JPS5834203B2 - Yellow-bellied goldenrod - Google Patents

Yellow-bellied goldenrod

Info

Publication number
JPS5834203B2
JPS5834203B2 JP48090339A JP9033973A JPS5834203B2 JP S5834203 B2 JPS5834203 B2 JP S5834203B2 JP 48090339 A JP48090339 A JP 48090339A JP 9033973 A JP9033973 A JP 9033973A JP S5834203 B2 JPS5834203 B2 JP S5834203B2
Authority
JP
Japan
Prior art keywords
tube
pipe
welding
inner tube
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48090339A
Other languages
Japanese (ja)
Other versions
JPS5039268A (en
Inventor
甫 中杉
剣 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP48090339A priority Critical patent/JPS5834203B2/en
Publication of JPS5039268A publication Critical patent/JPS5039268A/ja
Publication of JPS5834203B2 publication Critical patent/JPS5834203B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は溶接積層金属管の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a welded laminated metal tube.

衆知のごとく最近の大径薄肉鋼管の用途としては輸送用
ラインパイプが最も多く、今後この傾向は一層助長され
、内容物も原油やガスの一次戒品から漸次二次成品へと
移り変っている。
As is well known, the most common use of large-diameter, thin-walled steel pipes these days is for transportation line pipes, and this trend will only accelerate in the future, with the contents gradually shifting from primary products such as crude oil and gas to secondary products. .

このような傾向の中で要求されるラインパイプの特性は
、(1)破壊靭性の優れていること。
In response to these trends, line pipes are required to have (1) excellent fracture toughness;

(2)輸送物体によりフショクを起さないこと。(2) Do not cause fraying due to transported objects.

(3)輸送物体を不純化しないこと。(3) Do not impure the transported object.

(4)コスト的に安価なこと。(4) Low cost.

などがあげられる。etc. can be mentioned.

これらの要求に対し、従来方法としては次のごとくして
解決を試みてきた。
Conventional methods have attempted to solve these demands as follows.

即ち、(1)の破壊靭性については、積層鋼板を使用す
ることなどがそれである。
That is, regarding the fracture toughness (1), the use of laminated steel plates is an example.

現在迄の研究によりラインパイプの破壊靭性には2つの
特性即ち脆性破壊特性と不安定延性破壊特性がある。
Research to date has shown that the fracture toughness of line pipes has two characteristics: brittle fracture characteristics and unstable ductile fracture characteristics.

前者は板厚が薄くなれば材質が必ずしも良好である必要
はなく、一方後者については、稼動温度での衝撃吸収エ
ネルギーの高いことが必要である。
For the former, the material does not necessarily need to be of good quality as long as the plate thickness is thin, while for the latter, it is necessary that the impact absorption energy at the operating temperature be high.

しかし一般に吸収エネルギーを高くする製造法では脆性
破壊特性は劣る傾向にあり、一般に両者の両立は困難で
あった。
However, manufacturing methods that increase absorbed energy generally tend to have inferior brittle fracture properties, and it has generally been difficult to achieve both.

このため鋼管の材料となる鋼板は冶金的に結合した状態
に積層化することによって吸収エネルギーの高い鋼材で
不安定な延性破壊抵抗を改良し、一方脆性破壊抵抗に対
しては積層化によって補うことが可能となるのである。
For this reason, the steel plates used as the material for steel pipes are laminated in a metallurgically bonded state to improve unstable ductile fracture resistance with steel materials that have high absorption energy, while brittle fracture resistance is compensated for by lamination. becomes possible.

ここで従来方法の積層の意味は上述のごとく、もともと
層が一体化した素材であるか或いは、外層と内層を加工
の工程に於いて、層間を互いに全く冶金的に結合した状
態に固着せしめた状態をさすのである。
As mentioned above, the meaning of lamination in conventional methods is that either the layers are originally an integrated material, or the outer and inner layers are bonded to each other metallurgically during the processing process. It refers to the state.

加工工程において、この種の鋼管を積層化する技術とし
ては従来、次のごとき例が散見される。
In the processing process, the following examples have heretofore been seen as techniques for laminating this type of steel pipe.

1)爆発成型クラッド 2)圧延クラッド法 3)プラスチックライニング法 4)メタルライジング法 又(2)の腐食抵抗に対しては、積層材の腐食物体と接
触する。
1) Explosive molded cladding 2) Rolled cladding method 3) Plastic lining method 4) Metallizing method Or (2) For corrosion resistance, the laminate comes into contact with corroding objects.

面を腐食抵抗の強い材料たとえばステンレス鋼、Znメ
ッキ層などにすることによって補うことが可能であり、
一般にclad鋼材として市販されているものを使用す
ることで、又(3)の輸送物体を不純化しないためには
、輸送物体により金属物体が反応し腐食物を生成しない
ことが必要である。
This can be compensated for by making the surface a material with strong corrosion resistance, such as stainless steel or a Zn plating layer.
By using commercially available clad steel materials, and in order to avoid impurity of the transported object (3), it is necessary that the metal object does not react with the transported object and produce corrosive substances.

以上のごとく、要求される特性のうち(1)、(2)、
(3)については材料を冶金的に結合した状態に積層化
することによって、その目的は達せられる。
As mentioned above, among the required characteristics (1), (2),
Regarding (3), the objective can be achieved by laminating the materials in a metallurgically bonded state.

しかし、ここで最も重大な問題は(4)のコスト的な面
である。
However, the most serious problem here is the cost aspect (4).

前述の一般に知られている積層材料、或いは鋼管加工の
工程に於いて、積層化せしめる手段では、いずれも高価
につき、この種の大量使用の目的からは、市場性に全く
乏しく、実用的価値は全く存し得ないのである。
The above-mentioned generally known laminated materials and means for laminating them in the steel pipe processing process are both expensive and have no marketability for this type of mass use, and have no practical value. It cannot exist at all.

そこで本発明においては、破壊靭性に優れ、且つ、コス
ト的に安価な積層金属管の製造方法を提供するものであ
る。
Therefore, the present invention provides a method for manufacturing a laminated metal tube that has excellent fracture toughness and is inexpensive in terms of cost.

本発明における積層金属管の形状的な特徴は外管と内管
の界面全てを固着せしめないことにある。
A feature of the shape of the laminated metal tube in the present invention is that the entire interface between the outer tube and the inner tube is not fixed together.

換言すれば、積層体として外層と内層が全面的に完全に
一体化したものではないということである。
In other words, the outer layer and the inner layer are not completely integrated as a laminate.

更に本発明の最も利点とするところは、この製造方法を
実施するにあたり、特別な製造設備や複雑な工程を加え
ることなく通常の製造ラインに於いてでも可能なる点に
ある。
Furthermore, the most advantageous aspect of the present invention is that this manufacturing method can be carried out on a normal manufacturing line without adding any special manufacturing equipment or complicated steps.

本発明の基本的な考え方は、前述の通り従来の冶金的に
結合した状態に積層化する方法ではなく、外管の内径と
内管の外径との差をある範囲の値とし、あるいは互に接
する面が摩擦力で密着する状態にせしめることにある。
As mentioned above, the basic idea of the present invention is to set the difference between the inner diameter of the outer tube and the outer diameter of the inner tube within a certain range, or to mutually The purpose is to bring the surfaces in contact with each other into close contact due to frictional force.

本発明の考え方を第4図の応力−歪線図で説明すると、
いま外管を不安定延性破壊抵抗に優れた鋼管とし曲線A
1内管を薄肉の脆性破壊抵抗の優れた鋼管とし曲線Bと
する。
The concept of the present invention is explained using the stress-strain diagram in Figure 4.
Now, the outer tube is a steel tube with excellent unstable ductile fracture resistance, and curve A
1. The inner tube is a thin-walled steel tube with excellent brittle fracture resistance, and curve B is used.

この場合、外管の降伏点は内管より高いものを使用する
In this case, the yield point of the outer tube is higher than that of the inner tube.

そして外管の内径と内管の外径との差を内管が内圧を受
けて拡管しても脆性破壊しない程度のスキ間とすると、
仮に内圧を受けて拡管された内管は外管を押し広げて第
4図の点aまで塑性変形し、外管はその時点すまで塑性
変形しているが内圧がかからなくなると、外管と内管の
内部応力が互にバランスする点c 、 c’で外管には
正の残留応力、内管には負の残留応力を残して平衡状態
となる。
If the difference between the inner diameter of the outer tube and the outer diameter of the inner tube is set to a gap that will not cause brittle fracture even if the inner tube expands under internal pressure,
If the inner tube expands under internal pressure, it pushes the outer tube apart and deforms plastically to point a in Figure 4.The outer tube remains plastically deformed until that point, but when the internal pressure is no longer applied, the outer tube expands. At points c and c' where the internal stresses of the inner tube and the inner tube balance each other, an equilibrium state is reached with positive residual stress remaining in the outer tube and negative residual stress remaining in the inner tube.

このようにすると少くとも内圧を受けたときの初期の内
管の脆性破壊を防止でき、その後はそれ以上の内圧を受
けても外管の優れた不安定延性破壊抵抗及び積層化した
ことによる優れた脆性破壊抵抗を獲得し、全体として破
壊特性が優れた鋼管が得られるものである。
In this way, at least the initial brittle fracture of the inner tube when subjected to internal pressure can be prevented, and even after further internal pressure is applied, the outer tube has excellent unstable ductile fracture resistance and superior laminated structure. As a result, a steel pipe with excellent brittle fracture resistance and excellent overall fracture properties can be obtained.

即ち、本発明は(1)溶接により形成せしめる金属管を
多重に組合せる積層管の製造法において内管の外径と未
溶接開口部を有する外管の内径との差が内管の外径の5
φ未満のものを外管の溶接位置と内管の溶接位置が平行
して重ならないように嵌装した後開口部を溶接し内管と
外管とを固着せしめることを特徴とする溶接積層金属管
の製造法、(2)溶接により形成せしめる金属管を多重
に組合せる積層管の製造法において内管の外径と未溶接
開口部を有する外管の内径との差が内管の外径の3φ未
満のものを外管の溶接位置と内管の溶接位置が平行して
重ならないように嵌装した後開口部を溶接することによ
って内管と外管とを固着せしめ、更に内管を水圧または
機械的な方法で拡張し、外管の内面と内管の外面を密着
せしめることを特徴とする溶接積層金属管の製造法であ
る。
That is, the present invention provides (1) a method for manufacturing a laminated pipe in which multiple metal pipes are assembled by welding, in which the difference between the outer diameter of the inner pipe and the inner diameter of the outer pipe having an unwelded opening is equal to the outer diameter of the inner pipe; 5
A welded laminated metal characterized by fitting a piece smaller than φ so that the welding position of the outer tube and the welding position of the inner tube are parallel and do not overlap, and then welding the opening to fix the inner tube and the outer tube. In a pipe manufacturing method, (2) a laminated pipe manufacturing method that combines multiple metal pipes formed by welding, the difference between the outer diameter of the inner pipe and the inner diameter of the outer pipe with an unwelded opening is the outer diameter of the inner pipe. After fitting the outer tube so that the welding position of the outer tube and the welding position of the inner tube are parallel so that they do not overlap, the inner tube and the outer tube are fixed by welding the opening, and then the inner tube is fixed. This is a method for producing a welded laminated metal tube, which is characterized by expanding by hydraulic or mechanical methods to bring the inner surface of the outer tube into close contact with the outer surface of the inner tube.

次に本発明の製造の方法を詳細に説明する。Next, the manufacturing method of the present invention will be explained in detail.

UOE processで二重鋼管を製造する例、第1
図、第2図で示すUOprocessで内管1及び外管
2を製造する。
Example of manufacturing double steel pipes with UOE process, 1st
The inner tube 1 and the outer tube 2 are manufactured using the UO process shown in FIGS.

この場合外管の中に内管を押入容易ならしめるため内管
の外径より外管の内径が少し大きいことが必要である。
In this case, in order to easily push the inner tube into the outer tube, it is necessary that the inner diameter of the outer tube is slightly larger than the outer diameter of the inner tube.

これは板巾、0press die及びOpressの
UP−set代でコントロールする必要がある。
This needs to be controlled by the board width, 0press die, and Opress UP-set cost.

このUOprocessで製造したパイプのうち、内管
のシーム部3を密着するため仮づけ又は本溶接してパイ
プとし、外管のシーム部4は開口のままとし、内管を外
管に第1図のごとく押入する。
Of the pipes manufactured using this UOprocess, the seam part 3 of the inner pipe is tacked or permanently welded to fit tightly, the seam part 4 of the outer pipe is left open, and the inner pipe is attached to the outer pipe as shown in Figure 1. Push in like this.

この場合、必要に応じて外管を押し拡げて内管を押入し
てもよい(外管の開口部は(O〜1100)x程度とす
るとよい)。
In this case, if necessary, the outer tube may be expanded and the inner tube may be pushed in (the opening of the outer tube is preferably about (0 to 1100) x).

次に押入した内管と外管を一体化するため溶接する必要
がある。
Next, it is necessary to weld the inserted inner tube and outer tube to integrate them.

但し、内管をあらかじめ本溶接したパイプを用いる場合
は特に内管と外管とを溶接により一体化する必要はない
However, when using a pipe whose inner tube has been permanently welded in advance, it is not necessary to integrate the inner tube and outer tube by welding.

また外管の内面ビード及び内管の外面ビードの余盛は除
去した方が好ましい。
Further, it is preferable to remove the excess buildup on the inner surface bead of the outer tube and the outer surface bead of the inner tube.

内管と外管のシーム部3′と4′が一致していると溶接
が非常に困難なため押入時に、溶接時に楽な程度2本の
パイプの溶接及び開口線3と4を任意の角度ずらす必要
がある。
If the seams 3' and 4' of the inner and outer pipes match, it will be very difficult to weld, so when welding, weld the two pipes and set the opening lines 3 and 4 at an arbitrary angle to the extent that is comfortable for welding. It is necessary to shift it.

このようにしてできたパイプを内面(内管をあらかじめ
本溶接した場合は不要)及び外面から溶接することによ
り一体化する。
The pipes thus made are integrated by welding them from the inner surface (not necessary if the inner tube has been fully welded in advance) and the outer surface.

この場合の溶接は内外面の溶接部は込みが内面の場合は
外面板厚の1/3以上、外面溶接の場合は内面板厚の1
/3以上とすることが望ましい。
In this case, welding should be at least 1/3 of the outer plate thickness if the welds on the inner and outer surfaces are on the inner surface, or 1/3 or more of the inner plate thickness in the case of external welding.
/3 or more is desirable.

この場合、第2図内外管のキャップ(旦」P×100
)△Dが5多以上あると多重パイプの輸送時に溶接部が
自重による応力で破壊するため、5係以内とする必要が
ある。
In this case, the caps of the inner and outer tubes (Fig. 2) P x 100
) If ΔD is 5 or more, the welded part will break due to stress due to its own weight during transportation of multiple pipes, so it is necessary to keep it within 5.

また5φ以内にすると、仮に内管が内圧を受けて拡管し
塑性変形を受けた場合でも外管を押圧して優れた不安定
延性破壊特性及び脆性破壊特性が発揮される。
Furthermore, if the diameter is within 5φ, even if the inner tube expands under internal pressure and undergoes plastic deformation, it will press against the outer tube and exhibit excellent unstable ductile fracture characteristics and brittle fracture characteristics.

しかし強度的に一体化した構造が要求される場合は更に
第3図に示すごとく、溶接で一体化した積層管の界面を
密着するために内面より、水圧又は機械的に矢印の方向
へ拡管するとよい。
However, if an integrated structure is required for strength, as shown in Figure 3, it is possible to expand the pipe from the inner surface in the direction of the arrow by hydraulic pressure or mechanical means in order to make the interface of the laminated pipes integrated by welding stick together. good.

この場合は内外の拡管前のパイプのギャップ△Dは3%
以内にしないと、拡管時に溶接部が破壊する危険がある
とともに内面材の性質が劣化するために3φ以内が望ま
しい。
In this case, the gap △D between the inner and outer pipes before expansion is 3%.
If the diameter is not within 3φ, there is a risk that the welded portion will be destroyed during pipe expansion and the properties of the inner surface material will deteriorate, so it is desirable that the diameter be within 3φ.

この場合も前記と同様3多以内にすると強制的に拡管す
る場合でも、より有効に優れた破壊特性が発揮される。
In this case as well, if the number is within 3, even if the pipe is forcibly expanded, superior fracture characteristics will be exhibited more effectively.

以上の方法の組合せで必要あれば更に外管を準備し上記
の二重管を内管とすれば多重管の製造も容易である。
By combining the above methods, if necessary, prepare an outer tube and use the above-mentioned double tube as an inner tube, making it easy to manufacture multiple tubes.

但し、性能的にはΔDが5φ以内であれば内管と外管は
溶接により固着しなくても充分である。
However, in terms of performance, if ΔD is within 5φ, it is sufficient that the inner tube and outer tube are not fixed together by welding.

なお破壊靭性とコスト面のみを重視するならば、例示し
たごとく、二重鋼管をUOプロセス、或いはスパイラル
プロセス等により、製造すればよく、更に内面の腐食等
を重視するならば、内管にコスト面を配置しながら適当
な金属管を用いることによって目的を達し得る。
If you are only concerned with fracture toughness and cost, as shown in the example above, you can manufacture double-walled steel pipes using the UO process or spiral process. The objective can be achieved by using suitable metal tubes while arranging the surfaces.

本発明においては、以上のようなprocessにより
、多重金属管を安価に現在のpipe process
を大きく変えることなく製造可能とし、工業的価値を著
しく高めたことが特徴である。
In the present invention, by the process described above, multiple metal pipes can be manufactured at low cost using the current pipe process.
It is characterized by the fact that it can be manufactured without major changes, and its industrial value has been significantly increased.

次に本発明の溶接積層金属管の実施について説明する。Next, implementation of the welded laminated metal pipe of the present invention will be explained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は積層管の製造法で外管に内管を押入した状態の
概念図、第2図は二重管を外管の溶接のみで一体化した
状態の説明図、第3図は二重管を内外管より溶接して内
面より拡管して内外管を密着さす方法の概念図、第4図
は応力−歪線図である。 1・・・・・・内管、2・・・・・・外管、3・・・・
・・内管のシーム部、4・・・・・・外管のシーム部。
Figure 1 is a conceptual diagram of the state in which the inner pipe is pushed into the outer pipe in the laminated pipe manufacturing method, Figure 2 is an explanatory diagram of the state in which the double pipe is integrated only by welding the outer pipe, and Figure 3 is the two-layered pipe. FIG. 4 is a conceptual diagram of a method of welding a heavy pipe from the inner and outer pipes and expanding the pipe from the inner surface to bring the inner and outer pipes into close contact. FIG. 4 is a stress-strain diagram. 1...Inner pipe, 2...Outer pipe, 3...
... Seam part of inner tube, 4... Seam part of outer tube.

Claims (1)

【特許請求の範囲】 1 溶接により形成せしめる金属管を多重に組合せる積
層管の製造法において、内管の外径と未溶接開口部を有
する外管の内径との差が内管の外径の5φ未満のものを
外管の溶接位置と内管の溶接位置が平行して重ならない
ように嵌装した後開口部を溶接し、内管と外管とを固着
せしめることを特徴とする溶接積層金属管の製造法。 2 溶接により形成せしめる金属管を多重に組合せる積
層管の製造法において、内管の外径と未溶接開口部を有
する外管の内径との差が内管の外径の3多未満のものを
外管の溶接位置と内管の溶接位置が平行して重ならない
ように嵌装した後開口部を溶接することによって内管と
外管とを固着せしめ、更に内管を水圧または機械的な方
法で拡張し、外管の内面と内管の外面を密着せしめるこ
とを特徴とする溶接積層金属管の製造法。
[Scope of Claims] 1. In a method for manufacturing a laminated pipe in which multiple metal pipes are assembled by welding, the difference between the outer diameter of the inner pipe and the inner diameter of the outer pipe having an unwelded opening is the outer diameter of the inner pipe. Welding is characterized in that the inner tube and the outer tube are fixed by fitting the outer tube and the inner tube so that the welding positions of the outer tube and the inner tube are parallel and do not overlap, and then the opening is welded. Manufacturing method for laminated metal tubes. 2 In the manufacturing method of laminated pipes in which multiple metal pipes are assembled by welding, the difference between the outer diameter of the inner pipe and the inner diameter of the outer pipe with an unwelded opening is less than 3 times the outer diameter of the inner pipe. After fitting the outer tube so that the welding positions of the outer tube and the inner tube are parallel and do not overlap, the inner tube and the outer tube are fixed by welding the opening, and the inner tube is further fixed by hydraulic or mechanical 1. A method for producing a welded laminated metal tube, which is characterized by expanding the tube by a method and bringing the inner surface of the outer tube into close contact with the outer surface of the inner tube.
JP48090339A 1973-08-11 1973-08-11 Yellow-bellied goldenrod Expired JPS5834203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48090339A JPS5834203B2 (en) 1973-08-11 1973-08-11 Yellow-bellied goldenrod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48090339A JPS5834203B2 (en) 1973-08-11 1973-08-11 Yellow-bellied goldenrod

Publications (2)

Publication Number Publication Date
JPS5039268A JPS5039268A (en) 1975-04-11
JPS5834203B2 true JPS5834203B2 (en) 1983-07-25

Family

ID=13995749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48090339A Expired JPS5834203B2 (en) 1973-08-11 1973-08-11 Yellow-bellied goldenrod

Country Status (1)

Country Link
JP (1) JPS5834203B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3135966C2 (en) * 1981-09-11 1986-06-05 Hoesch Ag, 4600 Dortmund Process for the manufacture of multilayer screw sutures
JPS5881522A (en) * 1981-11-06 1983-05-16 Kawasaki Heavy Ind Ltd Lined pipe line and its manufacture

Also Published As

Publication number Publication date
JPS5039268A (en) 1975-04-11

Similar Documents

Publication Publication Date Title
US3798011A (en) Multilayered metal composite
US4883292A (en) Corrosion resisting steel pipe and method of manufacturing same
US5115963A (en) Superplastic forming of panel structures
CN110293149B (en) Manufacturing device and manufacturing method of bimetal composite capillary
US3419951A (en) Fabrication of metal structures
EP0522723B1 (en) Method of manufacturing 2-or 3-layered metallic tubing
US5261591A (en) Method of explosively bonding composite metal structures
US3208132A (en) Method of making a multi-walled chamber
NO164199B (en) MIKROBOELGEOVN.
JPS5834203B2 (en) Yellow-bellied goldenrod
US6842956B1 (en) Tubular connection method
US2819883A (en) Pressure-welded tubing turn
WO1997034101A1 (en) Improvements in or relating to bi-metal lined pipe
US5025975A (en) Composite tubular products
US3131725A (en) High tensile multi-layer cylinder
US2966729A (en) Method for accomplishing one side expansion in pressure welded passageway panels
US3744119A (en) Method for explosively bonding together metal layers and tubes
RU2291771C1 (en) Method for making high-strength laminate metallic tubes with layers of easy-to-melt metals
JPS60111791A (en) Production of multi-layered uoe pipe
US20190022801A1 (en) Method of making a corrosion resistant tube
JPH029543B2 (en)
JPS60206563A (en) Production of clad cylindrical body
JPH04182023A (en) Manufacture of clad metallic tube
JPH03189072A (en) Hear exchanger and its manufacture
JPS5978715A (en) Production of double pipe