JPS5834423A - Optical branching and coupling circuit - Google Patents

Optical branching and coupling circuit

Info

Publication number
JPS5834423A
JPS5834423A JP13388281A JP13388281A JPS5834423A JP S5834423 A JPS5834423 A JP S5834423A JP 13388281 A JP13388281 A JP 13388281A JP 13388281 A JP13388281 A JP 13388281A JP S5834423 A JPS5834423 A JP S5834423A
Authority
JP
Japan
Prior art keywords
optical
light
reflective film
coupling circuit
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13388281A
Other languages
Japanese (ja)
Other versions
JPS6237761B2 (en
Inventor
Teruhito Matsui
松井 輝仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13388281A priority Critical patent/JPS5834423A/en
Publication of JPS5834423A publication Critical patent/JPS5834423A/en
Publication of JPS6237761B2 publication Critical patent/JPS6237761B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals

Abstract

PURPOSE:To make a branching ratio variable without giving any change to the distribution of transmission mode of an optical fiber and at the same time to assure high accuracy, by having a fan-shaped reflective film to divide a light. CONSTITUTION:Optical fibers 1 and 2 are set opposite to each other on the same optical axis, and refractive index distribution type lenses 4 and 5 are attached to the tips of the fibers 1 and 2, respectively. A cubic prism 8 is set so that the optical axes of the lenses 4 and 5 pass the center point P of a fan-shaped reflective film 8b of the prism 8 and that the surface of the film 8b forms a 45 deg. angle to the optical axis. At the same time, the optical axis of the fiber 1 containing the lens 4 at its tip is set so that said optical axis passes the center point P of the film 8b and forms a 45 deg. angle to the film 8b. Furthermore, the center axis of a refractive index distribution type lens containing a reflective film 7a at its end of one side passes through the point P and is put on the extended line of the optical axis of an optical fiber 3. Thus optical connection is possible with high accuracy among optical fibers.

Description

【発明の詳細な説明】 この発明は、たとえばバーファイバ伝送しこおける光デ
ータバスの尤の取り出しあるいは結合に利用すて)光分
岐結合回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical branching/coupling circuit (used, for example, for extracting or coupling an optical data bus in a fiber-optic transmission).

従来、この(市の装置としては、第11)イ1.第2図
に示すものかあつfこ。第1図において、1.2゜3は
)Y:ファイバ、4,5,6.7はコリメート用屈所率
分布1曵1/ンズ(以下単に屈折率分布形レンズという
)、7aは前記ル(折率分布形レンズ7の端面に付げC
)れた反q↑暎、8は)Y二分割体(以後、ギューブプ
117′j\という)で、第2図にその斜視図を示すよ
うVCギューブプリズム8の接合面の一部に小さな反射
膜8aが付げらねている。
Conventionally, this (as the city's device, No. 11) A1. What is shown in Figure 2? In Fig. 1, 1.2°3 is) Y: fiber, 4, 5, 6.7 are collimating gradient index lenses (hereinafter simply referred to as gradient index lenses), and 7a is the above-mentioned loop. (C attached to the end face of the gradient index lens 7)
8 is a Y-split body (hereinafter referred to as ``Gubup 117'j\\''), and as shown in the perspective view in Fig. 2, there is a small part of the joint surface of the VC gube prism 8. A reflective film 8a is not provided.

データバスは、多数の端末装置が1つの伝送路を共用し
てデータ伝送を行うものであり、一方向の信号だけケf
べ送し、方向別に別々の伝送路を使Illする場合と、
1つの伝送路を共用し、双方向に信+rIf?伝ン入さ
せる場合がある。光データバスとして双方向に信−44
を伝送する場合しくついて考えろと、九T形分岐結合装
置が必曹になる。各端末装置は、光T形分岐結合装置を
介して幹線光ファイバに接続される。
A data bus is a system in which many terminal devices share one transmission path for data transmission, and only one direction of signals is transmitted.
When transmitting data using separate transmission paths for each direction,
Shares one transmission line and transmits signals in both directions +rIf? It may be transmitted. Bidirectional transmission as an optical data bus -44
If you think about it when transmitting , you will need a 9T type branching and coupling device. Each terminal device is connected to the trunk optical fiber via an optical T-type branching/coupling device.

このように用いられる従来の光T形分岐結合回路につい
て説明する。
A conventional optical T-type branching/coupling circuit used in this manner will be explained.

対向する光ファイバ1.2は同一光i11+ l Vc
 W−かれ、先端には屈折率分布形レンズ4,5(レン
″(の長さは周期のほぼ4分の1である)が+(vリイ
1けられ、この光軸−1−にキューブプリズム8の反射
膜8aの上縁がくるように、かつ反射膜8a面が丸軸に
対して45度の角度t!−なすように配置さハ5、先端
に屈折率分布形レンズ6を持つ光フアイバ30光軸が、
上記反射膜8aの上縁をとJ、:る、1:つに、また、
反射膜8a面と45度の角度をなすように元ファイバ3
は配置されている。さらに、一端に反射膜7a面を持つ
屈折率分布形レンズIが、キューブプリズムBを介し、
光ファイバ3にり・1向して配置され、両者の光軸は同
一線上に置かflている。光ファイバ1,2が1cす光
11;ワと光ファイバ3と屈折率分布形レンズ7の′j
【す光軸が同一平面にあるように、また、キューブプリ
ズム80反射膜8aの面が上記下面に対し、垂直にf【
るようにそれぞれが配置されている。
Opposing optical fiber 1.2 has the same light i11+ l Vc
At the tip of the lens, gradient index lenses 4 and 5 (lens length is approximately 1/4 of the period) are placed at the tip, and a cube is placed on the optical axis -1-. The prism 8 is arranged so that the upper edge of the reflective film 8a is on the prism 8, and the surface of the reflective film 8a forms an angle t!- of 45 degrees with respect to the round axis. The optical fiber 30 optical axis is
The upper edge of the reflective film 8a is J:ru, 1:tsuni, and
The original fiber 3 is aligned so as to form a 45 degree angle with the reflective film 8a surface.
is located. Further, a gradient index lens I having a reflective film 7a surface at one end is inserted through a cube prism B,
They are arranged in one direction along the optical fiber 3, and their optical axes are placed on the same line. Light 11 emitted by optical fibers 1 and 2;
[Also, the surface of the cube prism 80 reflective film 8a is perpendicular to the lower surface so that the optical axes are on the same plane.
Each one is arranged so that

したがって、光ファイバ3から出射しTこ光は屈折率分
布形レンズ6によってほぼ平行光線に変換さり、−次に
キューブプリズム8の反射膜8aによつ゛C半分の)l
IAま反射さね、屈折率分布形レンズ5によって集光さ
ね、光ファイバ2に結合伝搬される。一方、キューブプ
リズム8を通過した残り半分の光は、屈1斤率分布形レ
ンズ7Vc入射し、その反射膜7aに、)二って戻され
るが、屈折率分布形レンズIの光軸に対し対称な光ビー
ムに変換されるので、キューブプリズムBの反射11に
8alCよって反射され、屈折率分布形レンズ4によっ
て集光され光ファイバ1に結合伝搬される。
Therefore, the T light emitted from the optical fiber 3 is converted into a substantially parallel light beam by the gradient index lens 6, and is then converted into a parallel light beam by the reflection film 8a of the cube prism 8.
The reflected light from the IA is collected by the gradient index lens 5 and coupled to the optical fiber 2 for propagation. On the other hand, the remaining half of the light that has passed through the cube prism 8 enters the gradient index lens 7Vc and returns to its reflective film 7a, but is not aligned with the optical axis of the gradient index lens I. Since the light beam is converted into a symmetrical light beam, it is reflected by 8alC on the reflection 11 of the cube prism B, focused by the gradient index lens 4, and coupled and propagated to the optical fiber 1.

ハニファイバ1から出射した光は、屈折率分布形レンズ
4によってほぼ平行光線にされ、半分の光は反射膜8a
によって反射され、屈折率分布形レンズ4により集光さ
れ光ファイバ3に、残り半分の光は反射されずに光ファ
イバ2にそれぞれ結合伝搬されろ。fだ、光ファイバ2
から出た光も、屈折率分布形レンズ5でほぼ平行光線に
された後。
The light emitted from the honey fiber 1 is made into almost parallel light by the gradient index lens 4, and half of the light is reflected by the reflective film 8a.
The remaining half of the light is reflected by the gradient index lens 4 and condensed into the optical fiber 3, and the remaining half of the light is not reflected and is coupled and propagated to the optical fiber 2. f, optical fiber 2
The light emitted from the lens is also converted into almost parallel light by the gradient index lens 5.

その半分の尤は反射膜8&で反射され元ファイバ3に、
残り半分の光は反射さオ]ずにh!(祈率分布形レンズ
4によって集光され、光ファイバ1にそれぞれ結合伝搬
される。このことから、光ファイバ1.2.3相互に結
合関係ケ持つ3端子の光T形分岐結合回路としての機能
な持つことがわかる。
Half of it is reflected by the reflective film 8& and returns to the original fiber 3.
The remaining half of the light is reflected! (The light is condensed by the index distribution lens 4 and coupled and propagated to the optical fiber 1. From this, the optical fibers 1, 2, and 3 are used as a three-terminal optical T-type branching and coupling circuit with mutual coupling relationships. You can see that it is functional.

ループ状の光データバスに光T形分岐結合回路を使用す
る場合には、光T形分岐結合回路によるバイパス量の最
適値は端末数kcよって変わるため、端末数に応じて分
岐比を変換する心安がある。
When using an optical T-type branching/coupling circuit for a loop-shaped optical data bus, the optimal value of the amount of bypass by the optical T-type branching/coupling circuit varies depending on the number of terminals kc, so the branching ratio is changed according to the number of terminals. I feel safe.

たとえば、いま端末数をNとし、データバスからの端末
への光の取り出し、端末からのデータバスへの光の結合
の割合本・ηとするど、最遠!;1シ末間の光送受信器
間の伝送損失は、 L=−10]ogη2(177)N−2で表わされ、最
適分岐比は η=2/Nとkる。
For example, let the number of terminals be N, and let the ratio of light extraction from the data bus to the terminal and the coupling of light from the terminal to the data bus be η. The transmission loss between the optical transmitter and the receiver between the ends of one frame is expressed as L=-10]ogη2(177)N-2, and the optimal branching ratio is expressed as η=2/N.

従来の例において、バイパス叶を変よるには、光路中へ
の反射膜面の挿入袖を調整すればJ:いが、3dB以外
の分岐の場合には、光T形分岐結合回路間の光ファイバ
長等によってモード依存性があり、バイパス量を一定に
保つことが困姉であるという問題があった。
In the conventional example, the bypass blade can be changed by adjusting the insertion sleeve of the reflective film surface into the optical path. However, in the case of a branch other than 3 dB, the optical There is a problem that it is difficult to maintain a constant amount of bypass due to mode dependence depending on the fiber length, etc.

この発明は、上N+2のような従来のものの欠点を除去
するためにかさハ、たもので、光ファイバ長が変っても
一士た、光ファイバを伝搬するモード分布が変っても、
精度よくバイパス量を維持することのできる光分岐結合
回路を提供することを目的としている。
This invention was developed in order to eliminate the drawbacks of conventional ones such as the above N+2, and even if the optical fiber length changes or the mode distribution propagating through the optical fiber changes,
It is an object of the present invention to provide an optical branching/coupling circuit that can maintain a bypass amount with high accuracy.

以下、この発明を図面について説明する。Hereinafter, this invention will be explained with reference to the drawings.

第3図はこの発明の一実施例におけるキューブプリズム
8の斜視図を示す。第3図において、81)は前記キュ
ーブプリズム8の接合面につけられた扇形の反射膜、P
はその扇形の中心点であり、反射膜8bは中心点Pを頂
点とする中心角θをなして形成されている。
FIG. 3 shows a perspective view of the cube prism 8 in one embodiment of the invention. In FIG. 3, 81) is a fan-shaped reflective film attached to the joint surface of the cube prism 8;
is the center point of the fan shape, and the reflective film 8b is formed with a central angle θ with the center point P as the apex.

次に、その動作について説明する。Next, its operation will be explained.

この発明の構成は、第3図に示すキューブプリズム8の
接合面に付けられた反射膜8bの形状が扇形をしている
点を除けば、第1図に示す従来の光分岐結合回路と同じ
である。したがって第1図と第3図とを用いて動作を説
明する。
The configuration of this invention is the same as that of the conventional optical branching and coupling circuit shown in FIG. 1, except that the shape of the reflective film 8b attached to the joint surface of the cube prism 8 shown in FIG. 3 is fan-shaped. It is. Therefore, the operation will be explained using FIGS. 1 and 3.

対向する光ファイバ1,2は同一光軸上に167′J)
れ、先端には屈折率分布形レンズ4.5が取り付けられ
ており、この光軸が、キューブプリズム8の扇形の反射
膜8bの中心点Pをとおり、かつ扇形の反射膜8b面が
この光軸に対して45度の角度をなすようにキューブプ
リズム8が配ji”r、 8 h、先端次層折率分布形
レンズ4を持つ光フアイバ10元軸が扇形の反射膜8b
の中心点Pをと1・)す、扇形の反射膜8bに対し45
度の角度をf【すように設定されている。さらに、一端
に反射膜7a面を持つ屈折率分布形レンズ7の中心軸が
、」―記扇形の反射膜8bの中心点Pをとおり、光フア
イバ30光軸の延長線上にある。
Opposing optical fibers 1 and 2 are on the same optical axis (167'J)
A gradient index lens 4.5 is attached to the tip of the cube prism 8, and its optical axis passes through the center point P of the fan-shaped reflective film 8b of the cube prism 8, and the surface of the fan-shaped reflective film 8b reflects this light. Cube prisms 8 are arranged so as to make an angle of 45 degrees with respect to the axis, 8 h, an optical fiber 10 having a tip layer gradient index lens 4, and a reflecting film 8b whose element axis is fan-shaped.
45 for the fan-shaped reflective film 8b, taking the center point P of 1.)
It is set so that the angle in degrees is f[. Further, the central axis of the gradient index lens 7 having a reflective film 7a surface at one end passes through the center point P of the fan-shaped reflective film 8b and is on an extension of the optical axis of the optical fiber 30.

したがって、キューブプリズム80W4.11の反射膜
8bの扇形の中心角を0とすると、従来例と同様の動作
原理により、光ファイバ3からの光は、光、アイバ、J
ス王二J)、光、アイバ2.ノー2 π       
             2πの割合で結合される。
Therefore, if the central angle of the fan shape of the reflective film 8b of the cube prism 80W4.11 is 0, the light from the optical fiber 3 is
Suouji J), Hikaru, Aiba 2. No 2 π
They are combined at a ratio of 2π.

光ファイバ1からの光は、ファイバ2力、ら、)元&よ
、t7フイバ1に(担、2 π θ 光ファイバ3に−h「の割合で結合される。
Light from optical fiber 1 is coupled to fiber 2 at a rate of -h'' to optical fiber 3, t7 to fiber 1 (carrier, 2 π θ).

光ファイバ3.2をデータバス用の元ファイバ、尤ファ
イバーを端末と接続するための光ファイバとすハば、分
岐比η−3二)で表わされ、θを2 π 変えることに」:す、バイパスはを調整することができ
る。屈近率分布形レンズによりコリメートされた光ビー
ムの中心点が扇形の反射膜8bの中心点Pと一致するよ
うにL7て、光を分割するので元ファイバ1〜3を伝搬
している光のモード分布に変化を与奴ない。
If the optical fiber 3.2 is the original fiber for the data bus and the optical fiber for connecting the other fiber to the terminal, the branching ratio is expressed as η-32), and θ is changed by 2π. Bypass can be adjusted. Since the light beam is split so that the center point of the light beam collimated by the gradient index lens coincides with the center point P of the fan-shaped reflective film 8b, the light beam propagating through the original fibers 1 to 3 is divided. There is no change in mode distribution.

2p4図はこの発明の仙の実施例を示すもので、第1[
ツ1の屈折率分布形レンズTのかわりに、全反射M角プ
リズム9を使用したもので、上記実施例と同様の効果が
期待される。
Figure 2p4 shows an embodiment of this invention.
A total reflection M-angle prism 9 is used in place of the gradient index lens T in the second embodiment, and the same effects as in the above embodiment are expected.

第5図はこの発明のさらに他の実施例を示すもので、光
ファイバ1〜3のうちの1つを使用しないで、発光素子
11.受光素子12と直接結合したもので、この例では
光ファイバーを使用しない場合を示す。すなわち、10
は光分割用のビームスプリッタ、13.14はコリメー
ト2.るいは集充用ノ用折率分布形レンズで、Dlる。
FIG. 5 shows still another embodiment of the present invention, in which one of the optical fibers 1 to 3 is not used, and the light emitting device 11. It is directly coupled to the light receiving element 12, and this example shows the case where no optical fiber is used. That is, 10
13.14 is a beam splitter for light division, and 13.14 is a collimator 2. It is a gradient index lens for focusing and charging.

なお、上記実施例では、反射体として軸対称の屈折率分
布形レンズ4〜6と反射膜7IL等により構成したが、
面対称tx屈折率分布を持つスラブ形レンズと反射膜に
よっても同様の効果を期待できる。
In the above embodiment, the reflector is composed of the axially symmetrical gradient index lenses 4 to 6 and the reflective film 7IL.
A similar effect can be expected by using a slab lens with a plane-symmetric tx refractive index distribution and a reflective film.

また、上記実施例では、1/ンズとして屈折率分布形レ
ンズを使用する場合について述べたが、通常の光学レン
ズと反射鏡を使用しても同様の効果が期待できる。
Further, in the above embodiment, a case was described in which a gradient index lens is used as the 1/lens, but the same effect can be expected even if a normal optical lens and a reflecting mirror are used.

さらに、」1記実施例では、光分割体としてキューブプ
リズムBの接合面VCP@形の反射膜8bを形成した場
合について述べたが、板状透明体に反射膜を形成しても
同様の効果が期待される。さらに、扇形の反射膜8bと
して波長選択性のあるものを用いれば、特定波長の光信
号に対してのみ分岐結合回路となる。
Furthermore, in Example 1, the case was described in which the reflection film 8b of the junction surface VCP@ shape of the cube prism B was formed as the light splitting body, but the same effect can be obtained even if the reflection film is formed on a plate-like transparent body. There is expected. Furthermore, if a wavelength-selective film is used as the fan-shaped reflective film 8b, a branching/coupling circuit can be formed only for optical signals of a specific wavelength.

以上説明したようにこの発明によれば、光を分割するた
めの反射膜を扇形にするという簡111な構成により、
光ファイバの伝搬モードの分布に変化を与先ず1分岐比
を変えることができ、安価で精度の高いものが得られる
効果がある。
As explained above, according to the present invention, the simple configuration in which the reflective film for dividing light is made into a fan shape allows
It is possible to change the distribution of the propagation mode of the optical fiber, first of all, to change the one-branching ratio, which has the effect of obtaining a high-precision product at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のツY;分岐結合回路を示す断面平面図、
第2図は上記Vt来例のキューブプリズムの略斜視図、
第3図【tこの発明の一実施例によるキューブプリズム
の略斜視図、第4図はこの発明の他の実施例を示す断面
平面図、第5図はこの発明のさらに他の実施例を示す断
面平面財lである。 1シ1中、1,2.3は光ファイバ、4,5,6.7け
屈折率分布形レンズ、7aは反射膜、8はキューブプリ
ズム、8bは扇形の反射膜、9は全反射直角プリズム、
11は発光素子、12は受光素子である。t「お、図中
の同一符号は同一または相当部分を示す。 代理人 認 ’ljF  信 −(外1名)第1図 ’/a 第2図 第3図 / 第5図
Fig. 1 is a cross-sectional plan view showing a conventional TS; branching and coupling circuit;
FIG. 2 is a schematic perspective view of the conventional cube prism of the above-mentioned Vt.
FIG. 3 is a schematic perspective view of a cube prism according to an embodiment of the present invention, FIG. 4 is a sectional plan view showing another embodiment of the invention, and FIG. 5 is a schematic perspective view of a cube prism according to an embodiment of the invention. It is a cross-sectional plane good. In 1, 1, 2.3 are optical fibers, 4, 5, and 6.7 index gradient lenses, 7a is a reflective film, 8 is a cube prism, 8b is a fan-shaped reflective film, and 9 is a total reflection right angle. prism,
11 is a light emitting element, and 12 is a light receiving element. t"Oh, the same reference numerals in the figures indicate the same or equivalent parts. Agent authentication 'ljF letter - (1 other person) Figure 1'/a Figure 2 Figure 3/ Figure 5

Claims (1)

【特許請求の範囲】 (1)対向する先端にコリメート用油折率分布形レンズ
を有する第1.第2の光フアイバ間に、透明体に扇形の
反射膜を取り付けた光分割体を前記扇形の反射膜の中心
点が、前記党ファイバの光す111上をとおるように配
置6シ、前記光分割体にJ:って反射される光の一方に
、先端にコリメート用フ111折率分布形レンズを有す
る第3の元ファイバをその光軸が前記扇形の反射膜の中
心点をとおるように配置し、さらに前記第3の光ファイ
バの光軸の延長線上で、かつ前記光分割体の反対fll
ll VC光ビームを面対称あるいけ点対称に変換して
戻す反射体を配置したことを特徴とする光分岐結合回路
。 (2)光分割体を、断面が四辺形をなし、その対角接合
面に扇形の反射膜を取り付けたギューププリズムとした
ことを特徴とする特許請求の範囲第(1)項記載の光分
岐結合回路。 (3)反射膜を、波長選択性を有するものとしたことを
特徴とする特許請求の範囲第(])項または第(2)項
記載の光分岐結合回路。 (4)反射体を、レンズと反射鏡により構成したことを
特徴とする特許請求の範囲第(1)項または第(2)項
;ii−’+載の光分岐結合回路。 (5)反射体を、全反射直角プリズムにより構成したこ
とを特徴とする特許請求の範囲第(1)項またはj’J
’; (21項記載の光分岐結合回路。 ((il  ?1向する先端にコリメート用油折率分布
形レンズを有する第1.第2の光フアイバ間に、透明体
に扇形の反射膜を11′!り付けた光分割体を前記扇形
の反射膜の中心点が、前記光ファイバの光軸上をとおる
ように配置し、前記光分割体によって反射される光の一
方に、先端にコリメート用油折率分布形レンズを有する
第3の光ファイバをその光軸が前記扇形の反射膜の中心
点をとおるように配(Hし、さらに前記第3の光ファイ
バの光軸の延長線上で、かつ前記光分割体の反対側に光
ビームな面対称あるいは点対称に変換して戻す反射体を
配置4シた光分岐結合回路にldいて、前記々1,1〜
第3の光ファイバのいずれか1つにかえて、発光素子と
受光素子をそれぞれ結合用レンズとビートスプリッタを
介して前記光分割体に結合すZ)、Fうに配置しfここ
とを特徴と−する光分岐結合回路。 (7)光分割体を、1わ[而が四辺形を?rL、tの対
角接合面に扇形の反射11Uを1170伺けたキューブ
プリズムとしたことを特徴とする特許請求の範囲第(6
)項記載の光分岐結合回路。 (8)  反射膜を、波長選沢性な有するものとしたこ
とを特徴とする特許請求の範囲第(6)項Iトたけ第(
7)項記載の光分岐結合回路。 (9)反射体を、レンズと反射鏡に」:り構成したこと
を特徴とする特許請求の範囲第(6)山二Eたけ第(7
)項記載の光分岐結合回路。 (10)反射体を、全反射直角プリズムに、1り構成し
たことを特徴とする特πF請求の範囲第(6)頃〕Eた
け第(7)項記載の光分岐結合回路。
[Claims] (1) A first lens having a collimating oil gradient index lens at opposing tips. A light splitting body having a fan-shaped reflective film attached to a transparent body is arranged between the second optical fibers so that the center point of the fan-shaped reflective film passes over the light beam 111 of the optical fiber. On one side of the light reflected by the splitting body, a third original fiber having a collimating filter 111 gradient index lens at its tip is inserted so that its optical axis passes through the center point of the fan-shaped reflective film. further on the extension line of the optical axis of the third optical fiber and opposite to the light splitting body.
An optical branching and coupling circuit characterized in that a reflector is arranged to convert a VC light beam into plane symmetry or angle symmetry and return it. (2) The light according to claim 1, wherein the light splitting body is a gup prism having a quadrilateral cross section and a fan-shaped reflective film attached to its diagonal joint surface. Branch-coupling circuit. (3) The optical branching/coupling circuit according to claim 1 or 2, wherein the reflective film has wavelength selectivity. (4) The optical branching/coupling circuit according to claim (1) or (2); ii-'+, wherein the reflector is constituted by a lens and a reflecting mirror. (5) Claim (1) or j'J characterized in that the reflector is constituted by a total reflection right angle prism.
(The optical branching and coupling circuit described in item 21. 11'! Arrange the attached light splitting body so that the center point of the sector-shaped reflective film passes on the optical axis of the optical fiber, and add a collimator to one of the light beams reflected by the light splitting body at the tip. A third optical fiber having an oil gradient index lens is arranged so that its optical axis passes through the center point of the sector-shaped reflective film, and further on an extension line of the optical axis of the third optical fiber. , and a reflector for converting the light beam into plane symmetry or point symmetry and returning the light beam is arranged on the opposite side of the light splitting body.
Instead of using any one of the third optical fibers, a light emitting element and a light receiving element are coupled to the light splitting body via a coupling lens and a beat splitter, respectively. - Optical branching and coupling circuit. (7) The light dividing body is 1 [but is it a quadrilateral? Claim No. 6 is characterized in that it is a cube prism with a fan-shaped reflection 11U on the diagonal joint surface of rL, t.
) Optical branching/coupling circuit described in section 2. (8) Claim (6), I, and (), characterized in that the reflective film is wavelength selective.
7) The optical branching and coupling circuit described in section 7). (9) Claim No. (6) Yamaji Etake No. (7) characterized in that the reflector is constituted by a lens and a reflecting mirror.
) Optical branching/coupling circuit described in section 2. (10) The optical branching and coupling circuit according to claim (6) and (7), characterized in that the reflector is a total reflection right-angle prism.
JP13388281A 1981-08-26 1981-08-26 Optical branching and coupling circuit Granted JPS5834423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13388281A JPS5834423A (en) 1981-08-26 1981-08-26 Optical branching and coupling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13388281A JPS5834423A (en) 1981-08-26 1981-08-26 Optical branching and coupling circuit

Publications (2)

Publication Number Publication Date
JPS5834423A true JPS5834423A (en) 1983-02-28
JPS6237761B2 JPS6237761B2 (en) 1987-08-14

Family

ID=15115288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13388281A Granted JPS5834423A (en) 1981-08-26 1981-08-26 Optical branching and coupling circuit

Country Status (1)

Country Link
JP (1) JPS5834423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789652A (en) * 1984-09-12 1988-12-06 Shinagawa Refractories Co., Ltd. Basic refractory composition
JPS6475155A (en) * 1987-09-17 1989-03-20 Asahi Glass Co Ltd Block for tundish weir

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789652A (en) * 1984-09-12 1988-12-06 Shinagawa Refractories Co., Ltd. Basic refractory composition
JPS6475155A (en) * 1987-09-17 1989-03-20 Asahi Glass Co Ltd Block for tundish weir

Also Published As

Publication number Publication date
JPS6237761B2 (en) 1987-08-14

Similar Documents

Publication Publication Date Title
US4273445A (en) Interferometer gyroscope formed on a single plane optical waveguide
US4153330A (en) Single-mode wavelength division optical multiplexer
JPH10311905A (en) Refractive index distribution type lens optical device
NO813421L (en) HYBRID OPTICAL CONNECTION AND ITS USE IN A LOOP INTERFEROMETER
JPS5844414A (en) Wavelength multiplexer or wavelength demultiplexer
US4444503A (en) Ring interferometer with a mode diaphragm
JPS606481B2 (en) light splitter mixer
JPS5834423A (en) Optical branching and coupling circuit
JP3661036B2 (en) Waveguide type optical functional element
JP2004013113A (en) Optical signal processor
JPH0473124B2 (en)
JPS6235657B2 (en)
JP3803776B2 (en) Waveguide type optical functional device
JPH0361924B2 (en)
JPH0749430A (en) Optical circuit part
JPH01113708A (en) Optical multiplexing/demultiplexing module
JPH0140323B2 (en)
JPS6020722B2 (en) light distributor
JP2000018911A (en) Interferometer, optical resonator, optical switch, sensor, and optical filter
JPS5955407A (en) Optical demultiplexer
JPS6051684B2 (en) Optical fiber splitter/optical coupler
JPS6232455B2 (en)
JPS602643B2 (en) Optical coupling branch circuit using focusing optical transmitter
JP3374029B2 (en) Optical coupler
JPS6066213A (en) Optical demultiplexer