene terephthalate, bis-β-hydroxyethyl-
Naphthalene 2,6 dicarboxylate, bis-δ-hydroxytheramethylene naphthalene 2,6-dicarboxylate, bis-β-hydroxyethyl 44/diphenyl dicarboxylate, etc., and/or mixtures thereof and low polymers thereof. In some cases, one part of the dicarboxylic acid and one part of the glycol may be replaced with other types.

次に実施例を掲げて本発明を更に詳述するが、本発明は
何ら以下の実施例に限定されるものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples.

実施例 第1図に示す重合槽1にジメチルテレフタレート194
部、エチレングリコール130部、酢酸カルシウム0.
176部を、140℃から230℃ノ温度テニスチル交
換反応せしめて得た、ビス−β−ヒト、ロキシエチルテ
レフタレート及びその低重合体を仕込み触媒として二酸
化アンチモン0.088音医安定剤として亜リン酸0.
082部を添加し、240〜260℃で大気圧条件下1
5分760〜BmiHg迄の高真空下275〜2800
cで90分分間型合せしめた。
Example 194 dimethyl terephthalate was added to the polymerization tank 1 shown in Figure 1.
parts, 130 parts of ethylene glycol, 0.0 parts of calcium acetate.
Bis-β-human, loxethyl terephthalate and its low polymer obtained by subjecting 176 parts to a Tennis chill exchange reaction at a temperature of 140°C to 230°C, antimony dioxide as a catalyst, 0.088% phosphorous acid as a stabilizer, 0.
082 parts and heated at 240-260°C under atmospheric pressure.
Under high vacuum from 760 to BmiHg 275 to 2800 for 5 minutes
The molds were matched for 90 minutes at c.

この間留出したエチレングリコールは低温冷却器7で凝
縮せしめ取出ポット10,11に採取した。
Ethylene glycol distilled during this time was condensed in a low-temperature cooler 7 and collected in take-out pots 10 and 11.

しかるのち切換弁6(三方弁)を高温凝縮器8側に連絡
せしめたのち、反応系の1.9部のジフェニルテレフタ
レートを真空下添加した、添加層60分でポリエステル
の極限粘度は0.94であった。
After that, the switching valve 6 (three-way valve) was connected to the high temperature condenser 8 side, and 1.9 parts of diphenyl terephthalate in the reaction system was added under vacuum.The intrinsic viscosity of the polyester was 0.94 in 60 minutes. Met.

ここで重合槽1を3.0kg/−に加圧し低部からポリ
エチレンテレフタレート172部を取出した。
Here, the polymerization tank 1 was pressurized to 3.0 kg/- and 172 parts of polyethylene terephthalate was taken out from the lower part.

しかるのち、取出ポット10,11からエチレングリコ
ールを取出ポット9からフェノール、グリコール混合液
を取出した。
Thereafter, ethylene glycol was taken out from the take-out pots 10 and 11, and a phenol/glycol mixture was taken out from the take-out pot 9.

その后再び上記と同量のビス−β−ヒドロキシエチルテ
レフタレート及びその低重合体触媒安定剤を重合槽1仕
込み同様に重縮合を行なった。
Thereafter, the same amounts of bis-β-hydroxyethyl terephthalate and its low polymer catalyst stabilizer as above were charged again to polymerization tank 1, and polycondensation was carried out in the same manner.

但しジフェニルテレフタレートの添加量は2.1部とし
た。
However, the amount of diphenyl terephthalate added was 2.1 parts.

反応終了后取出ボッ)10,11から取り出したエチレ
ングリコールからはフェノールは検出されず、取出ポッ
ト9からはフェノール含量32重量%のグリコール、フ
ェノール混合液2.4部が取り出された。
After the completion of the reaction, no phenol was detected in the ethylene glycol taken out from the take-out pots 10 and 11, and 2.4 parts of a glycol/phenol mixture having a phenol content of 32% by weight was taken out from the take-out pot 9.

この間高温凝縮器8には水温40℃の温水を冷却流体と
して用い、低温凝縮器7には水温20℃の冷水を用いた
During this time, hot water with a water temperature of 40°C was used as a cooling fluid in the high temperature condenser 8, and cold water with a water temperature of 20°C was used in the low temperature condenser 7.

又留出管5は220℃の熱媒にて加熱保温した。Further, the distillation tube 5 was heated and kept warm with a heating medium at 220°C.

以上の如き操作を100回繰返し使用したが、留出管5
および高温凝縮器8には留出物が付着した痕跡はなかっ
た。
The above operation was repeated 100 times, but the distillation tube 5
There was no trace of distillate adhering to the high temperature condenser 8.

比較例 比較のために実施例と同様の縮重合を切換弁6を低温凝
縮器7側にしたまま実施し、留出物を添加剤供給前は取
出ポット11に、供給後は取出ポット10に回収し2バ
ツチ目の縮重合終了後に取出ポット11から取出したエ
チレングリコールからは元来台まない筈のフェノールが
0.4%検出すれ、取出ポット10からは6.4%のフ
ェノールが検出された。
Comparative Example For comparison, the same condensation polymerization as in the example was carried out with the switching valve 6 set to the low-temperature condenser 7 side, and the distillate was transferred to the take-out pot 11 before the additive was supplied, and to the take-out pot 10 after the additive was supplied. 0.4% of phenol, which should not originally be present, was detected in the ethylene glycol taken out from the take-out pot 11 after the completion of the condensation polymerization of the second batch, and 6.4% of phenol was detected from the take-out pot 10. Ta.

又低高温凝縮器の冷却温度を共に20℃として実施例と
同様に実施したところ2゜バッチ頃より低凝縮器7側か
らの真空度が悪化し30バツチで低温凝縮器7を分解す
ると留出物が付着し冷却管入口を殆ど閉塞していた。
In addition, when the cooling temperature of both the low and high temperature condensers was set to 20°C and the same procedure as in the example was carried out, the degree of vacuum from the low condenser 7 side deteriorated from around 2° batches, and when the low temperature condenser 7 was disassembled after 30 batches, distillation occurred. The inlet of the cooling pipe was almost completely blocked by something attached to it.

以上の如く、本発明は冷却温度の異なる複数の凝縮器を
設けると共に、重合槽の留出管を強制保温しかつ流路の
切換手段を介して前記各凝縮器に分岐連通せしめている
ので、留出成分の変化に応じて留出物による閉塞、混入
等のトラブルがなく最適の凝縮分離ができ、特にバッチ
式の場合には安定した縮重合反応が繰返して行えるとい
う大きな効果を有する。
As described above, in the present invention, a plurality of condensers having different cooling temperatures are provided, and the distillation pipe of the polymerization tank is forcibly kept warm, and is branched into communication with each of the condensers via the flow path switching means. Optimal condensation and separation can be carried out without troubles such as blockage and contamination due to distillate in response to changes in distillate components, and especially in the case of a batch system, it has the great effect of allowing stable condensation and polymerization reactions to be carried out repeatedly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体例を示す工程図、第2図は他の具
体例を示す工程図である。 1は重合槽、4は添加剤の供給槽、5は留出管、6は切
換弁、7は低温凝縮器、8は高温凝縮器、9.10,1
1は取出ポット、13はスプレ一式凝縮器、14は循環
タンク、15,16は切換弁。
FIG. 1 is a process diagram showing a specific example of the present invention, and FIG. 2 is a process diagram showing another specific example. 1 is a polymerization tank, 4 is an additive supply tank, 5 is a distillation pipe, 6 is a switching valve, 7 is a low temperature condenser, 8 is a high temperature condenser, 9.10,1
1 is a take-out pot, 13 is a spray set condenser, 14 is a circulation tank, and 15 and 16 are switching valves.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエステル重縮合反応過程においてアルキレング
リコール以外の揮発性物質を副生ずるような添加剤を添
加して縮重合を行なう際に重合槽より発生する留出物を
凝縮器によって冷却回収するようにしたポリエステルの
重合反応装置において、冷却温度の異なる複数の凝縮器
を設けると共に、重合槽の留出管を強制保温しかつ流路
の切換手段を介して前記各凝縮器に分岐連通せしめ、留
出物成分の変化に応じて凝縮器を切換使用するようにな
したことを特徴とするポリエステルの重合反応装置。
1 A polyester in which additives that produce volatile substances other than alkylene glycol as by-products are added during the polyester polycondensation reaction process, and the distillate generated from the polymerization tank during polycondensation is cooled and collected in a condenser. In this polymerization reaction apparatus, a plurality of condensers with different cooling temperatures are provided, and the distillate pipe of the polymerization tank is forcibly kept warm and branched into communication with each of the condensers via a flow path switching means, and the distillate components are 1. A polyester polymerization reaction apparatus characterized in that a condenser is switched in accordance with changes in the amount of water.
JP4021373A 1973-04-09 1973-04-09 Polyester polymerization reaction equipment Expired JPS5834490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4021373A JPS5834490B2 (en) 1973-04-09 1973-04-09 Polyester polymerization reaction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4021373A JPS5834490B2 (en) 1973-04-09 1973-04-09 Polyester polymerization reaction equipment

Publications (2)

Publication Number Publication Date
JPS49132187A JPS49132187A (en) 1974-12-18
JPS5834490B2 true JPS5834490B2 (en) 1983-07-27

Family

ID=12574484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4021373A Expired JPS5834490B2 (en) 1973-04-09 1973-04-09 Polyester polymerization reaction equipment

Country Status (1)

Country Link
JP (1) JPS5834490B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552320A (en) * 1978-10-09 1980-04-16 Toray Ind Inc Manufacturing equipment for polyester
JPH04368540A (en) * 1991-06-18 1992-12-21 Noujiyuu Seisakusho:Kk Support metal fitting for ceiling member

Also Published As

Publication number Publication date
JPS49132187A (en) 1974-12-18

Similar Documents

Publication Publication Date Title
KR100289445B1 (en) Method for continuously producing polyesters
US3723391A (en) Continuous manufacture of polyesters
US6262294B1 (en) Process for continuously producing monomer components from aromatic polyester
JP6643343B2 (en) Continuous process for producing polybutylene terephthalate using purified terephthalic acid and 1,4-butanediol
US3241926A (en) Apparatus for continuously polycondensing polymethylene glycol esters of aromatic dicarboxylic acids
JPH08268969A (en) Esterifying method
WO2010123095A1 (en) Method and device for synthesizing polyester
US9416223B2 (en) Device and method for producing polyester
US3271370A (en) Poly(l,x-cyclohexylenedimethylene ter- ephthalate) process using substantial- ly equal proportions of reactants
JP2009521567A (en) Continuous process for producing poly (trimethylene terephthalate)
JP6648114B2 (en) Continuous process for producing polyesters from cyclic ester monomers
US4499261A (en) Process for the continuous production of polybutylene terephthalate of high molecular weight
JP2010132828A (en) Apparatus and method for synthesizing polyester
KR100610299B1 (en) Method for the continuous production of polybutyleneterephthalate from terephthalic acid and butanediol
JP5077170B2 (en) Process for producing polyhydroxycarboxylic acid
JPS5834490B2 (en) Polyester polymerization reaction equipment
US7317073B2 (en) Method of producing vacuum in the production of polymers
US5714553A (en) Apparatus for the preparation of polyester resin
JPS60163918A (en) Continuous production of polyester
JP2002105185A (en) Method for producing polyester
JP3904576B2 (en) Heat exchanger cleaning method and polyester manufacturing method
TW555783B (en) Process for producing aromatic polycarbonate
KR19980024491A (en) Process for producing polyethylene terephthalate
US3491143A (en) Esterification process
JP2000212263A (en) Production of copolyester