JPS5834428B2 - Method for manufacturing silicon nitride ceramics - Google Patents

Method for manufacturing silicon nitride ceramics

Info

Publication number
JPS5834428B2
JPS5834428B2 JP54150737A JP15073779A JPS5834428B2 JP S5834428 B2 JPS5834428 B2 JP S5834428B2 JP 54150737 A JP54150737 A JP 54150737A JP 15073779 A JP15073779 A JP 15073779A JP S5834428 B2 JPS5834428 B2 JP S5834428B2
Authority
JP
Japan
Prior art keywords
parts
amount
silicon nitride
oxide
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54150737A
Other languages
Japanese (ja)
Other versions
JPS5673669A (en
Inventor
通泰 小松
勝利 西田
章彦 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54150737A priority Critical patent/JPS5834428B2/en
Priority to GB8030327A priority patent/GB2063302B/en
Publication of JPS5673669A publication Critical patent/JPS5673669A/en
Publication of JPS5834428B2 publication Critical patent/JPS5834428B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は窒化珪素質セラミックスの製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing silicon nitride ceramics.

窒化珪素は単味では焼結が困難なために種々の添加物を
加え焼結することがなされている。
Since it is difficult to sinter silicon nitride alone, various additives have been added to it for sintering.

たとぇばMgo、Al2O3,Y2O3等である。For example, Mgo, Al2O3, Y2O3, etc.

これらの添加物のうち、Y2O3とA12o3を複合添
加した焼結体は高温強度や耐熱衝撃性等の点で他の添加
物を添加した場合よりも優れていることが知られている
Among these additives, it is known that a sintered body to which Y2O3 and A12o3 are added in combination is superior to the case where other additives are added in terms of high temperature strength, thermal shock resistance, etc.

しかしながら、単にY2O3とAl2O3を添加するの
みでは、工業的見地からは不満足な場合もある。
However, simply adding Y2O3 and Al2O3 may be unsatisfactory from an industrial standpoint.

本発明者の研究によれば、より大型品を得ようとする場
合は、製品全体の均質性たとえば密度分布を高めるため
には細心の製造技術を必要とし、よりラフな製造技術で
も高品質の製品が得られる材料が望まれる。
According to the inventor's research, when trying to obtain larger products, meticulous manufacturing techniques are required to improve the homogeneity of the entire product, such as density distribution, and even rougher manufacturing techniques can achieve high quality. Materials from which products can be obtained are desired.

そこで、本発明者は鋭意研究の結果AINをSiO2に
対しある範囲で稀土類元素酸化物およびAl2O3とと
もに添加することで、上記要望を満たすことを知得した
As a result of intensive research, the inventors of the present invention found that the above requirements can be met by adding AIN to SiO2 together with a rare earth element oxide and Al2O3 within a certain range.

したがって、本出願により提示される技術6東重量比で
窒化珪素100部に対し、稀土類元素酸化物0.1〜1
0部、酸化アルミニウム0.1〜10部、酸化けい素0
.1〜10部、窒化アルミニウム0.1〜4部からなり
、前記酸化けい素量に対する窒化アルミニウム量を1/
10−10/1の範囲とした混合粉末を成形焼結するこ
とを特徴とする窒化珪素質セラミックスの製造方法にあ
る。
Therefore, in the technology 6 East weight ratio presented by this application, 0.1 to 1 part of rare earth element oxide is added to 100 parts of silicon nitride.
0 parts, aluminum oxide 0.1-10 parts, silicon oxide 0
.. 1 to 10 parts of aluminum nitride, and 0.1 to 4 parts of aluminum nitride, with the amount of aluminum nitride being 1/1/1 of the amount of silicon oxide.
The present invention provides a method for producing silicon nitride ceramics, which comprises molding and sintering a mixed powder having a ratio of 10-10/1.

窒化アルミニウムの添加は4部程度の少量であれば、焼
結条件の緩和に有益であり、具体的には比較的低い焼結
温度、短かい時間の焼結によっても高強度で均質な製品
が得られるのである。
Addition of aluminum nitride in a small amount of about 4 parts is beneficial in easing the sintering conditions, and specifically, it is possible to produce high-strength, homogeneous products even with relatively low sintering temperatures and short sintering times. You can get it.

一方窒化アルミニウムがあまり多量となると窒化珪素に
対する窒化アルミニウムの固溶量が多量となり、その結
果窒化珪素に稀土類元素と酸化アルミニウムを添加した
高特性セラミックスとは異なるものとなるからである。
On the other hand, if the amount of aluminum nitride is too large, the amount of solid solution of aluminum nitride relative to silicon nitride will be large, and as a result, the product will be different from a high-performance ceramic made by adding a rare earth element and aluminum oxide to silicon nitride.

窒化アルミニウムは酸化けい素量との関係も有している
Aluminum nitride also has a relationship with the amount of silicon oxide.

酸化けい素は窒化けい素粉末の表面に付着している場合
に混入することがあるが、これハ焼結助剤としても働い
ている。
Silicon oxide may be mixed in when it is attached to the surface of silicon nitride powder, but it also works as a sintering aid.

しかし、酸化けい素があまり多いと焼結は容易になるも
のの生成される焼結体内にガラス分が多くなるため、強
度などの特性に悪影響を及ぼす。
However, if the silicon oxide content is too large, although sintering becomes easy, the resulting sintered body will contain a large amount of glass, which will adversely affect properties such as strength.

この悪影響は窒化アルミニウムの添加により軽減される
This negative effect is reduced by the addition of aluminum nitride.

すなわち、酸化けい素に対し、1/10〜10/1の範
囲で窒化アルミニウムを添加することが上記効果を得る
ために必要である。
That is, it is necessary to add aluminum nitride in a range of 1/10 to 10/1 to silicon oxide in order to obtain the above effect.

なお、酸化けい素は窒化けい素に付着する分のほか、任
意量添加することも許容される。
Note that in addition to the amount of silicon oxide that adheres to silicon nitride, it is also permissible to add any amount of silicon oxide.

また、稀土類元素酸化物、酸化アルミニウム、酸化けい
素はあまり少なくては焼結体の高密度化、高強度化等の
本来の要求が満たされず、一方あまり多くては高温強度
や耐熱衝撃性が低下する。
In addition, if the amount of rare earth element oxides, aluminum oxide, and silicon oxide is too small, the original requirements such as high density and high strength of the sintered body will not be met, while if too large, the high temperature strength and thermal shock resistance will not be satisfied. decreases.

したがって、稀土類元素の酸化物は0.1〜10部好ま
しくは0.5〜8部、最も好ましくは1〜5部とする。
Therefore, the amount of rare earth element oxide is 0.1 to 10 parts, preferably 0.5 to 8 parts, and most preferably 1 to 5 parts.

酸化アルミニウムは0.1〜10部、好ましくは0.5
〜5部、最も好ましくは0.5〜3部とする。
Aluminum oxide is 0.1 to 10 parts, preferably 0.5 parts
-5 parts, most preferably 0.5-3 parts.

酸化けい素は0.1〜lO部、好ましくは0.1〜5部
最も好ましくは0.5〜2部とする。
The silicon oxide is present in an amount of 0.1 to 10 parts, preferably 0.1 to 5 parts, and most preferably 0.5 to 2 parts.

窒化アルミニウムは0.1〜4部、好ましくは0.1〜
2部、最も好ましくは0.5〜2部とする。
Aluminum nitride is 0.1 to 4 parts, preferably 0.1 to 4 parts.
2 parts, most preferably 0.5-2 parts.

窒化アルミニウム量/酸化けい素置は1/10〜10/
1、好ましくは172〜4/1、最も好ましくは1/1
〜2/1とする。
Amount of aluminum nitride/silicon oxide is 1/10 to 10/
1, preferably 172 to 4/1, most preferably 1/1
~2/1.

なお、本発明において稀土類元素とはY、La。In the present invention, rare earth elements include Y and La.

Ce、Pr、Nd、Pm、Sm、Eu、Gd。Ce, Pr, Nd, Pm, Sm, Eu, Gd.

Tb、Dy*Ho、Er、Tm、Yb、Luをいう。Tb, Dy*Ho, Er, Tm, Yb, and Lu.

本発明による焼結温度は1400°C〜1900℃が適
当である。
A suitable sintering temperature according to the present invention is 1400°C to 1900°C.

あまり低すぎてはち密化が充分に進行せず、逆にあまり
高すぎては窒化珪素の分解が激しくなるからである。
If the temperature is too low, densification will not proceed sufficiently, and if it is too high, silicon nitride will decompose rapidly.

好ましい焼結温度は1300〜1850℃である。The preferred sintering temperature is 1300-1850°C.

また焼結時間は0.5〜5時間が適当である。Moreover, the sintering time is suitably 0.5 to 5 hours.

あまり短かくてはち密化が充分進まず、逆にあまり長す
ぎては過焼結となるからである。
This is because if the length is too short, densification will not proceed sufficiently, and if it is too long, oversintering will occur.

焼結技術としては、公知の各種方法すなわち普通焼結、
ホットプレス、熱間静水圧法等が採用できる。
Sintering techniques include various known methods, namely normal sintering,
Hot press, hot isostatic pressure method, etc. can be adopted.

普通焼結によれば複雑形状物が容易に得られる利点があ
る。
Ordinary sintering has the advantage that complex-shaped objects can be easily obtained.

ホットプレスによれば短時間でち密化出来るという利点
がある。
Hot pressing has the advantage that it can be densified in a short time.

熱間静水圧法によれば比較的低温でち密な焼結体が得ら
れるという利点がある。
The hot isostatic pressure method has the advantage that a dense sintered body can be obtained at a relatively low temperature.

成形技術は公知の各種方法、たとえばスリップキャステ
ィング、金型プレス、射出成形、押出成形等が採用でき
る。
As the molding technique, various known methods such as slip casting, mold pressing, injection molding, extrusion molding, etc. can be employed.

実験例 平均粒径1.5μの窒化珪素粉末、平均粒径1.3μの
窒化アルミニウム粉末、平均粒径1.0μの酸化アルミ
ニウム粉末、平均粒径1.0μの酸化けい素粉末、平均
ね径i、oμのイツトリア粉末、平均粒径1.0μの酸
化セリウム粉末を用いて第1表に示す混合粉末を調整し
、これに粘結剤としてパラフィンを10%添加し、0.
5 tolN 7cmの成形圧で厚さ30WIJIl長
さ100M幅100mgの板状体を成形した。
Experimental Examples Silicon nitride powder with an average particle size of 1.5μ, aluminum nitride powder with an average particle size of 1.3μ, aluminum oxide powder with an average particle size of 1.0μ, silicon oxide powder with an average particle size of 1.0μ, average diameter A mixed powder shown in Table 1 was prepared using ittria powder of i, oμ and cerium oxide powder with an average particle size of 1.0μ, and 10% of paraffin was added as a binder to it.
A plate-shaped body having a thickness of 30 mm, a length of 100 m, and a width of 100 mg was molded under a molding pressure of 5 tolN 7 cm.

この成形体を8001 / h rの窒素気流中で第1
表に示す条件で加熱焼結した。
This molded body was first heated in a nitrogen flow of 8001/hr.
It was heated and sintered under the conditions shown in the table.

得られた焼結体の特性を測定したところ第1表に示す結
果を得た。
The properties of the obtained sintered body were measured and the results shown in Table 1 were obtained.

第1表から次のことが理解されよう。The following can be understood from Table 1.

l 試料1と試料2〜5を比較すると、AINを添加す
れば密度むらの少ない製品が得られることが分る。
Comparing Sample 1 with Samples 2 to 5, it can be seen that by adding AIN, a product with less uneven density can be obtained.

2 試料2〜5と試料6を比較すると、AINが多すぎ
ては特性低下が生じることが分る。
2 Comparing Samples 2 to 5 with Sample 6, it can be seen that too much AIN causes deterioration in characteristics.

3 試料7,8はSiO2量の変化により特性の変化が
生じることを示す。
3 Samples 7 and 8 show that changes in characteristics occur due to changes in the amount of SiO2.

4 試料9は稀土類元素酸化物としてCe 02を使用
してもよいことを示す。
4 Sample 9 shows that Ce 02 may be used as the rare earth element oxide.

5 試料10〜11はAl2O3量の変化により特性の
変化が生じることを示す。
5 Samples 10 to 11 show that changes in properties occur due to changes in the amount of Al2O3.

6 試料12.13は稀土類元素酸化物量の変化により
特性の変化が生じることを示す。
6 Samples 12 and 13 show that changes in properties occur due to changes in the amount of rare earth element oxides.

7 試料14と試料15とを比較すれば、焼結温度の低
下によってAINを添加したものはそれほどの特性低下
は生じないことを示す。
7 Comparison of Sample 14 and Sample 15 shows that the properties of the samples to which AIN was added do not deteriorate significantly due to a decrease in the sintering temperature.

Claims (1)

【特許請求の範囲】 1 重量比で窒化珪素100部に対し、稀土類元素の酸
化物0.1〜10部、酸化アノヘニウム0.1〜10部
、酸化けい素0.1〜10部、窒化アルミニウム0.1
〜4部からなり、前記酸化けい素量に対する窒化アルミ
ニウム量を1/10〜10/1の範囲とした混合粉末を
成形焼結することを特徴とする窒化珪素質セラミックス
の製造方法。 2 酸化けい素量に対する窒化アルミニウム量を1/2
〜4/1の範囲とする特許請求の範囲第1項に記載の窒
化珪素質上シ□ックスの製造方法。
[Claims] 1. 100 parts by weight of silicon nitride, 0.1 to 10 parts of rare earth element oxide, 0.1 to 10 parts of anohenium oxide, 0.1 to 10 parts of silicon oxide, and nitride. aluminum 0.1
A method for producing silicon nitride ceramics, comprising forming and sintering a mixed powder consisting of 4 parts of aluminum nitride in a range of 1/10 to 10/1 of the amount of aluminum nitride. 2 The amount of aluminum nitride relative to the amount of silicon oxide is 1/2
A method for producing a silicon nitride top six according to claim 1, wherein the ratio is within the range of 4/1 to 4/1.
JP54150737A 1979-11-22 1979-11-22 Method for manufacturing silicon nitride ceramics Expired JPS5834428B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP54150737A JPS5834428B2 (en) 1979-11-22 1979-11-22 Method for manufacturing silicon nitride ceramics
GB8030327A GB2063302B (en) 1979-11-22 1980-09-19 Sintered silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54150737A JPS5834428B2 (en) 1979-11-22 1979-11-22 Method for manufacturing silicon nitride ceramics

Publications (2)

Publication Number Publication Date
JPS5673669A JPS5673669A (en) 1981-06-18
JPS5834428B2 true JPS5834428B2 (en) 1983-07-26

Family

ID=15503303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54150737A Expired JPS5834428B2 (en) 1979-11-22 1979-11-22 Method for manufacturing silicon nitride ceramics

Country Status (2)

Country Link
JP (1) JPS5834428B2 (en)
GB (1) GB2063302B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100380B1 (en) * 1981-02-05 1987-06-16 Sumitomo Electric Industries Limited Method for plastic deformation of non-ferrous metals
JPS5826077A (en) 1981-08-10 1983-02-16 株式会社東芝 Ceramic sintered body and manufacture
FR2517665B1 (en) * 1981-12-08 1986-01-31 Ceraver PROCESS FOR THE MANUFACTURE OF A SINTERED MATERIAL BASED ON SILICON NITRIDE, AND MATERIAL OBTAINED THEREBY
EP0126063B1 (en) * 1982-09-30 1988-05-18 Ford Motor Company Process for producing cutting tools from si3n4-silicon nitride by chemical bonding or by hot-pressing
DE3273585D1 (en) * 1982-10-04 1986-11-06 Trw Ceramics Improvements in or relating to the formation of profiled ceramic bodies
EP0113660B1 (en) * 1983-01-10 1991-03-27 NGK Spark Plug Co. Ltd. Nitride based cutting tool
JPS59182276A (en) * 1983-03-31 1984-10-17 株式会社東芝 Silicon nitride sintered body
JPS6060971A (en) * 1983-09-13 1985-04-08 日立化成工業株式会社 Manufacture of ceramic sintered body
JPS6172684A (en) * 1984-09-18 1986-04-14 株式会社東芝 High strength high abrasion resistance sliding member and manufacture
JPS61158870A (en) * 1984-12-29 1986-07-18 株式会社東芝 Ceramic sintered body and manufacture
JPS62153170A (en) * 1985-12-25 1987-07-08 株式会社東芝 Silicon nitride ceramic sintered body and manufacture
JPH0717455B2 (en) * 1986-07-18 1995-03-01 株式会社トクヤマ Method for manufacturing aluminum nitride sintered body
US5242872A (en) * 1986-07-18 1993-09-07 Tokuyama Soda Kabushiki Kaisha Process for producing aluminum nitride sintered body
JP2512061B2 (en) * 1987-11-26 1996-07-03 日本碍子株式会社 Homogeneous silicon nitride sintered body and method for producing the same
EP1967503B1 (en) * 2007-02-23 2010-01-13 Kyocera Corporation Sintered product of silicon nitride, cutting tool, cutting apparatus, and cutting method
CN114525444A (en) * 2021-12-25 2022-05-24 广西长城机械股份有限公司 Device for refining high-purity hypereutectic 8-niobium-chromium-containing cast iron and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460310A (en) * 1977-10-13 1979-05-15 Tokyo Shibaura Electric Co Method of making heattresistant sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460310A (en) * 1977-10-13 1979-05-15 Tokyo Shibaura Electric Co Method of making heattresistant sintered body

Also Published As

Publication number Publication date
GB2063302A (en) 1981-06-03
GB2063302B (en) 1983-08-10
JPS5673669A (en) 1981-06-18

Similar Documents

Publication Publication Date Title
US5470806A (en) Making of sintered silicon carbide bodies
JPS5834428B2 (en) Method for manufacturing silicon nitride ceramics
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
Hirata et al. Particle size effect of starting SiC on processing, microstructures and mechanical properties of liquid phase-sintered SiC
US6838026B2 (en) Method for producing a silicon nitride filter
JPH0563430B2 (en)
KR101470322B1 (en) Aluminum Nitride ceramics with high strength and the method of low temperature sintering thereof
Suzuki et al. Mechanical properties of alkoxy-derived cordierite ceramics
Tiegs et al. Effect of Aspect Ratio and Liquid‐Phase Content on Densification of Alumina‐Silicon Carbide Whisker Composites
Terao et al. Characteristics of ZrO2‐Dispersed Si3N4 without Additives Fabricated by Hot Isostatic Pressing
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JPS6050750B2 (en) Silicon nitride composite sintered body
JP2786719B2 (en) Method for producing rare earth oxide sintered body
Hirata et al. Processing of high performance silicon carbide
JPH06340475A (en) Fiber reinforced ceramic composite material and its production
KR890002158B1 (en) Silicon mitride ceramic sintered body and the method for producing the same
JP2526598B2 (en) Method for manufacturing silicon nitride ceramics
JPH0224789B2 (en)
Yeh et al. The Si3N4 and Si3N4TiC layered composites by slip casting
Borovkova et al. Sintering and properties of yttrium oxide ceramics
JP2687632B2 (en) Method for producing silicon nitride sintered body
Chen et al. Pressurelessly sintering silicon carbide with additives of holmium oxide and alumina
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JP2581128B2 (en) Alumina-sialon composite sintered body
JPH0477699B2 (en)