JPS5834355A - Twin electrode type voltammetry detection system - Google Patents

Twin electrode type voltammetry detection system

Info

Publication number
JPS5834355A
JPS5834355A JP56134574A JP13457481A JPS5834355A JP S5834355 A JPS5834355 A JP S5834355A JP 56134574 A JP56134574 A JP 56134574A JP 13457481 A JP13457481 A JP 13457481A JP S5834355 A JPS5834355 A JP S5834355A
Authority
JP
Japan
Prior art keywords
electrode
potential
working
working electrode
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56134574A
Other languages
Japanese (ja)
Inventor
Tatsuo Kurahashi
倉橋 辰雄
Hirohito Nishino
西野 博仁
Yoichi Hoshi
洋一 星
Hiroshi Yamamoto
弘 山本
Masaaki Maruyama
丸山 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanagimoto Seisakusho Co Ltd
Original Assignee
Yanagimoto Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanagimoto Seisakusho Co Ltd filed Critical Yanagimoto Seisakusho Co Ltd
Priority to JP56134574A priority Critical patent/JPS5834355A/en
Publication of JPS5834355A publication Critical patent/JPS5834355A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/49Systems involving the determination of the current at a single specific value, or small range of values, of applied voltage for producing selective measurement of one or more particular ionic species

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To eliminate an electrolytic current by disturbing substance, by applying different electric potential to a working electrode provided in a flow cell and subtracting or adding the electrolytic current obtained from each electrode. CONSTITUTION:A flow cell 1 is provided a counter electrode 10, a reference electrode 11 and working electrodes 13, 14. A constant electric potential generator 2 is connected with the electrodes 11, 10 and also, three poles type potentiostat circuit is constituted between working electrode potential terminals 20, 21. The terminals 20, 21 are connected with each electrode 13, 14 through an inner circuit corresponding to an I-V converter 3 and mutually independent potential is applied. An output from each inner circuit is subtracted or added by an operational and electric power amplifier 4 and an electrolytic current component of disturbing substance other than measuring object substance is eliminated and computed output is recorded on a recorder 6.

Description

【発明の詳細な説明】 本発明はツインエレクトロード型ポルタンメトリー検出
器を用いた新規の測定システム及び測定方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel measurement system and measurement method using a twin-electrode portammetry detector.

液体クロマトグラフ、ミクロ液体クロマトグラフ、フロ
ーインジェクションアナライザ、その他化会物の分離分
析装置における検出器として使用される70−セル構造
のポルタンメトリー検出器は、一般には作用電極が1個
、これに対する対極及び参照電極からなる電極構成にお
いて三極式ポテンショ々タット回路により所望の作用電
極一対極間電圧を印加し、70−セル中の試料を電気化
学的に検出するものである。
Portammetry detectors with a 70-cell structure, which are used as detectors in liquid chromatographs, microliquid chromatographs, flow injection analyzers, and other chemical separation and analysis devices, generally have one working electrode and a In an electrode configuration consisting of a counter electrode and a reference electrode, a desired voltage between one working electrode and another electrode is applied by a three-electrode potentiometer circuit, and the sample in the 70-cell is electrochemically detected.

このような検出器においては、検出すべき分離成分と、
他の物質との関係で測定の不安定又は不正確を来たすこ
とがある。すなわち、特定の電位により酸化物質あるい
は還元物質のみを検出したい場合、前記三極式で直流加
電圧方式とすれば、検出対象の物質より低電位で反応す
る物質があれば、これは前放電物質として対象物質の電
解電流に重畳した電流を生ずる。従ってこの前放電物質
は妨害物質となる。
In such a detector, the separated components to be detected,
Relationship with other substances may cause measurement instability or inaccuracy. In other words, if you want to detect only oxidizing or reducing substances at a specific potential, if you use the three-electrode DC voltage method, if there is a substance that reacts at a lower potential than the substance to be detected, it will be detected as a pre-discharge substance. As a result, a current superimposed on the electrolytic current of the target substance is generated. Therefore, this pre-discharge substance becomes an interfering substance.

このような場合、交流ポーラログラフ、ディ7アレンシ
ヤルパルスホーラロクラフ(D、P。
In such cases, an AC polarograph, di 7 allencial pulse polarograph (D, P.

P、)等が有用とされるが、やはりその影響は無視でき
ない。
P, ) etc. are said to be useful, but their influence cannot be ignored.

本発明は、上記のようなフローセル型ポルタンメトリー
検出器における問題点を解消するため、フローセル中に
2個の作用電極(ツインエレクトロード)を形成し、こ
れらの電極に互いに異った電位を加え、各別に引き出し
たこれらの電解電流の減算又は加算を行うようにしたも
のである。この場合、2つの作用電極から各別に電解電
流を引き出すための電気N路は、それらの電極に同一電
位を印加して同一試料を分析する場合に、同一の出力信
号を発生するように較正される。
In order to solve the problems in the flow cell type portammetry detector as described above, the present invention forms two working electrodes (twin electrodes) in the flow cell and applies different potentials to these electrodes. In addition, these separately drawn electrolytic currents are subtracted or added. In this case, the electrical N-paths for separately drawing electrolytic current from the two working electrodes are calibrated to produce the same output signal when the same potential is applied to those electrodes and the same sample is analyzed. Ru.

これにより、一方の作用電極に対象物質のだめの電位を
、他方の作用電極にこれより低い電位をそれぞれ印加す
ることにより、前者の電極による電解電流から後者の電
解電流を差引くと、前記低電位により反応する物質(妨
害物質)の電解電流成分は実質上除去されることになる
As a result, by applying the potential of the target substance reservoir to one working electrode and a lower potential to the other working electrode, the electrolytic current of the latter is subtracted from the electrolytic current of the former electrode. The electrolytic current component of the reacting substance (interfering substance) is substantially removed.

この場会、各作用電極の電位は一定であるため、蓄電気
電流の影響は勿論無視できる。
In this case, since the potential of each working electrode is constant, the influence of the stored electric current can of course be ignored.

同様の利益は、特定の可逆的酸化−還元物質のための酸
化電位を一方の作用電極に、還元電位を他方の作用電極
に印加する方式においても得られる。Tなわち、両件用
電極による電解電流の差は、前記特定成分(可逆反応物
質)については正電流(酸化電流)とfI電流(酸化分
の可逆的還元による還元電流)の差であるから、結果的
にはそれらの絶対値の和であり、理論上増幅と同じ形と
なる。そして、例えば非可逆的な酸化成分があれば、こ
れは還元電流を生じないから、前記の電解電流の引算に
よっては増幅されない。
Similar benefits are obtained in schemes where the oxidation potential for a particular reversible oxidation-reduction substance is applied to one working electrode and the reduction potential to the other working electrode. In other words, the difference in electrolytic current between the electrodes for both cases is the difference between the positive current (oxidation current) and the fI current (reduction current due to reversible reduction of the oxidized component) for the specific component (reversible reactant). , the result is the sum of their absolute values, which is theoretically the same form as amplification. For example, if there is an irreversible oxidation component, it will not produce a reduction current, and therefore will not be amplified by the subtraction of the electrolytic current.

また、上記の電圧印加方式において、二つの電解電流の
加算を行うと、非可逆的成分は反応が生じた側の電解電
流のみであるからこの値が維持され、可逆反応成分は正
電流と負電流の和によって理論上はぼ消減し、非可逆的
成分を効果的に検出できることとなる。
In addition, in the above voltage application method, when two electrolytic currents are added, the irreversible component is only the electrolytic current on the side where the reaction occurred, so this value is maintained, and the reversible reaction component is the positive current and negative current. Theoretically, it is reduced by the sum of the currents, making it possible to effectively detect irreversible components.

本発明は上述したように、高感度でしかも再現性よく特
定成分を分′析する技術を提供するものである。特に、
本発明によれば、クロマトグラフで分離できなかった妨
害成分が対象成分と混在もしくは近接していても、酸化
又は還元電位に差があればその対象成分を効果的に測定
できることが明らかである。
As described above, the present invention provides a technique for analyzing specific components with high sensitivity and good reproducibility. especially,
According to the present invention, it is clear that even if interfering components that cannot be separated by chromatography are mixed with or in close proximity to the target component, the target component can be effectively measured if there is a difference in oxidation or reduction potential.

以下、図面を参照して、本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図において、(1)はマイクロフローセル、(21
は定電位発生器、(3)は丁−V変換器、(4)は引算
又は足算のだめの演算増幅及び電力増幅器、(5)は減
衰器、(6)はレコーダ、そして(7)は中火処理装置
である。
In FIG. 1, (1) is a micro flow cell, (21
is a constant potential generator, (3) is a D-V converter, (4) is an operational amplifier and power amplifier for subtraction or addition, (5) is an attenuator, (6) is a recorder, and (7) is a medium heat treatment equipment.

マイクロフローセル(1)は上部ブロック(8)に液入
口(9)と、液出口兼対極(101、及び参照電極旧)
を有し、下部ブロック121に第1及び第2の作用電極
(I3)及び141を有する。上部ブロック[81及び
下部ブロック(121の間には、液入口+91及び液出
口f1.01に連通した細畏いフローチャネル(15)
が形成され、各軍W flol、1llll131及ヒ
(圓は、71:l−fヤ不ル(15)に に流通する試料岐種触する電極面を有する。
The micro flow cell (1) has a liquid inlet (9) in the upper block (8), a liquid outlet and counter electrode (101, and the old reference electrode).
The lower block 121 has first and second working electrodes (I3) and 141. Between the upper block [81 and the lower block (121), there is a narrow flow channel (15) communicating with the liquid inlet +91 and the liquid outlet f1.01.
is formed, and has an electrode surface that contacts the sample variety flowing in each army W flol, 1llll131 and h (15).

定電位発生器+2+はライン(I6)によって参照電極
1ll)に接続さ九た参照端子圓と、ライン(181に
よって対極0011C接続された対極電位端子!+9)
を有し、これらと作用電極電位端子(20)及び(21
)との間においてそれぞれ三極式ポテンショスタッl[
−構成するものである。作用電極電位端子1201及び
+211はI−V変換器(3)の対応Tる内部回路を介
してそれぞれ作用電極(131及び■に接続される。従
って、I−V変換器(3)は作用電極(13及び■にそ
れぞれ独立的に電位を加え、るための互いに独立した内
部回路を含み、各回路の電流を電圧出力に変換するもの
である。これらの内部回路は、作用電極t131及び(
14に同一の電位を加え、同一試料を測定するものとす
れば、前記二つの出力が同一の値になるように利得調整
できるようにしである。演算増幅及び電力増幅器(4)
はI−V変換器(3)の二出力を引算又は足し算して適
当に電力増幅し、その演算及び増幅出力は減衰器(5)
により適当に減衰されてからレコーダ(61に指示記録
される。
The constant potential generator +2+ is connected to the reference electrode 1ll by the line (I6) and the reference terminal circle is connected to the reference electrode 0011C by the line (181!+9).
and working electrode potential terminals (20) and (21).
) between the three-electrode potentiostat l[
- constitutes. The working electrode potential terminals 1201 and +211 are connected to the working electrodes (131 and 1), respectively, through corresponding internal circuits of the IV converter (3).Therefore, the IV converter (3) is connected to the working electrode It includes mutually independent internal circuits for independently applying a potential to (13 and
If the same potential is applied to 14 and the same sample is measured, the gain can be adjusted so that the two outputs have the same value. Operational amplifier and power amplifier (4)
The two outputs of the I-V converter (3) are subtracted or added to appropriately amplify the power, and the calculated and amplified output is sent to the attenuator (5).
After being appropriately attenuated, the signal is recorded on a recorder (61).

演算及び電力増幅器(4)による引算と足算の選択、減
衰器(5)の減衰率等は、中央処理装置(7)によシ指
令することができる。
The selection of subtraction and addition by the arithmetic operation and power amplifier (4), the attenuation rate of the attenuator (5), etc. can be commanded by the central processing unit (7).

次に、上記の構成を用いたポルタンメl−IJ −検出
方法の実施例を説明する。
Next, an example of a portammel-IJ-detection method using the above configuration will be described.

第2図はカテコールアミンを含む生体試料中の諸成分に
内部標準試料を加えたものについて、一つの作用電極の
印加電圧を順次変えるか、又は数個以上の作用電極を特
別に形成したマルチエレクトロード型フローセルの前記
複数の作用電極に互いに異る電位を同時に印加して得ら
れたボルタモダラムである。各曲線が代表する成分は、
カテコールアミン中のNE(ノルエピネレリン)、E(
エピネフリン)、DA(ドーパミン)と、生体試料中に
混在する代謝物であるNM(ノルメタネフリン)、VM
A(パニールマンデリックアシツド)、アミノ酸中のT
yr(チロシン)、及び内部標準試料としてのDHBA
(3,4−ジハイドロキシベンジールアミン)で′ある
。なお、作用電極は白金、対極は銀/塩イヒ銀である。
Figure 2 shows various components in a biological sample containing catecholamines plus an internal standard sample, using a multi-electrode in which the applied voltage of one working electrode is sequentially changed or several working electrodes are specially formed. This is a voltamodalum obtained by simultaneously applying mutually different potentials to the plurality of working electrodes of a type flow cell. The components represented by each curve are
NE (norepinerelin) in catecholamines, E (
epinephrine), DA (dopamine), and metabolites NM (normetanephrine) and VM that are mixed in biological samples.
A (paneer mandelic acid), T in amino acids
yr (tyrosine) and DHBA as an internal standard sample
(3,4-dihydroxybenzylamine). Note that the working electrode is platinum, and the counter electrode is silver/silver chloride.

そこでまず、第2図の1.OVから0.8Vの間の各成
分の勾配に注目すると、その電圧間で電流変化が最も著
しいのはTyr、これに次いで■MA4’$す、カテコ
ールアミンや5部標準試料の安住率はきわめて小さいこ
とがわかる。第3図は、本発明のツインエレクトロード
型ポルタンメトリー検出器において、作用電極W1α3
)に1ooomV4、作用電極W2O41にBoomV
を加え、クロマトグラフで分離された諸成分を検出器フ
ローチャネルに供給してそれらの電解電流の差を求めた
グラフであり、W1グラフ は1000772V印加に
よるクロマトグラムを、Wl−Wl  グラフは前記電
流の差を示すグラフである。すなわち、 W、 −W2
グラフは、本発明の方法により、特定成分(この場合、
TyrとVMA)を明確に検出できることを示している
Therefore, first, let's look at 1 in Figure 2. Focusing on the gradient of each component between OV and 0.8V, the current change is most remarkable between those voltages, followed by MA4'$, and the stability rates of catecholamines and 5-part standard samples are extremely small. I understand that. FIG. 3 shows the working electrode W1α3 in the twin-electrode portammetry detector of the present invention.
) to 1ooomV4, working electrode W2O41 to BoomV
This graph shows the difference in electrolytic current obtained by applying various components separated by chromatography to the detector flow channel. It is a graph showing the difference between That is, W, −W2
The graph shows that a specific component (in this case,
Tyr and VMA) can be clearly detected.

第4図は、同様の試料について異にBoomVを、Wl
に600mVを加えた場合のグラフである。この場合に
は、1000m100O’Om■で最も明確であったT
yrは、700mV以下では反応しないため、W、(B
oomV)における微小なピークしかなく、代諌物質で
あるNMの電流変化が最も太き(、VMAがこれに続き
、他はやはり小さいことを示している。
Figure 4 shows the difference in BoomV and Wl for similar samples.
This is a graph when 600 mV is applied to . In this case, the most obvious T at 1000m100O'Om■
Since yr does not react below 700 mV, W, (B
There is only a small peak at 0mV), and the change in current for NM, which is a substitute substance, is the largest (VMA follows), and the others are also small.

次に、第5図はWlにBoomV、Wlに300mVを
加えた場合であり、この場合には、Wl−Wl  グラ
フにより内部標準試料DHBAと共に、カテコールアミ
ンNB、E及びDAが明確に検出できることを示してい
る。
Next, Figure 5 shows the case where BoomV is applied to Wl and 300 mV is applied to Wl. In this case, the Wl-Wl graph shows that catecholamines NB, E, and DA can be clearly detected along with the internal standard sample DHBA. ing.

以上の第3〜5図は示差的な特定成分の分析に関するが
、第6図のグラフは可逆反応成分(カテコールアミン及
び内部標準試料)の効果的な検出方法を示すものである
。第2図から明らかなように、これらの成分の酸化開始
電位は0゜4vよりやや低いところにあり、Wlに40
0mVを、異に20 omVをそれぞれ印加すれば、W
lにはこれらの酸化電流が、またWl  にはこれらの
還元電流が流れることになる。これらの電流の向きは逆
であり、’w、−’w2グラフは、結果として両軍流の
絶対値の和を表わすことになり、Wl  グラフ(及び
図示しないがW2グラフ)の各ピークを増幅した形にな
っている。従って、もし非可逆成分がいずれかの電極で
検出されたとしても、この成分はW −W2グラフには
増幅した形で現れないことが明らかである。
While Figures 3 to 5 above relate to the analysis of differential specific components, the graph in Figure 6 shows an effective method for detecting reversible reaction components (catecholamines and internal standard samples). As is clear from Figure 2, the oxidation initiation potential of these components is slightly lower than 0°4V, and Wl is 40V.
If 0 mV and 20 omV are respectively applied, W
These oxidation currents flow through l, and these reduction currents flow through Wl. The directions of these currents are opposite, and as a result, the 'w, -'w2 graph represents the sum of the absolute values of both flows, and each peak of the Wl graph (and W2 graph, not shown) is amplified. It is shaped like this. Therefore, it is clear that even if an irreversible component is detected at either electrode, this component will not appear in an amplified form in the W-W2 graph.

逆に、w、 −1−w2グラフを作図するために、Wl
及びWlの電解電流を足し算すればカテコールアミン及
び内部標準試料等の可逆的成分は相殺され、いずれかの
電極で検出されうる非可逆成分がそのままの大きさでW
l + W2グラフに現れることになる。
Conversely, to draw the w, -1-w2 graph, Wl
By adding the electrolytic currents of and Wl, reversible components such as catecholamines and internal standard samples are canceled out, and irreversible components that can be detected by either electrode remain unchanged in size.
It will appear in the l + W2 graph.

本発明は以上の通り、二作用電極に異った電位を印加す
ると共に、これらの電極に流れる電解電流の差又は和を
求めることにより、対象成分以外を減殺した形で正確か
っ、高感度なポルタンメトリーを得ることを可能にする
ものである。
As described above, the present invention applies different potentials to two working electrodes and calculates the difference or sum of electrolytic currents flowing through these electrodes, thereby reducing components other than the target components accurately and with high sensitivity. This makes it possible to obtain portammetry.

なお、両電解電流を加算する場合には、対応する二作用
電極の電位を同一にすれば、理論上、2倍増幅をした成
分ピークを得ることができる。
Note that when adding both electrolytic currents, if the potentials of the corresponding two working electrodes are made the same, it is theoretically possible to obtain a component peak that is amplified twice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明システムの構成図、第2図はカテコール
アミンを含む生体試料及び内部標準試料のポルタモグラ
フ、第3図〜第6図は二作用電極の一方の電解電流で表
したクロマトグラム、及び両電極によるクロマトグラム
の差を示すグラフをそれぞれ対比して示したものである
。 11−−−−−ツインエレクトロード型ホルタンメトリ
ー検出器 f9+ −−−−一液入口 (IQ+−−−−一液出口兼対極 11.11−−−−一参照電極 0.31−−−−一第1作用電極 a41−−−−−第2作用電極 止−−−一−フローチャネル 特許出願人  株式会社柳本製作所 代 理  人   新  天   健  部(外1名) () 賃                        
      メー≧ 繊                −Oり 鋺 282− 第5図  ■[ 第6 −−ラ賭聞 手続補正書 特許庁長官    殿 ■事件の表示  昭和56年特許願第134574号3
補正をする者 事件との関係   特許出願人 氏名(名称)  株式会社 柳本製作所4、代理人  
  〒604 6、補正により増加する発明の数 7、補正の対象  明細書全文 8、補正の内容 (1)  明細書の浄書(内容に変更、なし)9添附書
類の目録
Figure 1 is a configuration diagram of the system of the present invention, Figure 2 is a portamograph of a biological sample containing catecholamines and an internal standard sample, Figures 3 to 6 are chromatograms expressed by the electrolytic current of one of the two working electrodes, and This is a comparison of graphs showing the difference between the chromatograms of both electrodes. 11------Twin electrode type holtammetry detector f9+----One liquid inlet (IQ+---One liquid outlet and counter electrode 11.11---One reference electrode 0.31---- -1 First working electrode a41---Second working electrode---1-Flow channel Patent applicant Yanagimoto Seisakusho Co., Ltd. Agent Kenbu Shinten (1 other person) () Rent
Mae ≧ Sen -Origai 282- Figure 5 ■ [ 6 - La Gambling Proceedings Amendment Commissioner of the Patent Office Mr. ■ Display of the case Patent Application No. 134574 of 1982 3
Relationship with the case of the person making the amendment Name of patent applicant Yanagimoto Seisakusho Co., Ltd. 4, Agent
604 6. Number of inventions increased by amendment 7. Subject of amendment Full text of specification 8. Contents of amendment (1) Engraving of specification (no change in content) 9 List of attached documents

Claims (7)

【特許請求の範囲】[Claims] (1)少くとも2個の作用電極及び1個の対極を含むフ
ローセル型ポルタンメトリー検出器と、前記2個の作用
電極に、前記対極に関して互いに異った電位を印加する
ための定電位発生器と、 前記定電位発生器と前記2個の作用電極との間にそれぞ
れ形成された定電位印加@1線中にそれぞれ介在して対
応する各作用電極に流れる電解電流を各別に検出するた
めの2個のI−V変換器と、 前記2個のI−V変換器の各出力信号の差又出器。
(1) A flow cell type portammetry detector including at least two working electrodes and one counter electrode, and constant potential generation for applying different potentials to the two working electrodes with respect to the counter electrode. and a constant potential applied @1 line formed between the constant potential generator and the two working electrodes to separately detect electrolytic currents flowing to the corresponding working electrodes. two IV converters; and a difference output device for each output signal of the two IV converters.
(2)前記2個のI−V変換器が各対応する作用電極に
同一電位を印加して同一試料を分析する際に、同一の出
力信号を発生するように較正された利得制御回路を含む
ものであることを特徴とする特許請求の範囲第(11項
記載の検出器。
(2) the two I-V converters include gain control circuits calibrated so that they produce the same output signal when applying the same potential to each corresponding working electrode and analyzing the same sample; Detector according to claim 11, characterized in that:
(3)  フローセル型ポルタンメトリー検出器が作用
電極と対極以外に参照電極を有し、前記定電位発生器が
各作用電極について前記参照電極の電位を基準としてこ
れと作用電極及び対極間に二極式ポテンショスタット回
路を構成したものであることを特徴とする特許請求の範
囲第(1)項又は第(2)項に記載の検出器。
(3) The flow cell type portammetry detector has a reference electrode in addition to the working electrode and the counter electrode, and the constant potential generator has a potential of two points between each working electrode and the working electrode and the counter electrode based on the potential of the reference electrode. The detector according to claim 1 or claim 2, wherein the detector is configured as a polar potentiostat circuit.
(4)2個の作用電極を有するフローセル型ポルタンメ
トリー検出器における第1の前記作用電極に目的成分を
検出するための電位を印加すると共に、第2の前記作用
電極に前記第1の作用電極電位より低い電位を印加し、
前記第1及び第、2の作用電極の各々に流れる電解電流
をそれぞれ検出し、前記検出した各電解電流に対応する
信号の差を求めることにより、前記第2作用電極に印加
した電位により電解した妨1害成分の影響を実質的に除
去して目的成分を定量すること全特徴とするツインエレ
クトロード型ポルタンメトリー検出方法。
(4) In a flow cell type portammetry detector having two working electrodes, a potential for detecting a target component is applied to the first working electrode, and the first working electrode is applied to the second working electrode. Applying a potential lower than the electrode potential,
By detecting the electrolytic currents flowing through each of the first, second, and second working electrodes and determining the difference between signals corresponding to the detected electrolytic currents, electrolysis is performed by the potential applied to the second working electrode. A twin-electrode portammetry detection method characterized by substantially eliminating the influence of interfering components and quantifying target components.
(5)  前記2個の作用電極による各電解電流の検出
において、各検出利得が対応する作用電極に同一電位を
印加して同−試料を分析する際に、互いに同一の出力信
号を発生するように較正されたものであることを特徴と
する特許請求の範囲第(4)項記載の方法。
(5) In the detection of each electrolytic current by the two working electrodes, each detection gain generates the same output signal when applying the same potential to the corresponding working electrode and analyzing the same sample. 4. The method according to claim 4, wherein the method is calibrated as follows.
(6)2個の作用電極を有するフローセル型ポルタンメ
トリー検出器における第1の前記作用電極に可逆的酸化
−還元成分のための酸化電位を、第2の前記作用電極に
還元電位をそれぞれ印加し、前記2個の作用電極の各々
に流′i″した電解電流を各別に検出し、前記電解電流
に対応する=6ユ。エヶよゎあ。8よう1,1o、イ、
えは還元成分による妨害を軽減すると共に前記可逆的酸
(e−還元成分を増幅的に検出することを特徴とするツ
インエレクトロード型ポルクンメトリー検出方法。
(6) Applying an oxidation potential for a reversible oxidation-reduction component to the first working electrode in a flow cell type portammetry detector having two working electrodes, and applying a reduction potential to the second working electrode. Then, the electrolytic current flowing through each of the two working electrodes is detected separately, and the electrolytic current corresponding to the electrolytic current is 6.
A twin-electrode polcunmetry detection method characterized by reducing interference caused by reducing components and detecting the reversible acid (e-reducing component) in an amplified manner.
(7)2個の作用電極を有するフローセル型ポルタンメ
トリー検出器における第1の前記作用′IK極に非可逆
的酸化又は還元成分のだめの酸化又は還元電位を印加し
、第2の前記作用電極に前記第1の作用電極電位により
酸化又は還元する可逆的酸化−還尤成分のための可逆反
応電位を印加し、前記2個の作用電極の各々に流れた電
解電流を各別に検出し、前記各電解電流の和を求めるこ
とにより前記酊逆的酸往還元成分の妨害ヲ天質的に除去
して非可逆的酸化又は還元成分を定量することを特徴と
するツインエレクトロード型ポルタンメトリー検出方法
(7) In a flow cell type portammetry detector having two working electrodes, an oxidation or reduction potential of an irreversible oxidation or reduction component is applied to the first working IK electrode, and the second working electrode applying a reversible reaction potential for a reversible oxidation-reduction component to be oxidized or reduced by the potential of the first working electrode, detecting the electrolytic current flowing through each of the two working electrodes separately; Twin-electrode portammetry detection characterized in that by determining the sum of each electrolytic current, the interference of the reversible acid-reducing component is inherently removed and irreversible oxidation or reduction components are quantified. Method.
JP56134574A 1981-08-25 1981-08-25 Twin electrode type voltammetry detection system Pending JPS5834355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56134574A JPS5834355A (en) 1981-08-25 1981-08-25 Twin electrode type voltammetry detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56134574A JPS5834355A (en) 1981-08-25 1981-08-25 Twin electrode type voltammetry detection system

Publications (1)

Publication Number Publication Date
JPS5834355A true JPS5834355A (en) 1983-02-28

Family

ID=15131527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56134574A Pending JPS5834355A (en) 1981-08-25 1981-08-25 Twin electrode type voltammetry detection system

Country Status (1)

Country Link
JP (1) JPS5834355A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147359A (en) * 1987-12-03 1989-06-09 Kokuritsu Shintai Shiyougaishiya Rihabiriteeshiyon Center Souchiyou Flow injection analysis system and analysis by using said system
JPH01193639A (en) * 1983-03-01 1989-08-03 Gerhard G Rall Electrochemical detector
CN105004660A (en) * 2015-08-13 2015-10-28 中国石油化工股份有限公司 Electrode device for in-situ study of atmospheric corrosion process under liquid drops
JP2020012722A (en) * 2018-07-18 2020-01-23 国立大学法人徳島大学 Electrochemical detector and electrochemical detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130090A (en) * 1978-01-11 1979-10-09 Environmental Sciences Ass Electrochemical measuring device
JPS5644836A (en) * 1979-09-19 1981-04-24 Japan Spectroscopic Co Structure of electrolytic cell in voltammetric detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130090A (en) * 1978-01-11 1979-10-09 Environmental Sciences Ass Electrochemical measuring device
JPS5644836A (en) * 1979-09-19 1981-04-24 Japan Spectroscopic Co Structure of electrolytic cell in voltammetric detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193639A (en) * 1983-03-01 1989-08-03 Gerhard G Rall Electrochemical detector
JPH01147359A (en) * 1987-12-03 1989-06-09 Kokuritsu Shintai Shiyougaishiya Rihabiriteeshiyon Center Souchiyou Flow injection analysis system and analysis by using said system
CN105004660A (en) * 2015-08-13 2015-10-28 中国石油化工股份有限公司 Electrode device for in-situ study of atmospheric corrosion process under liquid drops
JP2020012722A (en) * 2018-07-18 2020-01-23 国立大学法人徳島大学 Electrochemical detector and electrochemical detection device

Similar Documents

Publication Publication Date Title
US3868578A (en) Method and apparatus for electroanalysis
EP1344048B1 (en) Method for electrochemical analysis, corresponding configurations and the use thereof
US3691023A (en) Method for polarographic measurement of oxygen partial pressure
Kappes et al. Field-portable capillary electrophoresis instrument with potentiometric and amperometric detection
DE68912939T2 (en) Electrochemical measuring device.
US3855096A (en) Electrochemical cells
Xiong et al. Investigation of the optimal transient times for chronoamperometric analysis of diffusion coefficients and concentrations in non-aqueous solvents and ionic liquids
DE2224703B2 (en) Electrochemical measuring device
EP0114102B1 (en) Apparatus for electrochemical detection and coulometric titration
US4426621A (en) Detection circuitry for electrochemical analysis
Tabanlıgil Calam et al. Electrochemical determination of 8-hydroxyquinoline in a cosmetic product on a glassy carbon electrode modified with 1-amino-2-naphthol-4-sulphonic acid
Lindner et al. Switched wall jet for dynamic response measurements
US20030205465A1 (en) Chloramine amperometric sensor
US4321113A (en) Electronic calibration of electrochemical sensors
US10197525B2 (en) Pulsed potential gas sensors
US4452672A (en) Process and apparatus for polarographic determination of oxygen and carbon dioxide
US5720870A (en) Determining gas concentration
Westbroek et al. Electrochemical methods
JPS5834355A (en) Twin electrode type voltammetry detection system
Ivaska et al. Application of a voltammetric flow-through cell to flow-injection-analysis (FIA)
US3398064A (en) Scanning coulometry method and apparatus
US4654125A (en) Method and apparatus for electrochemical detection
Sharma et al. Voltammetry: An Electrochemical Analytical Method
Zhou et al. Non-invasive, real-time and dynamic monitoring of CO2 and O2 simultaneously using modulated potential pulse-amperometry/coulometry
DE10001923C1 (en) Procedure for the determination of redox-active substances