JPS5834478B2 - Cationic fence type iron tetraphenylporphyrin and gas adsorbent - Google Patents

Cationic fence type iron tetraphenylporphyrin and gas adsorbent

Info

Publication number
JPS5834478B2
JPS5834478B2 JP55030105A JP3010580A JPS5834478B2 JP S5834478 B2 JPS5834478 B2 JP S5834478B2 JP 55030105 A JP55030105 A JP 55030105A JP 3010580 A JP3010580 A JP 3010580A JP S5834478 B2 JPS5834478 B2 JP S5834478B2
Authority
JP
Japan
Prior art keywords
complex
cationic
ligand
oxygen
imidazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55030105A
Other languages
Japanese (ja)
Other versions
JPS56127384A (en
Inventor
嘉記 佐藤
淳孝 重原
英俊 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP55030105A priority Critical patent/JPS5834478B2/en
Publication of JPS56127384A publication Critical patent/JPS56127384A/en
Publication of JPS5834478B2 publication Critical patent/JPS5834478B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明はポリフィリン環を含む平面の一方側に立ち上
がったカチオン性立体障害基を4個有す※※る鉄テトラ
フェニルポルフィリンに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an iron tetraphenylporphyrin having four cationic sterically hindered groups standing up on one side of a plane containing a porphyrin ring.

この明細書でいう「カチオン種型」とは上記のような立
体障害基を持つことを意味する。
The term "cationic species type" as used herein means having a sterically hindered group as described above.

また、この発明は上記鉄テトラフェニルポルフィリンよ
りなるガス吸着剤にも関する。
The present invention also relates to a gas adsorbent made of the above-mentioned iron tetraphenylporphyrin.

鉄(1)ポルフィリン錯体の酸素化および酸化劣化は次
式に従って生じることが知られている。
Oxygenation and oxidative degradation of iron(1) porphyrin complexes are known to occur according to the following equation.

酸素化反応 (上記各式において、ポルフィリンは省略、Bはイミダ
ゾール、ピリジン等の軸配位子である)。
Oxygenation reaction (in each of the above formulas, porphyrin is omitted, and B is an axial ligand such as imidazole or pyridine).

ジャーナル・オブ・アメリカン・ケミカル・ソサエティ
97巻1427頁(1973)において、コールマンら
はα・α・α・α−メン〔テトラ〔オルトビバリルアミ
ドフェニルポルフィリン〕〕鉄(II)(以下、ピケッ
トフェンスポルフイリンという)を報告している。
In the Journal of the American Chemical Society, Vol. 97, p. 1427 (1973), Coleman et al. (called porphyrins).

このピケットフェンスポルフイリンはポルフィリン環を
含む平面の片側に嵩高い立体障害基の存在にまり軸配位
座に配位する配位子は進入できないが酸素分子は自由に
進入できる空間(酸素結合ポケット)が構築され、前記
式(3)の2量化酸化が防止される。
This picket fence porphyrin has a bulky steric hindrance group on one side of the plane containing the porphyrin ring, which prevents the ligands coordinating to the axial coordinate site from entering, but allows oxygen molecules to freely enter the space (oxygen binding pocket). ) is constructed, and the dimerization oxidation of the formula (3) is prevented.

また、酸素化をベンゼン等の有機非プロトン溶媒中でお
こなうことにより前記式(5)で示されるプロトンの攻
撃による1分子酸化を防止している。
Further, by carrying out the oxygenation in an organic aprotic solvent such as benzene, single molecule oxidation due to attack by protons shown in the above formula (5) is prevented.

このような条件下でピケットフェンスポルフイリンは可
逆的す酸素吸脱着が可能である。
Under these conditions, picket fence porphyrins are capable of reversible oxygen adsorption and desorption.

しかしながら、ピケットフェンスポルフイリンはそれ自
体水に不溶であるとともに、酸素化系内に水がたとえば
微量でも存在すると、前記式(5)で示すような1分子
酸化を受け、酸素吸脱着能を急激に失なう。
However, picket fence porphyrin itself is insoluble in water, and if even a trace amount of water is present in the oxygenation system, it undergoes oxidation of one molecule as shown in formula (5) above, rapidly reducing its oxygen adsorption and desorption ability. to lose.

本発明者らは水中で酸素を可逆的に吸脱着できる鉄(川
)ポルフィリンについて研究し、そのような鉄ポルフィ
リンは(1)それ自体水溶性であること、(2)プロト
ンによる攻撃を防ぐ構造を持つこと、および(3)2量
化酸化をも防ぐことができることの条件が必要であると
いう知見に基き、この発明を完成するに至った。
The present inventors studied iron (river) porphyrins that can reversibly adsorb and desorb oxygen in water, and found that such iron porphyrins (1) are themselves water-soluble, and (2) have a structure that prevents attack by protons. This invention was completed based on the knowledge that the following conditions are necessary: (3) being able to prevent dimerization oxidation as well.

すなわち、この発明の鉄ポルフィリンは一般式(ここで
、 各Rはポルフィリン環を含む平面の一 基、および「は、独立に、メチル基またはエチル基)で
示されるカチオン柵型鉄テトラフェニルポルフィリンで
ある。
That is, the iron porphyrin of the present invention is a cationic fence-type iron tetraphenylporphyrin represented by the general formula (wherein, each R is a plane group containing a porphyrin ring, and "is, independently, a methyl group or an ethyl group)". be.

この発明のカチオン柵型鉄テトラフェニルポルフィリン
はポルフィリン環を含む平面の片側に嵩高い立体障害基
Rすなわち 既述のピケットフェンスポルフイリンと同様、2量化酸
化を防止できる。
The cationic fence type iron tetraphenylporphyrin of the present invention has a bulky steric hindrance group R on one side of the plane containing the porphyrin ring, that is, it can prevent dimerization and oxidation like the picket fence porphyrin described above.

また、立体障害基Rがカチオン性であるので、静電的反
発によりプロトンが酸素結合ポケットに進入することを
防げるとともに、それ自体水溶性となる。
Furthermore, since the sterically hindered group R is cationic, it can prevent protons from entering the oxygen binding pocket due to electrostatic repulsion, and it itself becomes water-soluble.

こうした性質により、この発明のカチオン柵型鉄テトラ
フェニルポルフィリンは水溶液の形態で酸素吸脱着を可
逆的におこなう。
Due to these properties, the cationic fence type iron tetraphenylporphyrin of the present invention reversibly adsorbs and desorbs oxygen in the form of an aqueous solution.

なお、ポルフィリン環とカチオン部とは、立体障害基の
硬さおよび酸素結合ポケットて結合されていることが最
も好ましいのである。
Note that it is most preferable that the porphyrin ring and the cation moiety are bonded based on the hardness of the steric hindrance group and the oxygen bonding pocket.

この発明のカチオン柵型鉄テトラフェニルポルフィリン
を製造するためには、まず、式 (R’)2NH(ここで、Rは既述のとおり)で示され
る二級アミンの水溶液にブロモ酢酸の水溶液を滴下し、
反応させる。
In order to produce the cationic fence-type iron tetraphenylporphyrin of the present invention, first, an aqueous solution of bromoacetic acid is added to an aqueous solution of a secondary amine represented by the formula (R') 2NH (where R is as described above). dripping,
Make it react.

その際、アミド生成反応を防ぐためにNaOHをブロモ
酢酸に対して約50倍当量加えておく。
At this time, NaOH is added in an amount equivalent to about 50 times that of bromoacetic acid in order to prevent the amide generation reaction.

反応終了後、過剰の二級アミンを除去し、中和をおこな
ってからアルコールホルムアミド(DMF)中でトリエ
チルアミン、クロロギ酸エチルおよびα・α・α・α−
メン〔テトラ(オルトアミノフェニルポルフィリン)〕
と反応させてP−(NHCOCH2N(R’)2)4(
ここで、戸はテトラフェニルポルフィリン環)を得る。
After the reaction is completed, excess secondary amine is removed, neutralized, and triethylamine, ethyl chloroformate and α・α・α・α-
Men [Tetra (orthoaminophenylporphyrin)]
to react with P-(NHCOCH2N(R')2)4(
Here, a tetraphenylporphyrin ring is obtained.

これはシリカゲルカラムで精製する。ついで、P+NH
−CO−CH2N(R′)2〕4をDMF中、不活性雰
囲気(例えば、窒素)下でFeBr2で処理して鉄を導
入し、塩基性アルミナカラムで精製して Fe−IP(NH−CO−CH2N(R′)2〕4Br
を得る。
This is purified using a silica gel column. Then, P+NH
-CO-CH2N(R')2]4 was treated with FeBr2 in DMF under an inert atmosphere (e.g. nitrogen) to introduce iron and purified on a basic alumina column to form Fe-IP (NH-CO -CH2N(R')2]4Br
get.

これを含水DMF中でR’B r と反応させてアミ
ノ基を4級化し、所望の 以上のように得られるこの発明のカチオン柵型鉄テトラ
フェニルポルフィリンは立体障害基とは反対側の軸配位
座に配位子(軸配位子)を配位させることによって酸素
、−酸化炭素等のガスの吸脱着能が優れたものとなる。
This is reacted with R'Br in aqueous DMF to quaternize the amino group, and the desired cationic fence-type iron tetraphenylporphyrin of the present invention obtained as described above has an axial orientation opposite to the sterically hindered group. By coordinating a ligand (axial ligand) to the position, the ability to adsorb and desorb gases such as oxygen and carbon oxide becomes excellent.

軸配位子としては含窒素化合物が用いられ、これは低分
子のもの、高分子のものいずれのものであってもよいっ
低分子軸配位子の例を挙げると、イミダゾールおよびそ
の誘導体例えばN−エチルイミダゾール、ピリジンおよ
びその誘導体例えば4−メチルピリジン等である。
As the axial ligand, a nitrogen-containing compound is used, and this may be either a low-molecular one or a high-molecular one. Examples of low-molecular axial ligands include imidazole and its derivatives, such as imidazole and its derivatives. N-ethylimidazole, pyridine and derivatives thereof such as 4-methylpyridine.

また、高分子軸配位子の例を挙げると、N−ビニルイミ
ダゾールとビニルピロリドンとの共重合体、4−ビニル
ピリジンとビニルピロリドンとの共重合体等である。
Further, examples of polymeric axial ligands include a copolymer of N-vinylimidazole and vinylpyrrolidone, a copolymer of 4-vinylpyridine and vinylpyrrolidone, and the like.

通常、軸配位子はカチオン柵型鉄テトラフェニルポルフ
ィリンに対して1ないし100倍当量、好ましくは2な
いし5倍当量加えることが望ましい。
Usually, it is desirable to add the axial ligand in an amount of 1 to 100 times, preferably 2 to 5 times, equivalent to the cationic fence type iron tetraphenylporphyrin.

なお、軸配位子として上記のような高分子化合物を用い
ると、その効果によりカチオン柵型鉄テトラフェニルポ
ルフィリンの水溶性が増すとともにそれが高分子連鎖に
分散・固定されるのでガス(特に酸素)の吸脱着能が向
上する。
In addition, when a polymer compound such as the one mentioned above is used as an axial ligand, its effect increases the water solubility of the cationic fence type iron tetraphenylporphyrin, and it is dispersed and fixed in the polymer chain, so that gases (particularly oxygen ) adsorption/desorption ability is improved.

以上の構成でなるガス吸着剤は水中、室温で酸素、−酸
化炭素等のガスを可逆的に吸脱着するという優れた効果
を奏する。
The gas adsorbent having the above structure has an excellent effect of reversibly adsorbing and desorbing gases such as oxygen and carbon oxide in water and at room temperature.

この発明の化合物は以上述べた性質に基いて、酸素運搬
体、酸素添加反応における助触媒、燃料電池用助触媒と
して使用することもでき、また水中で酸素を吸脱着する
ことから人工血液用素材として有望である。
Based on the above-mentioned properties, the compound of the present invention can be used as an oxygen carrier, a cocatalyst in oxygenation reactions, and a cocatalyst for fuel cells, and since it adsorbs and desorbs oxygen in water, it can be used as a material for artificial blood. It is promising as

以下、この発明を実施例に沿ってさらに詳しく説明する
Hereinafter, this invention will be explained in more detail with reference to Examples.

実施例 1 (A) ジメチルアミンの40%水溶液50m1中に
NaOH21,6?を溶解し、これにブロモ酢酸1.5
1を水約30m1に溶解した溶液を、攪拌下に、徐々に
滴下した。
Example 1 (A) NaOH21,6? in 50 ml of a 40% aqueous solution of dimethylamine. Dissolve 1.5 bromoacetic acid in this
A solution of 1 dissolved in about 30 ml of water was gradually added dropwise while stirring.

滴下終了後、温度を60℃に上げ、反応を約5時間続げ
た。
After the dropwise addition was completed, the temperature was raised to 60°C and the reaction was continued for about 5 hours.

次に、溶媒を減圧留去し、同時に過剰のジメチルアミン
を除去した。
Next, the solvent was distilled off under reduced pressure, and at the same time, excess dimethylamine was removed.

これに水を加えて水溶液とした後、希塩酸で中和し、溶
媒を減圧留去して乾固させた。
Water was added to this to form an aqueous solution, which was then neutralized with diluted hydrochloric acid, and the solvent was distilled off under reduced pressure to dryness.

生成物をメタノールで5回抽出し、さらにエタノールで
2回抽出して所望の生成物 ■C1○ (。
The product was extracted five times with methanol and twice with ethanol to obtain the desired product ■C1○ (.

H3)2NH−6H2oooH(以下・生成物(I)と
いう)を得た。
H3)2NH-6H2oooH (hereinafter referred to as product (I)) was obtained.

収量0.811P、収率41%であった。The yield was 0.811P, and the yield was 41%.

生成物(I)のNMRスペクトル(ppm)を次に示す
The NMR spectrum (ppm) of product (I) is shown below.

(B) 生成物(i)0.811S’をDMF約1o
WLlに溶解し、0℃以下に冷却した後、攪拌しながら
トリエチルアミン1.62rfLlおよびクロロギ酸エ
チル1.1mlを加えて約1時間反応させた。
(B) Product (i) 0.811S' in DMF about 1o
After dissolving in WLl and cooling to below 0°C, 1.62 rfLl of triethylamine and 1.1 ml of ethyl chloroformate were added while stirring, and the mixture was reacted for about 1 hour.

これに別途合成したα・α・α・α−メソ〔テトラ(オ
ルトアミノフェニルポルフィリン)〕(以下、α・α・
α・α−H2TamPP という)0.123Pを加
え、0°C以下で2時間、さらに室温で約1時間反応さ
せた。
In addition to this, α・α・α・α-meso[tetra (orthoaminophenylporphyrin)] (hereinafter referred to as α・α・
0.123P (referred to as α・α-H2TamPP) was added, and the mixture was allowed to react at 0°C or below for 2 hours and then at room temperature for about 1 hour.

溶媒を減圧留去した後、クロロホルムを加えて溶液とし
、これをろ過した。
After the solvent was distilled off under reduced pressure, chloroform was added to form a solution, which was filtered.

ろ液を減圧濃縮し、シリカゲルカラム(C−30013
CrfLφ×3ocrrL)に仕込み、クロロホルムで
展開し、展開液をクロロホルム/メタノールの10=1
.5:1.2:1混合液に順次変え、最終的にメタノー
ルのみで展開した。
The filtrate was concentrated under reduced pressure and applied to a silica gel column (C-30013
CrfLφ×3ocrrL), developed with chloroform, and mixed the developing solution with chloroform/methanol (10=1
.. The mixture was sequentially changed to a 5:1.2:1 mixture, and finally developed with methanol alone.

カラムに原点吸着した部分を取り出し、メタノール/臭
化水素酸5o:1混合液で抽出し、NH,OHで中和し
た。
The part adsorbed on the column at the origin was taken out, extracted with a 50:1 mixture of methanol/hydrobromide, and neutralized with NH and OH.

溶媒を減圧乾固した後、メタノールで5回抽出し、さら
にジクロロメタンで抽出し、溶媒を減圧乾固して所望生
成物IP+NHCOCH2N(CH3)2)4 (I
Pは既述のとおり、以下生成物(川)という)0.05
P(収率27%)を得た。
After drying the solvent under reduced pressure, it was extracted with methanol 5 times, further extracted with dichloromethane, and the solvent was dried under reduced pressure to obtain the desired product IP+NHCOCH2N(CH3)2)4 (I
As mentioned above, P is 0.05 (hereinafter referred to as product (river))
P (yield 27%) was obtained.

この生成物(川)のNMRスペクトル(ppm)は次の
とおりであった(CDC13中)。
The NMR spectrum (ppm) of this product (river) was as follows (in CDC13):

ピロール−H:8.8(8H);アミドN−H:8.7
(4H) フェニル基−H: s、o−7,3(16H) ;ピロ
ール−Hニー2.6(2H) メチレン−CH2−: 3.8 (8H);メチルN−
CH3: 30 (24H) (q 生成物(川)50rn9をDMF5o1rLlに
溶解し、窒素を吹き込みながら、約10倍当量の FeBr2を加え、100℃で5時間反応させた。
Pyrrole-H: 8.8 (8H); Amide N-H: 8.7
(4H) Phenyl group-H: s, o-7,3 (16H); Pyrrole-H 2.6 (2H) Methylene-CH2-: 3.8 (8H); Methyl N-
CH3: 30 (24H) (q Product (river) 50rn9 was dissolved in DMF5o1rLl, about 10 equivalents of FeBr2 was added while blowing nitrogen, and the mixture was reacted at 100°C for 5 hours.

反応終了後、溶媒を減圧乾固し、クロロボルムを加えて
濃厚溶液とした。
After the reaction was completed, the solvent was dried under reduced pressure, and chloroborm was added to form a concentrated solution.

これを塩基性アルミナカラム(2crfLφ×8Crr
L)に仕込み、クロロボルム/メタノール2:1混合液
で流出させ、流出物をジクロロメタン/n−へブタン混
合液から再結晶させて所望生成物 Fe1P−(−NH−COCH2N(CH3)2・Br
〕4(以下、生成物(In)という)38■(収率70
%)を得た。
Add this to a basic alumina column (2crfLφ×8Crr
L) and eluted with a 2:1 chloroborum/methanol mixture, and the effluent was recrystallized from a dichloromethane/n-hebutane mixture to give the desired product Fe1P-(-NH-COCH2N(CH3)2.Br
] 4 (hereinafter referred to as product (In)) 38■ (yield 70
%) was obtained.

(0生成物(I[I)30■をDMF30−に溶解し、
水1.5mlおよびメチルプロミド約6〜7当量(錯体
に対して)を加え、30〜40 ’Cで12時間反応さ
せた。
(0 product (I[I) 30μ is dissolved in DMF30−,
1.5 ml of water and about 6-7 equivalents of methyl bromide (based on the complex) were added and reacted for 12 hours at 30-40'C.

生成物をメタノール/エーテル混合液から再結晶させて
最終所望生成物■ e Fe[PモNHCOCH2N(CH3)3Br ) 4
Br27mg(収率83%)を得た。
The product was recrystallized from a methanol/ether mixture to give the final desired product:
27 mg of Br (yield 83%) was obtained.

この生成物のNMRスペクトル(ppm)は次のとおり
であった(D20中)。
The NMR spectrum (ppm) of this product was as follows (in D20):

ピロール−H: 77−83 (8H);アミドNH:
9 (4H) フェニル基−H: 6.8−9 (16H) ;メチレ
ン−CH2−: 4.1 (8H) メチルN−CH3: 3.4 (36H)なお、錯体に
対してBrイオンが5当量存在していることをネルハル
ト法によって確認した。
Pyrrole-H: 77-83 (8H); Amide NH:
9 (4H) Phenyl group-H: 6.8-9 (16H); Methylene-CH2-: 4.1 (8H) Methyl N-CH3: 3.4 (36H) Note that Br ion is 5% of the complex It was confirmed by the Nerhardt method that an equivalent amount was present.

実施例 2 実施例1と同様にして式(A)においてR′がエチル基
である化合物を以下のように製造した。
Example 2 In the same manner as in Example 1, a compound of formula (A) in which R' is an ethyl group was produced as follows.

実施例1(A)において、ジメチルアミン水溶液の代り
にジエチルアミンの35%水溶液6oTLlを■C1○ 用” (C2H,)2NHCH2COOH(以下・生
成物(rV)という)を得た(収率48%)。
In Example 1 (A), a 35% aqueous solution of diethylamine (6oTLl) was used instead of the aqueous dimethylamine solution to obtain (C2H,)2NHCH2COOH (hereinafter referred to as product (rV)) (yield 48%). .

生成物(IV)のNMRスペクトル(ppm)を次に示
す。
The NMR spectrum (ppm) of product (IV) is shown below.

実施例1(B)において、生成物(I)の代りに生成物
(IV)0.92S’を用い、また、トリエチルアミン
を1.5r1111クロロギ酸エチル1 mlおよびα
・α・α・α−中2TamPPを0.12rとして反応
をおこなってtp(NHcocn:2N (C2H5)
2 )4(以下、生成物(V)という)を得た(収率1
5%)。
In Example 1(B), product (IV) 0.92S' was used instead of product (I), and triethylamine was added to 1 ml of 1.5r1111 ethyl chloroformate and α
・Carry out the reaction with 0.12r of 2TamPP in α・α・α- to produce tp(NHcocn: 2N (C2H5)
2) 4 (hereinafter referred to as product (V)) was obtained (yield 1
5%).

この生成物(V)のNMRスペクトル(ppm)は次の
とおりであった(CDC13中)。
The NMR spectrum (ppm) of this product (V) was as follows (in CDC13).

ピロール−H: 8.9 (8H);アミド−H:8.
7(4H) フェニル基−H: 8.1−7−3 (16H) ;ピ
ロール−H−2,7(2H) メチレン−CH,2−: 3.9 (8H) ;エチル
−CH2−: 3.3 (16H) エチル−CH3: 1.8 (24H) 実施例1(C)と同様にして生成物(V)にFeの導入
をおこなって FeP+NHCOCH2N(C2H5))4Br(以下
、生成物(Vl)という)を得た(収率7o%)。
Pyrrole-H: 8.9 (8H); Amide-H: 8.
7(4H) Phenyl group-H: 8.1-7-3 (16H); Pyrrole-H-2,7(2H) Methylene-CH,2-: 3.9 (8H); Ethyl-CH2-: 3 .3 (16H) Ethyl-CH3: 1.8 (24H) Fe was introduced into the product (V) in the same manner as in Example 1 (C) to obtain FeP+NHCOCH2N(C2H5))4Br (hereinafter referred to as the product (Vl ) was obtained (yield 70%).

最後に、実施例1(Qにおいてメチルフロミドの代りに
エチルプロミドを用いて同様の反応をおこ■
e Fe P(−NHCOCH2N(C2H5) 3 B
r 、:14B rを得た(収率8o%)。
Finally, a similar reaction was carried out using ethyl bromide in place of methyl furomide in Example 1 (Q).
e Fe P(-NHCOCH2N(C2H5) 3 B
r, :14B r was obtained (yield 8o%).

この生成物のNMRスペクトル(99mlは次のとおり
であった(D201)。
The NMR spectrum of this product (99ml) was as follows (D201):

ピロール−H: 75−85 (8H);アミドNH:
8.9(4H) フェニル基−H: 7−9.1 (16H) ;メチレ
ンCH2−: 4.2 (8H) エチル CH2: 3.7 (24H): エチル C
H3:2.1(36H) なお、ネルハルト法によって錯体に対して5当量のBr
イオンの存在を確認した。
Pyrrole-H: 75-85 (8H); Amide NH:
8.9 (4H) Phenyl group -H: 7-9.1 (16H); Methylene CH2-: 4.2 (8H) Ethyl CH2: 3.7 (24H): Ethyl C
H3: 2.1 (36H) In addition, 5 equivalents of Br based on the complex was determined by the Nerhardt method.
The presence of ions was confirmed.

実施例 3 実施例1で得た最終生成物を3X10−”モル/lの濃
度で水(pH7,0のリン酸緩衝液)に溶解し、これに
N−エチルイミダゾールを1.5×10−2モル/lの
濃度で溶解した。
Example 3 The final product obtained in Example 1 was dissolved in water (phosphate buffer pH 7.0) at a concentration of 3 x 10-'' mol/l, to which was added 1.5 x 10-'' of N-ethylimidazole. It was dissolved at a concentration of 2 mol/l.

この水溶液に窒素ガスを約1時間吹き込んだ後、ツンベ
ルク管付き分光セルの球部に仕込んだ。
After blowing nitrogen gas into this aqueous solution for about 1 hour, it was charged into the sphere of a spectroscopic cell equipped with a Thunberg tube.

セル部には極く少量のNa2S2O4を入れておいた。A very small amount of Na2S2O4 was placed in the cell part.

ドライアイス−メタノール系で球部の凍結脱気を3回お
こない、上記水溶液をセル部に移し、錯体の還元体を得
る。
The bulb is frozen and degassed three times using a dry ice-methanol system, and the aqueous solution is transferred to the cell to obtain a reduced complex.

これを紫外可視分光光度計で観測すると537nmに吸
収極太を持つFe (川)型のスペクトルが得られた。
When this was observed with an ultraviolet-visible spectrophotometer, a Fe (river) type spectrum was obtained, which had a thick absorption at 537 nm.

この水溶液に酸素を吹き込み、攪拌すると541nm吸
収極大を持つ酸素化鎖体のスペクトルが得られた。
When oxygen was blown into this aqueous solution and stirred, a spectrum of an oxygenated chain having an absorption maximum of 541 nm was obtained.

これを数分間酸素雰囲気下に放置した後、凍結脱気する
とFe(II)状態はほとんど同じ吸収スペクトルに戻
った。
After leaving this in an oxygen atmosphere for several minutes and then freezing and degassing, the Fe(II) state returned to almost the same absorption spectrum.

なお、測定は室温でおこなった。Note that the measurements were performed at room temperature.

このスペクトル変化を添付の図面に示す。This spectral change is shown in the accompanying drawing.

図中、曲線aはFe(1)状態のもの、曲線すは酸素化
状態のもの、そして曲線Cは酸素化状態で数分間放置し
た後凍結脱気した状態のものである。
In the figure, curve a is for the Fe(1) state, curve 2 is for the oxygenated state, and curve C is for the state after being left in the oxygenated state for several minutes and then frozen and degassed.

実施例 4 軸配位子としてN−エチルイミダゾールの代りKN−ビ
ニルイミダゾールとビニルピロリドンとの共重合体(分
子量38000、イミダゾール単位41モル%、以下P
IPoという)をイミダゾール単位にして錯体の5〜1
0倍当量用いた以外は実施例3と同様にして酸素化反応
を検討した。
Example 4 Copolymer of KN-vinylimidazole and vinylpyrrolidone (molecular weight 38,000, imidazole unit 41 mol%, hereinafter P) was used instead of N-ethylimidazole as the axial ligand.
5 to 1 of the complex with imidazole unit (referred to as IPo)
The oxygenation reaction was examined in the same manner as in Example 3 except that 0 times equivalent was used.

まず、538nmに吸収極大を持っFe(Il)型のス
ペクトルが得られ、酸素吹き込み後542n7Wに吸収
極大を持つ酸素化錯体のスペクトルが得られた。
First, a spectrum of Fe(Il) type having an absorption maximum at 538 nm was obtained, and after oxygen injection, a spectrum of an oxygenated complex having an absorption maximum at 542n7W was obtained.

酸素化錯体を酸素雰囲気下で約30分間放置した後、窒
素を吸き込んだところF、e (川)型とほとんど同じ
吸収スペクトルに戻った。
When the oxygenated complex was left in an oxygen atmosphere for about 30 minutes and nitrogen was inhaled, the absorption spectrum returned to almost the same as that of the F, e (kawa) type.

スペクトル変化は添付の図面と同様であった。The spectral changes were similar to the attached figures.

実施例 5 実施例3と同様にして、実施例2で得た最終生成物の酸
素化反応を検討した。
Example 5 In the same manner as in Example 3, the oxygenation reaction of the final product obtained in Example 2 was investigated.

ただし、軸配位子として実施例4のPIPoをイミダゾ
ール単位にして錯体の5倍当量用いた。
However, as the axial ligand, PIPo of Example 4 was used in imidazole units in an amount equivalent to five times that of the complex.

まず、537 nmに吸収極太を持っFe (川)型の
スペクトルが得られ、酸素と接触させると541nmに
吸収極太を持つ酸素化錯体のスペクトルが得られた。
First, a Fe (river) type spectrum with a thick absorption at 537 nm was obtained, and when brought into contact with oxygen, a spectrum of an oxygenated complex with a thick absorption at 541 nm was obtained.

酸素化錯体を酸素雰囲気下に30分間放置後、窒素を吹
き込んだところ、Fe(川)型とほとんど同じ吸収スペ
クトルに戻った。
When the oxygenated complex was left in an oxygen atmosphere for 30 minutes and nitrogen was blown into it, the absorption spectrum returned to almost the same as that of the Fe (river) type.

また、軸配位子としてN−エチルイミダゾールを用いた
以外は上記と同様の操作をおこなったところ、537n
mに吸収極大を持つFe (川)型のスペクトル、つい
で545nmに吸収極大を持つ酸素化錯体のスペクトル
がそれぞれ得られた。
In addition, when the same operation as above was performed except that N-ethylimidazole was used as the axial ligand, 537n
A spectrum of the Fe (river) type having an absorption maximum at 545 nm and a spectrum of an oxygenated complex having an absorption maximum at 545 nm were obtained.

上記それぞれのスペクトル変化は添付の図面と同様であ
った。
The above respective spectral changes were similar to those shown in the attached drawings.

実施例 6 実施例3と全(同様にしてFe(II)型錯体を得、そ
れにCOガスを10秒間吹き込んだ。
Example 6 A Fe(II) type complex was obtained in the same manner as in Example 3, and CO gas was blown into it for 10 seconds.

可視吸収スペクトル極太はFe(n)型の537nm(
吸光度約0.43)から直ちに540nm(吸光度約0
.54)へと変化し、Fe(■)・CO錯体形成が確認
された。
The thickest visible absorption spectrum is 537 nm (
from 540nm (absorbance approx. 0.43) to 540nm (absorbance approx. 0.
.. 54), and formation of an Fe(■)/CO complex was confirmed.

この状態はCO雰囲気下に1週間、空気下に1日観測し
ても変化しなかったが、約100−77flfflHの
高真空下に3回凍結脱気操作をくり返したところ、元の
Fe(II)型へ100%もどった。
This state did not change even after observation for one week under a CO atmosphere and one day under air. However, when the freezing and degassing operation was repeated three times under a high vacuum of about 100-77 flfflH, the original Fe(II) ) 100% returned to the mold.

このものを更にCO吹き込み10秒間、上記と同様の脱
気操作、の手順を5回くり返した結果、可視吸収極太5
37nm、吸光度約0.42のスペクトルが得られ、元
のFe(II)型にもどったことが確認された。
This material was further blown with CO for 10 seconds, and the same degassing operation as above was repeated 5 times.
A spectrum with an absorbance of about 0.42 at 37 nm was obtained, confirming that it had returned to its original Fe(II) form.

実施例 7 実施例4と同様に操作してFe (川)錯体を得た。Example 7 The same procedure as in Example 4 was carried out to obtain a Fe (river) complex.

これにCOガスを10秒間吹き込んだところ、可視吸収
スペクトル極大はFe (川)型の538nm(吸光度
約0.44)から直ちに540.5nm(吸光度約0.
54)へと変化し、Fe(■)・c。
When CO gas was blown into this for 10 seconds, the maximum visible absorption spectrum changed from 538 nm (absorbance approximately 0.44) for the Fe (kawa) type to 540.5 nm (absorbance approximately 0.44).
54), and Fe(■)・c.

錯体形成が確認された。Complex formation was confirmed.

その後、実施例5と同様に脱気→CO吹き込み→脱気の
順に5回くり返し操作を行なった結果、可視吸収極太5
38 nm、吸光度0.427のスペクトルを得、少く
とも98%以上元のFe(II)型にもどったことを確
認した。
Thereafter, as in Example 5, the operation of degassing → CO blowing → degassing was repeated five times, and as a result, the visible absorption
A spectrum with an absorbance of 0.427 was obtained at 38 nm, and it was confirmed that at least 98% of the product had returned to its original Fe(II) form.

実施例 8 軸配位子として1.5・10−2モル/lの濃度になる
よう溶解したピリジンを用いた他は実施例3と同様に操
作して可視吸収スペクトル極大535nm(吸光度約0
.41)を示すFe (川)錯体溶液を得た。
Example 8 The same procedure as in Example 3 was used except that pyridine dissolved at a concentration of 1.5·10-2 mol/l was used as the axial ligand to obtain a visible absorption spectrum with a maximum of 535 nm (absorbance of approximately 0).
.. A Fe (kawa) complex solution showing 41) was obtained.

これに酸素を吹き込み攪拌してスペクトル測定を行った
ところ、吸収極太539nm、吸光度0.36に変化し
、酸素化錯体の形成が確認された。
When oxygen was blown into the mixture and stirred, the spectrum was measured, and the absorption changed to 539 nm and absorbance to 0.36, confirming the formation of an oxygenated complex.

約5分この状態を保ち、凍結脱気すると極大535nm
、吸光度0.35(δ)にもどり、元のFe(II)状
態になったことが確認された。
Hold this state for about 5 minutes, freeze and degas, and the maximum wavelength will be 535 nm.
It was confirmed that the absorbance returned to 0.35 (δ) and returned to the original Fe(II) state.

また、酸素飽和状態の水溶液に高純度窒素ガスあるいは
アルゴン、ヘリウムなど不活性ガスを攪拌下に吹き込ん
でも同様に元のFe(II)状態にもどった。
Furthermore, when high-purity nitrogen gas or an inert gas such as argon or helium was blown into the oxygen-saturated aqueous solution while stirring, the original Fe(II) state was similarly restored.

実施例 9 酸素の代りにCOを用いた他は実施例7と同様に操作し
、Fe(1)・CO錯体の形成を可視吸収スペクトル極
太が537.5nm、吸光度0.49に変化したことか
ら確認した。
Example 9 The same procedure as in Example 7 was carried out except that CO was used instead of oxygen. confirmed.

この水溶液を10−7n0−7nの高真空下で凍結脱気
操作を行なったところ吸収極大5351m、吸光度0.
36の元のFe (川)状態にもどった。
When this aqueous solution was frozen and degassed under a high vacuum of 10-7n0-7n, the maximum absorption was 5351m, and the absorbance was 0.
It returned to the original Fe (river) state of 36.

実施例 10 軸配位子として、常法によりラジカル共重合して得られ
たポリ(4−ビニルピリジン、ビニルピロリドン)(分
子量23000,4−ビニルピリジン単位15モル%)
を用い、これを4−ビニルピリジン単位に換算して錯体
量の5倍当量を用いた他は、実施例5と同様に操作して
Fe (川)錯体水溶液(可視吸収スペクトル極大53
4nm、吸光度0.40)を得た。
Example 10 As an axial ligand, poly(4-vinylpyridine, vinylpyrrolidone) obtained by radical copolymerization by a conventional method (molecular weight 23000, 4-vinylpyridine unit 15 mol%)
An aqueous solution of Fe (kawa) complex (visible absorption spectrum maximum 53
4 nm, absorbance 0.40).

これに酸素を吹き込み攪拌したところ、直ちに吸収極大
539nm、吸光度0.32の新たなスペクトルに移行
し、酸素錯体の形成が確認された。
When oxygen was blown into this and stirred, a new spectrum with an absorption maximum of 539 nm and an absorbance of 0.32 was immediately observed, confirming the formation of an oxygen complex.

5分間放置した後、凍結脱気し、再びスペクトル測定を
行なって吸収極大534nm、吸光度0.40の結果を
得、元のFe(川)錯体にもどったことが確認された。
After being left for 5 minutes, the sample was frozen and degassed, and the spectrum was measured again to obtain an absorption maximum of 534 nm and an absorbance of 0.40, confirming that it had returned to its original Fe(kawa) complex.

実施例 11 酸素の代りにCOを用いた他は実施例1oと同様に操作
してCO錯体水溶液を得た。
Example 11 A CO complex aqueous solution was obtained in the same manner as in Example 1o except that CO was used instead of oxygen.

可視吸収スペクトル極太538nm、吸光度0.48゜
これを10−7nmHgで3回凍結脱気し、スペクトル
測定を行って吸収極大534nm、吸光度0.40の元
のFe (川)錯体にもどったことを確認した。
The visible absorption spectrum has a maximum thickness of 538 nm and an absorbance of 0.48°. This was frozen and degassed three times at 10-7 nmHg, and the spectrum was measured to confirm that it had returned to the original Fe complex with an absorption maximum of 534 nm and an absorbance of 0.40. confirmed.

【図面の簡単な説明】[Brief explanation of drawings]

添付の図面はこの発明のカチオン柵型鉄テトラフェニル
ポルフィリンを酸素と接触させたことに伴なう可視吸収
スペクトル変化図。
The attached drawing is a diagram of changes in visible absorption spectrum caused by contacting the cationic fence-type iron tetraphenylporphyrin of the present invention with oxygen.

Claims (1)

【特許請求の範囲】 1一般式 ( 各Rはポリフィリン環を含む平面の一 基、および「は、独立に、メチル基またはエチル基)で
示されるカチオン柵型鉄テトラフェニルポルフィリンま
たは前記平面の他方側の軸配位座に配位子が配位してな
るその錯体。 2 配位子がイミダゾールもしくはその誘導体、ピリジ
ンもしくはその誘導体またはイミダゾール核もしくはピ
リジン核を有する高分子配位子である特許請求の範囲第
1項記載のカチオン柵型鉄テトラフェニルポルフィリン
またはその錯体。 3一般式 基、およびRは、独立に、メチル基またはエチル基)で
示されるカチオン柵型鉄テトラフェニルポルフィリンの
、前記平面の他方側の軸配位座に配位子が配位してなる
錯体からなる、酸素ガスおよび一酸化炭素ガス用ガス吸
着剤。 4 配位子がイミダゾールもしくはその誘導体、ピリジ
ンもしくはその誘導体またはイミダゾール核もしくはピ
リジン核を有する高分子配位子である特許請求の範囲第
3項記載のガス吸着剤。 5 水溶液の形態にある特許請求の範囲第3項または第
4項記載のガス吸着剤。
[Scope of Claims] 1. A cationic fence-type iron tetraphenylporphyrin represented by the general formula (wherein each R is a plane group containing a porphyrin ring, and " is, independently, a methyl group or an ethyl group) or the other of said planes. A complex thereof in which a ligand is coordinated to the side axial coordinate site. 2. A patent claim in which the ligand is imidazole or a derivative thereof, pyridine or a derivative thereof, or a polymeric ligand having an imidazole nucleus or a pyridine nucleus. The cationic fence type iron tetraphenylporphyrin or the complex thereof according to item 1. A gas adsorbent for oxygen gas and carbon monoxide gas consisting of a complex in which a ligand is coordinated to the axial coordinate site on the other side of 4. The ligand is imidazole or its derivative, pyridine or its derivative or imidazole. 5. The gas adsorbent according to claim 3, which is a polymeric ligand having a nucleus or a pyridine nucleus. 5. The gas adsorbent according to claim 3 or 4, which is in the form of an aqueous solution.
JP55030105A 1980-03-10 1980-03-10 Cationic fence type iron tetraphenylporphyrin and gas adsorbent Expired JPS5834478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55030105A JPS5834478B2 (en) 1980-03-10 1980-03-10 Cationic fence type iron tetraphenylporphyrin and gas adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55030105A JPS5834478B2 (en) 1980-03-10 1980-03-10 Cationic fence type iron tetraphenylporphyrin and gas adsorbent

Publications (2)

Publication Number Publication Date
JPS56127384A JPS56127384A (en) 1981-10-06
JPS5834478B2 true JPS5834478B2 (en) 1983-07-27

Family

ID=12294491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55030105A Expired JPS5834478B2 (en) 1980-03-10 1980-03-10 Cationic fence type iron tetraphenylporphyrin and gas adsorbent

Country Status (1)

Country Link
JP (1) JPS5834478B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113588U (en) * 1990-03-08 1991-11-20
US7056450B2 (en) 2001-10-05 2006-06-06 Showa Denko K.K. Highly concentrated aqueous solutions of N,N-dialkyl-glycines and process for preparation thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800188A (en) * 1987-03-20 1989-01-24 Hoechst Celanese Corp. Method for supporting metalloporphyrins on polybenzimidazole porous articles
US6444337B1 (en) 2000-09-26 2002-09-03 Energetics, Inc. Fuel cell with low cathodic polarization and high power density
KR101117633B1 (en) * 2004-06-30 2012-02-29 삼성에스디아이 주식회사 Carbon monoxide adsorbent for fuel cell, carbon monoxide remover for fuel cell, fuel cell system, and removal method using the carbon monoxide adsorbent
US9211534B2 (en) 2011-09-21 2015-12-15 National University Corporation Okayama University Metalloporphyrin complex, manufacturing process therefor and carbon dioxide fixation catalyst therefrom, as well as process for manufacturing cyclic carbonate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113588U (en) * 1990-03-08 1991-11-20
US7056450B2 (en) 2001-10-05 2006-06-06 Showa Denko K.K. Highly concentrated aqueous solutions of N,N-dialkyl-glycines and process for preparation thereof

Also Published As

Publication number Publication date
JPS56127384A (en) 1981-10-06

Similar Documents

Publication Publication Date Title
US7388099B2 (en) Hydroxycucurbituril derivatives, their preparation methods and uses
Yoo et al. Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption
Collman et al. Synthesis and characterization of a superoxo complex of the dicobalt cofacial diporphyrin [(. mu.-O2) Co2 (DPB)(1, 5-diphenylimidazole) 2][PF6], the structure of the parent dicobalt diporphyrin Co2 (DPB), and a new synthesis of the free-base cofacial diporphyrin H4 (DPB)
Medforth et al. Nonplanar distortion modes for highly substituted porphyrins
US4888032A (en) Salts of cationic-metal dry cave complexes
Autret et al. Synthesis and Electrochemistry of Iron (III) Corroles Containing a Nitrosyl Axial Ligand. Spectral Characterization of [(OEC) FeIII (NO)] n where n= 0, 1, 2, or-1 and OEC is the Trianion of 2, 3, 7, 8, 12, 13, 17, 18-Octaethylcorrole
Baker et al. Metal ion porphyrin interactions. II. Evidence for the nonexistence of sitting atop complexes in aqueous solution
Rhee et al. Synthesis, structures and electrochemical characterization of ferrocene-substituted porphyrin and porphodimethene
Jia et al. Metal-organic nanotubes: Designs, structures and functions
Berto et al. Iron-porphyrin NO complexes with covalently attached N-donor ligands: Formation of a stable six-coordinate species in solution
Maruyama et al. Carrier-mediated transport of amino acid and simple organic anions by lipophilic metal complexes
Rémy et al. Pentafluorophenyl esters as exchangeable stoppers for the construction of photoactive [2] rotaxanes
JPS5834478B2 (en) Cationic fence type iron tetraphenylporphyrin and gas adsorbent
Birin et al. Imidazoporphyrins with appended polycyclic aromatic hydrocarbons: To conjugate or not to conjugate?
Karaman et al. Symmetrical and unsymmetrical quadruply aza-bridged, closely interspaced, cofacial bis (5, 10, 15, 20-tetraphenylporphyrin) s. 2. Synthesis, characterization, and conformational effects of solvents
US5410052A (en) Symmetrical and unsymmetrical polyalkylamine metal complexes for ligand extraction and generation
Allcock et al. Synthesis, oxygen-binding behavior, and Moessbauer spectroscopy of covalently bound polyphosphazene-heme complexes
Sun et al. New multidentate ligands. 27. Synthesis and evaluation of metal ion affinities of new endocyclic hydroxamate macrocycles
Wolf et al. Unsymmetric bistable [c2] daisy chain rotaxanes which combine two types of electroactive stoppers
Jeżowska-Bojczuk et al. Kanamycin revisited: a combined potentiometric and spectroscopic study of copper (II) binding to kanamycin B
Richeter et al. Preparation, mass spectrometry and electrochemical studies of metal connected porphyrin oligomers
JPS5813216B2 (en) Oxygen adsorption/desorption agent
Ermakova et al. Synthesis of (trans‐A2) BC‐Type Porphyrins with Acceptor Diethoxyphosphoryl and Various Donor Groups and their Assembling in the Solid State and at Interfaces
Gao et al. Synthesis and photophysical and electrochemical properties of a binuclear Ru (bpy) 3-Cu (III) corrole complex
JPS5856521B2 (en) Sterically hindered proximal base type polymeric iron porphyrin complex