JPS5834342A - Measuring apparatus of specific surface area - Google Patents

Measuring apparatus of specific surface area

Info

Publication number
JPS5834342A
JPS5834342A JP13258881A JP13258881A JPS5834342A JP S5834342 A JPS5834342 A JP S5834342A JP 13258881 A JP13258881 A JP 13258881A JP 13258881 A JP13258881 A JP 13258881A JP S5834342 A JPS5834342 A JP S5834342A
Authority
JP
Japan
Prior art keywords
gas
sample
surface area
gaseous
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13258881A
Other languages
Japanese (ja)
Inventor
Kunihiko Sasaki
邦彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13258881A priority Critical patent/JPS5834342A/en
Publication of JPS5834342A publication Critical patent/JPS5834342A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • G01N15/0893Investigating volume, surface area, size or distribution of pores; Porosimetry by measuring weight or volume of sorbed fluid, e.g. B.E.T. method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To improve measuring accuracy of powdered body having >=500m<2>/g specific surface area, by constuting a sample tube with anhydrous quartz containing <=1ppm volatile components in a measuring apparatus of the specific surface area performing by an adsorption method. CONSTITUTION:A gaseous N2 11 adsorbed to a sample and a gaseous He 12 not adsorbed to the sample are mixed in a proportional mixing tank 13 and gaseous mixture is flowed at a constant flowing speed and is cooled in a cold trap. Then, said gas is passed through a TC detector 15 and the gaseous N2 11 is adsorbed to the sample in a sample tube 16. The tube 16 is made of anhydrous quartz containing <=1ppm volatile components. After reached adsorption equilibrium, the gaseous N2 is released because of heating the tube 16 at a normal temperature again and a peak of released gas is recorded on a recorder 18 after passing through the detector 15. A known volume N2 calibration gas 19 is introduced into the tube 16 for carrying out calibration and the peak is recorded and then, the quantity of the gaseous N2 adsorbed to the sample is found by comparing each peak. A specific surface area is measured by changing mixing composition of gaseous N2 and He and repeating the same process.

Description

【発明の詳細な説明】 本発明は、比表面積測定装置の改良に係り、測定粉体の
比表面積が500m”/g以上のものの測定精度を向上
せしめたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a specific surface area measuring device, and improves the accuracy of measuring powders having a specific surface area of 500 m''/g or more.

粉体の比表面積測定法には、大きく分けて、吸着法、湿
潤法、透過法、反応速度法などがあるが、比表面積の大
きい粉体では外部表面積の他に内部表面積、すなわち空
孔や割れ目などの粒子内部の表面積が大きく関わり、そ
れゆえに比表m1積が大きい粉体の測定方法には気相吸
着法が最適である1゜気相吸着法とは粉体に対する気体
の吸着量を測定しBET式に基づいて計算する方法であ
る。このBET式は多分子吸着に基づいて導かれた式で
あって、第1層の@着熱けE、に、第2層以下では、吸
着気体の液化熱Elに等しいと仮定し、さらに、吸着層
の厚さは、吸着気体の圧力がその温度の飽和蒸気圧に近
づくと無限大になると仮定している。
Methods for measuring the specific surface area of powders can be roughly divided into adsorption methods, wetting methods, permeation methods, and reaction rate methods.However, for powders with a large specific surface area, in addition to the external surface area, the internal surface area, that is, the pores and The gas phase adsorption method is the most suitable method for measuring powders where the internal surface area of particles, such as cracks, is largely involved, and therefore the m1 area of the specific table is large. This is a method of measuring and calculating based on the BET formula. This BET equation is an equation derived based on multimolecular adsorption, and it is assumed that @ heat deposition E in the first layer is equal to the liquefaction heat El of the adsorbed gas in the second layer and below, and further, The thickness of the adsorption layer is assumed to become infinite as the pressure of the adsorbed gas approaches the saturated vapor pressure at that temperature.

又、同一層内の吸着分子間には相互作用がないと考える
点は、ラングミュア−(Lang rmir )式(Q
 場合と同様である。以上の仮定より、 次式(1): 〔式中、Po:飽和蒸気圧、P:気体の圧力、ym :
全表面を1分子層でおおうに要する気体の容積、■=吸
着量、C:定数〕 で示される、いわゆるBET式が導かれる。
In addition, the point that there is no interaction between adsorbed molecules in the same layer is based on the Langmuir equation (Q
Same as in case. From the above assumptions, the following formula (1): [where Po: saturated vapor pressure, P: gas pressure, ym:
The so-called BET equation is derived, where the volume of gas required to cover the entire surface with one molecular layer, ■=adsorption amount, C: constant].

従って、P / v (Po−P)をP/P、に対して
プロットし、直線関係が成立すれば、表面積の測定に、
このBET式が適用できることが判る。なお、上記E、
 −Ee 式(])中の宇Wf’C1e−Hに等しく、ここで、R
は気体定数を、Tけ給体温度を表わす。一般に、実測値
が式(1)を満足するのは、0 、05 (P/ Po
 <0.35の範囲である。
Therefore, if P/v (Po-P) is plotted against P/P, and a linear relationship holds, then for measuring the surface area,
It can be seen that this BET formula can be applied. In addition, the above E,
-Ee is equal to uWf'C1e-H in formula (]), where R
is the gas constant, and T is the feed temperature. In general, the actual measured value that satisfies equation (1) is 0,05 (P/Po
<0.35.

以下に、このBET式を用いた従来の気相吸着法による
比表面積測定方法を詳述する。
Below, a method for measuring specific surface area by a conventional gas phase adsorption method using this BET equation will be described in detail.

一般的に、簡易迅速法として流通式ガス吸着法か用いら
れているが、図面に装置の原理図を示した。吸着ガスと
しては(a)試料に化学吸着しない、中)液化ガスが手
軽に得られる、(C)純度の良いガスが得られるなどの
点から、通常のBET表面積測定では主としてN、が用
いられている。この方法の特徴は、測定の全ての条件で
試料に実質的にg&着しない不活性キャリアーガス(通
常、Heが選ばれる)を希釈剤として吸着ガスの分圧を
変えてガス吸着かを測定することにある。通常、P/P
Generally, a flow-through gas adsorption method is used as a simple and rapid method, and the principle diagram of the device is shown in the drawing. As the adsorbed gas, N is mainly used in normal BET surface area measurements because (a) it does not chemically adsorb to the sample, (m) liquefied gas can be easily obtained, and (C) gas with good purity can be obtained. ing. The feature of this method is that gas adsorption is measured by changing the partial pressure of the adsorbed gas using an inert carrier gas (usually He is selected) as a diluent that does not substantially adhere to the sample under all measurement conditions. There is a particular thing. Usually P/P
.

け0.05〜0.35の範囲で3点を選んでBE’l’
法による計算を行なう。ここでPは7131.合ガス中
のN分圧(fiH,!i’)であり、Po  け使用し
た液体窒素の沸点における吸着ガスの飽和蒸気圧(vR
Hg)である。
Select 3 points in the range of 0.05 to 0.35 and select BE'l'
Perform calculations using the law. Here P is 7131. The partial pressure of N in the combined gas (fiH,!i') is the saturated vapor pressure of the adsorbed gas (vR) at the boiling point of the liquid nitrogen used.
Hg).

その測定方法は、捷ず、N!とHeの混合ガスを一定の
流速で流す。液体窒素で冷却された試料に、液体窒素の
湿度で、混合ガス中のN、を吸着し、混合ガスのN7分
圧に対して吸着平衡に達する。
The measurement method is N! A mixed gas of He and He flows at a constant flow rate. A sample cooled with liquid nitrogen adsorbs N in the mixed gas at the humidity of the liquid nitrogen, and adsorption equilibrium is reached with respect to the N7 partial pressure of the mixed gas.

次いで試料管を急速に加熱する。この加熱は、通常、室
温にもどすだけで十分である。試料に吸着していたN2
  は脱離し、パルスとなってTC検出器を通過して、
記録紙上に脱離ガスのピークが記録される。別に、キャ
リブレーションの目的で、容積既知のN、を送入してピ
ークを記録する。脱離ガスのピーク面積を測定してキャ
リブレーションピークの面積と比較すれば、試料に吸着
していたN、の量を求めることができる。このようにし
て吸着等混線上の1点を得る。同様にして、N。
The sample tube is then rapidly heated. This heating is usually sufficient to return the material to room temperature. N2 adsorbed on the sample
is desorbed and passes through the TC detector as a pulse,
The peak of the desorbed gas is recorded on the recording paper. Separately, for calibration purposes, pump a known volume of N and record the peaks. By measuring the peak area of the desorbed gas and comparing it with the area of the calibration peak, the amount of N adsorbed on the sample can be determined. In this way, one point on the attraction crosstalk is obtained. Similarly, N.

とHe  の混合ガスの組成を変えて上記の手順を3回
以上くり返し、イUられた吸着愈の測定結果からBET
式によって比表面積(m / 、!i’ )を求める。
Repeat the above procedure three or more times by changing the composition of the mixed gas of
Find the specific surface area (m/, !i') using the formula.

このようにして流通式ガス吸着法では粉体の比表面積を
測定する訳であるが、本発明者は比表面積の大きい粉体
では試料のサンプリング段階で問題が生じることを見い
出した。それはこの方法では、脱離ガスのピーク面積と
キャリブレーションガスのピーク面積が±30%の範囲
内でなければこのデータの乍頼性がなく、従って、この
方法には、比表面積の大きい、例えけ、10100O/
、!i’の粉体試料では、2〜31vの試料を精確に秤
量採取しAければならず、その上、ガラス試料管の重量
変動が比表面積の測定に大きな影響を与えるという欠点
があった。
In this way, the flow gas adsorption method measures the specific surface area of powder, but the inventors have found that powders with a large specific surface area cause problems in the sample sampling stage. In this method, the data is not reliable unless the peak area of the desorption gas and the peak area of the calibration gas are within a range of ±30%. Ke, 10100O/
,! In the case of the powder sample i', a sample of 2 to 31v must be accurately weighed and collected, and furthermore, there was a drawback that weight fluctuations of the glass sample tube greatly affected the measurement of the specific surface area.

本発明けかかる点を改良したもので極めて誤差の少ない
比表面積測定装置を提供するものである。
It is an object of the present invention to provide a specific surface area measuring device which improves on the points set out in the present invention and has extremely few errors.

すなわち吸着ガス及びキャリヤーガスを混合する比例混
合タンクと、混合されたガスを冷却するコールドトラッ
プと、コールドトラップを通過したガスを導入するTC
検出器と、TC検出器を通過したガスを導入し内部に粉
体試料を有する試料管と、試料管内に混合するキャリブ
レーションガスと混合ガスを冷却するコールドドラッグ
と、コールドトラップを通った混4合ガスを再び検出す
るTC検出器と、検出した値を記録する記録器とを具備
し、前記試料管が揮発成分が1 ppm以下の無水石英
によって構成されていることを特徴とする比表面積測定
装置に関するものである。
Namely, a proportional mixing tank that mixes adsorbed gas and carrier gas, a cold trap that cools the mixed gas, and a TC that introduces the gas that has passed through the cold trap.
A detector, a sample tube into which the gas that has passed through the TC detector is introduced and has a powder sample inside, a cold drag that cools the calibration gas and mixed gas mixed in the sample tube, and a mixed gas that has passed through the cold trap. A specific surface area measurement comprising a TC detector for detecting the combined gas again and a recorder for recording the detected value, wherein the sample tube is made of anhydrous quartz having a volatile component of 1 ppm or less. It is related to the device.

以下、本発明を実施例によって説明すれげ、図において
、試料に吸着するN、fス11及び試料に吸着しない不
活性キャリヤーガスであるHe  ガス12を比例混合
タンク13内で混合し一定の流速で流し、コールドトラ
ップで冷却してTC検出器15を通し試料管16内にあ
る試料に苅しN。
The present invention will be explained below with reference to examples. In the figure, N and F gas 11, which are adsorbed to the sample, and He gas 12, which is an inert carrier gas that is not adsorbed to the sample, are mixed in a proportional mixing tank 13 at a constant flow rate. The sample was cooled in a cold trap, passed through a TC detector 15, and then placed in a sample tube 16 with N.

ガスを吸着せしめる。吸着平衡に達した後、試料管16
を通ったガスはコールドトラップ17を通り、試料管は
再び常温に加熱されるので、内部の試料に段着したN、
ガスは脱離し、ノ量ルスとなってTO検出器15を通過
して記録器18土の記録紙に脱離ガスのピークが記録さ
れる。別に較正の目的で容積既知のN2  キャリブレ
ーションガス19を前記試料Ii1’+’ 16内に導
入してピークを記録すf]げ、脱削ガスのピーク面積を
測定L1キャリブレーションガスの−一り面積と比較す
れば試料に吸着さねたNt  の量を求めることができ
る。
Adsorbs gas. After reaching adsorption equilibrium, sample tube 16
The passed gas passes through the cold trap 17, and the sample tube is heated to room temperature again, so that the N,
The gas is desorbed and passes through the TO detector 15 in the form of a gas, and the peak of the desorbed gas is recorded on the recording paper of the recorder 18. Separately, for the purpose of calibration, N2 calibration gas 19 with a known volume was introduced into the sample Ii1'+' 16 and the peak was recorded. By comparing with the area, the amount of Nt that has not been adsorbed to the sample can be determined.

同様にしてN、ガスとl(eガスの混合組成を変え上記
の手順を3回以上繰返えせけBET式により比表面!i
f (m’/ g)を求めることができる。
In the same way, change the mixture composition of N, gas and l (e gas) and repeat the above procedure three or more times.
f (m'/g) can be found.

即ち、あらかじめ300℃、2時間加熱乾燥後デシケー
タ−中で放冷してから精確に重fii測定を行なった。
That is, the sample was dried by heating at 300° C. for 2 hours, allowed to cool in a desiccator, and then accurately measured for gravity.

本発明のippm以下の揮発性成分を含有する無水石英
試料管と従来の数1000 ppm の揮発性成分を含
有するガラス試料管約5gの試料管に活性炭粉末の試料
を約2〜3■採取して、試料管にN、ガスを送入しなが
ら300℃、2時間加熱乾燥後デシケータ−中で放冷し
てから精確に重量測定を行なった。300℃で、21F
8間加熱乾忰する理由は先にも述べた通り表面積の大き
い粉体は列部表面積よりも内部表面積、すなわち空孔や
割れ目などの粒子内部の表面積が大きな比重を占め、従
って試料に付着あるいは吸着している水は空孔や割れ目
などをふさぎ貞の表面積はtIられない。
Approximately 2 to 3 samples of activated carbon powder were collected into an anhydrous quartz sample tube of the present invention containing volatile components of less than ippm and a conventional glass sample tube containing about 1000 ppm of volatile components. Then, the sample tube was dried by heating at 300° C. for 2 hours while supplying nitrogen and gas, and then allowed to cool in a desiccator, followed by accurate weight measurement. At 300℃, 21F
The reason for heating and drying for 8 hours is, as mentioned earlier, that for powders with a large surface area, the internal surface area, that is, the surface area inside the particles such as pores and cracks, has a larger specific gravity than the surface area of the rows. The adsorbed water closes the pores and cracks, so the surface area of the material is not reduced.

よってその水を除去する操作を行なう。この様にして試
料量を測定したものについて流通式ガス吸着法により比
表面積を求めた結果を表に示す。
Therefore, an operation is performed to remove that water. The table shows the results of determining the specific surface area by the flow-through gas adsorption method for the sample whose amount was measured in this manner.

表 以上のごとく本発明に係る比表面測定装置極めて高精度
の測定を行なうことができ、誤差が少ないものである。
As shown in the table above, the specific surface measuring device according to the present invention can perform measurements with extremely high accuracy and has few errors.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の比表面測定装置の概念図である。 11・・・吸着ガス、12・・・キャリヤーガス、13
川比例混合タンク、14.17・・・コールドトラップ
、15・・・TC検出器、16・・・試料管、18・・
・記録器、19・・・キャリブレーションガス。
The figure is a conceptual diagram of the specific surface measuring device of the present invention. 11... Adsorption gas, 12... Carrier gas, 13
River proportional mixing tank, 14.17...cold trap, 15...TC detector, 16...sample tube, 18...
・Recorder, 19... Calibration gas.

Claims (1)

【特許請求の範囲】[Claims] 吸着ガス及びキャリヤーガスを混合する比例混合タンク
と、混合されたガスを冷却するコールドトラップと、コ
ールドトラップを通過したガスを導入するTC検出器と
、TC検出器を通過したガスを導入し内部に粉体試料を
有する試料管と、試料管内に混合するキャリブレーショ
ンガスと混合ガスを冷却するコールドトラップと、コー
ルドドラッグを通った混合ガスを再び検出するTC検出
器と、検出した値を記録する記録器とを具備し、前記試
料管が揮発成分が1 ppm以下の無水石英によって構
成されていることを特徴とする比表面積測定装置。
A proportional mixing tank that mixes adsorbed gas and carrier gas, a cold trap that cools the mixed gas, a TC detector that introduces the gas that has passed through the cold trap, and a tank that introduces the gas that has passed through the TC detector and enters the interior. A sample tube containing a powder sample, a cold trap that cools the calibration gas and mixed gas mixed in the sample tube, a TC detector that again detects the mixed gas that has passed through the cold drag, and a record that records the detected values. 1. A specific surface area measuring device, characterized in that the sample tube is made of anhydrous quartz having a volatile component of 1 ppm or less.
JP13258881A 1981-08-26 1981-08-26 Measuring apparatus of specific surface area Pending JPS5834342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13258881A JPS5834342A (en) 1981-08-26 1981-08-26 Measuring apparatus of specific surface area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13258881A JPS5834342A (en) 1981-08-26 1981-08-26 Measuring apparatus of specific surface area

Publications (1)

Publication Number Publication Date
JPS5834342A true JPS5834342A (en) 1983-02-28

Family

ID=15084845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13258881A Pending JPS5834342A (en) 1981-08-26 1981-08-26 Measuring apparatus of specific surface area

Country Status (1)

Country Link
JP (1) JPS5834342A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126841A (en) * 1984-07-09 1986-02-06 クアンタクロウム コ−ポレイシヨン Method and device for analyzing sample
JPS6180442U (en) * 1984-10-31 1986-05-28
JPS6182250U (en) * 1984-11-02 1986-05-31
JPS61163959U (en) * 1985-04-01 1986-10-11
EP0586698A1 (en) * 1991-05-30 1994-03-16 OHMI, Tadahiro Method and device for evaluating quantities of adsorbed impurities
CN102721753A (en) * 2011-03-31 2012-10-10 北京精微高博科学技术有限公司 Cascade dynamic nitrogen adsorption instrument
CN113866070A (en) * 2021-11-19 2021-12-31 郑州大学 Device and method for measuring micro surface area of macroporous material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126841A (en) * 1984-07-09 1986-02-06 クアンタクロウム コ−ポレイシヨン Method and device for analyzing sample
JPS6180442U (en) * 1984-10-31 1986-05-28
JPH0353157Y2 (en) * 1984-10-31 1991-11-20
JPS6182250U (en) * 1984-11-02 1986-05-31
JPH0353158Y2 (en) * 1984-11-02 1991-11-20
JPS61163959U (en) * 1985-04-01 1986-10-11
EP0586698A1 (en) * 1991-05-30 1994-03-16 OHMI, Tadahiro Method and device for evaluating quantities of adsorbed impurities
EP0586698A4 (en) * 1991-05-30 1994-04-27 Tadahiro Ohmi
CN102721753A (en) * 2011-03-31 2012-10-10 北京精微高博科学技术有限公司 Cascade dynamic nitrogen adsorption instrument
CN113866070A (en) * 2021-11-19 2021-12-31 郑州大学 Device and method for measuring micro surface area of macroporous material

Similar Documents

Publication Publication Date Title
Nelsen et al. Determination of surface area. Adsorption measurements by continuous flow method
Dimbat et al. Apparatus requirements for quantitative applications
US3555912A (en) Incremental method for surface area and pore size determination
Sheikh et al. Adsorption equilibria and rate parameters for nitrogen and methane on Maxsorb activated carbon
US4496249A (en) Method and apparatus for determining relative surface areas of a coated material on a substrate
Lindstrom et al. Adsorption from solution. III. New model for the kinetics of adsorption-desorption processes
US3211007A (en) Measurement of surface areas of solids
JPS5834342A (en) Measuring apparatus of specific surface area
US4407963A (en) Method for determining the concentration of an absorbable component in a gaseous mixture
Van Miltenburg et al. Transitions in chemically bonded organic phases on silica specific heat measurements by adiabatic calorimetry
US4149402A (en) Analytical method for determining desorption isotherm and pore size distribution of an absorbent material
Valentin et al. Determination of gas-liquid and gas-solid equilibrium isotherms by chromatography: II. Apparatus, specifications, and results
US3677066A (en) Method for preconditioning piezoelectric sorption detectors
Boucher et al. Determination of Henry's law constants, enthalpies and potential energies of adsorption, and surface areas by gas-solid chromatography: inert gases, nitrogen and methane on active carbon
US3771367A (en) Method of determining desorption isotherm curve and of scanning hysteresis
Shen et al. Adsorption isotherms for benzene-hexane mixtures
Bodnar et al. Estimation of Trace and Major Quantities of Lower Alcohols, Ethers, and Acetone in Aqueous Solutions. By Gas Liquid Partition Chromatography
Zajac et al. Determination of surface acidity of powdered porous materials based on ammonia chemisorption: comparison of flow-microcalorimetry with batch volumetric method and temperature-programmed desorption
Timms et al. The determination of impurities in carbon dioxide by gas chromatography, with special reference to coolant gas for nuclear reactors
US20020110921A1 (en) Method of analyzing microporous material
JP3958412B2 (en) Method for measuring moisture concentration in gas
SU1698709A1 (en) Method and device for measuring specific surface of solid bodies
Kainz et al. Microdetermination of carbon, hydrogen, and nitrogen by thermal conductivity measurement
Ostrovskii et al. An adsorption and calorimetric study of the interaction of hydrogen with chromium oxide
SU1562788A1 (en) Method of determining adsorption characteristics