JPS5833936B2 - magnetic bearing - Google Patents

magnetic bearing

Info

Publication number
JPS5833936B2
JPS5833936B2 JP54035573A JP3557379A JPS5833936B2 JP S5833936 B2 JPS5833936 B2 JP S5833936B2 JP 54035573 A JP54035573 A JP 54035573A JP 3557379 A JP3557379 A JP 3557379A JP S5833936 B2 JPS5833936 B2 JP S5833936B2
Authority
JP
Japan
Prior art keywords
magnet
magnetic bearing
spring constant
rotating
side magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54035573A
Other languages
Japanese (ja)
Other versions
JPS55129617A (en
Inventor
俊美 虻川
宏史 奥田
啓治 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP54035573A priority Critical patent/JPS5833936B2/en
Publication of JPS55129617A publication Critical patent/JPS55129617A/en
Publication of JPS5833936B2 publication Critical patent/JPS5833936B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0425Passive magnetic bearings with permanent magnets on both parts repelling each other for radial load mainly

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 本発明は非接触の磁気軸受に係り、特に高速回転体装置
の磁気軸受として好適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-contact magnetic bearing, and is particularly suitable as a magnetic bearing for a high-speed rotating body device.

第1図に従来公知の磁気軸受装置の構造を示す。FIG. 1 shows the structure of a conventionally known magnetic bearing device.

1は高速回転体である。1 is a high-speed rotating body.

2は磁気軸受の回転側磁石で、リング3によって軸4に
取りつけられている。
Reference numeral 2 denotes a rotating side magnet of the magnetic bearing, which is attached to the shaft 4 by a ring 3.

固定側磁石5は、回転側磁石3と同一高さで軸方向に同
一極性に着磁さへ回転側磁石の半径方向の外方に同心的
に配置されて、取付板6に固定されている。
The stationary magnet 5 is arranged concentrically outside the rotating magnet 3 in the radial direction so as to be magnetized with the same polarity in the axial direction at the same height as the rotating magnet 3, and is fixed to the mounting plate 6. .

かかる構成の磁気軸受は、リング状の磁石2と5の反撥
力によって、半径方向にラジアル求心力(ラジアルばね
定数)を持たせており、その特性は、第4図の破線に示
すように、固定側磁石5と回転側磁石の高さが一致した
所(軸方向変位が零)の時に、磁石間の反撥力が最大に
なるためラジアルばね定数の値も最大になる。
The magnetic bearing with this configuration has a radial centripetal force (radial spring constant) in the radial direction due to the repulsive force of the ring-shaped magnets 2 and 5, and its characteristics are as shown by the broken line in FIG. When the heights of the side magnet 5 and the rotating side magnet match (the axial displacement is zero), the repulsive force between the magnets is at its maximum, and the value of the radial spring constant is also at its maximum.

しかし、回転側磁石が軸方向の上下に変位すると、その
ラジアルばね定数の値は急激に小さくなる。
However, when the rotating magnet is displaced up and down in the axial direction, the value of its radial spring constant rapidly decreases.

一般に高速回転体の場合、回転体は遠心力により回転数
の上昇とともに軸方向に縮むため、上軸を介し回転体に
取り付けられている回転側磁石も軸方向に移動する。
Generally, in the case of a high-speed rotating body, the rotating body contracts in the axial direction as the rotational speed increases due to centrifugal force, so the rotating side magnet attached to the rotating body via the upper shaft also moves in the axial direction.

このため、前記したように磁気軸受のラジアルばね定数
の値は小さくなる。
Therefore, as described above, the value of the radial spring constant of the magnetic bearing becomes small.

このため、第1図のものでは回転体のクリチカルに伴っ
て発生する振れ廻り振動を抑制することが難かしかった
For this reason, with the one shown in FIG. 1, it is difficult to suppress the whirling vibration that occurs when the rotating body becomes critical.

また、定格回転数付近ではラジアルばね定数が小さくな
るので、耐震等に不利な磁気軸受となった。
In addition, the radial spring constant becomes small near the rated rotation speed, making the magnetic bearing disadvantageous for earthquake resistance.

本発明の目的は、上記した従来技術の欠点をなくシ、単
純な構造でラジアルばね定数を大きくでき、しかも一方
の磁石の軸方向移動によりラジアルばね定数が変化しな
い磁気軸受を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a magnetic bearing that can increase the radial spring constant with a simple structure, and in which the radial spring constant does not change due to axial movement of one of the magnets. .

本発明の特徴は、半径方向に対向して同心状に配置され
た1対の磁石の一方の軸方向の長さを、他方の磁石の軸
方向長さよりも長くし、さらに長さの長い磁石の軸方向
の少なくとも一方の磁極面に、磁性板を配置したことに
ある。
A feature of the present invention is that the axial length of one of a pair of magnets arranged concentrically and facing each other in the radial direction is longer than the axial length of the other magnet, and the longer magnet The magnetic plate is disposed on at least one magnetic pole surface in the axial direction of the magnetic plate.

磁石の軸方向への移動によるラジアルばね定数の変化が
少ない磁気軸受として、第2図に示すものが考えられる
As a magnetic bearing whose radial spring constant changes little due to the movement of the magnet in the axial direction, the one shown in FIG. 2 can be considered.

この第2図において、第1図と同一部品には同一符号を
記し、その説明を省略する。
In FIG. 2, parts that are the same as those in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted.

第2図が第1図と相違する点は、固定側磁石5の軸方向
高さ:h2を回転側磁石3の軸方向の高さhlより長く
したものである。
The difference between FIG. 2 and FIG. 1 is that the axial height h2 of the stationary magnet 5 is longer than the axial height hl of the rotating magnet 3.

一般に磁化された磁石は第3図の原理説明図に示したよ
うな等価電流で置き換えることができる。
In general, a magnetized magnet can be replaced with an equivalent current as shown in the principle explanatory diagram of FIG.

したがって、磁気軸受のラジアル力はこのような円形電
流7.8と9,10間に働く電磁力としてビオサバール
の公式から求めることができる。
Therefore, the radial force of the magnetic bearing can be determined from the Biot-Savart formula as the electromagnetic force acting between the circular currents 7.8 and 9,10.

第1図と第2図の磁気軸受では、7と9及び8と10で
は(へ)のばね定数が働き、7と10及び8と9では(
ト)のばね定数が得られるが、径方向のキョリが最も近
い8と9間で磁気軸受の特性が決定される。
In the magnetic bearings shown in Figures 1 and 2, a spring constant of (to) works at 7 and 9 and 8 and 10, and (to) at 7 and 10 and 8 and 9.
The spring constant of g) is obtained, but the characteristics of the magnetic bearing are determined between 8 and 9, which are the closest in radial direction.

かかる原理において、従来の第1図では回転側磁石が軸
方向に変位した場合、7と9.8と10及び7と10の
ラジアル力の値の減少は小さいが、ばね力を決定する8
と9の間のラジアル力が大きく減少する。
According to this principle, in the conventional Figure 1, when the rotating side magnet is displaced in the axial direction, the decrease in the radial force values of 7 and 9.8 and 10 and 7 and 10 is small, but 8, which determines the spring force.
The radial force between and 9 is greatly reduced.

このため、第1図のものでは軸方向変位に対して、ラジ
アルばね定数が急激に小さくなる。
For this reason, in the one shown in FIG. 1, the radial spring constant decreases rapidly with respect to axial displacement.

これに対し、第2図のものでは、回転側磁石より固定側
磁石の軸方向高さが長いため、回転側磁石が軸方向に変
位してもラジアル力に対する変位の影響が小さいものと
なる。
On the other hand, in the case of FIG. 2, the height of the stationary side magnet in the axial direction is longer than that of the rotating side magnet, so even if the rotating side magnet is displaced in the axial direction, the effect of the displacement on the radial force is small.

したがって8と9の電流間やその他の電流間のラジアル
力は軸方向変位に対して、変位前とほとんどその値が変
わらないので、第4図の実線に示すように、ラジアルば
ね定数は、軸方向に相当変位してもその値はほとんど変
らない特性になる。
Therefore, the radial force between currents 8 and 9 and other currents remains almost the same as before the displacement with respect to axial displacement, so as shown by the solid line in Figure 4, the radial spring constant is Even if there is a considerable displacement in the direction, the value will hardly change.

本発明は、第2図の磁気軸受にて得られる機能に、さら
にラジアルばね定数を犬きくできるという機能を付加し
たものである。
The present invention adds the function of increasing the radial spring constant to the function obtained by the magnetic bearing shown in FIG. 2.

このような本発明の好適な一実施例を、第5図に基づい
て以下に説明する。
A preferred embodiment of the present invention will be described below with reference to FIG. 5.

本実施例の磁気軸受は、固定側磁石5が第1図のように
取付板4に取付けらへ回転側磁石2が第1図のように回
転する軸2に固定されている。
In the magnetic bearing of this embodiment, a stationary magnet 5 is attached to a mounting plate 4 as shown in FIG. 1, and a rotating magnet 2 is fixed to a rotating shaft 2 as shown in FIG.

固定側磁石5の軸方向の長さは、第2図と同様に回転側
磁石2の軸方向の長さよりも長くなっている。
The length of the fixed side magnet 5 in the axial direction is longer than the length of the rotating side magnet 2 in the axial direction as in FIG. 2.

長さの長い固定側磁石5の軸方向の磁極面、例えば、上
端のN極面に、磁性板11を取付ける。
A magnetic plate 11 is attached to the magnetic pole surface in the axial direction of the long fixed side magnet 5, for example, to the N pole surface at the upper end.

磁性板11を設けることによって、磁性板11が鏡のよ
うに作用し、回転側磁石2および固定側磁石5の虚像で
ある回転側磁石2人および固定側磁石5Aが磁性板11
iこ対して回転側磁石2および固定側磁石5と対称の位
置に発生する。
By providing the magnetic plate 11, the magnetic plate 11 acts like a mirror, and the two rotating side magnets and the fixed side magnet 5A, which are virtual images of the rotating side magnet 2 and the fixed side magnet 5,
This occurs at a position symmetrical to the rotating magnet 2 and the stationary magnet 5.

従って、回転側磁石2および固定側磁石5が軸方向に2
組配置された状態と同じ機能を生じる。
Therefore, the rotating side magnet 2 and the stationary side magnet 5 are aligned in the axial direction.
It produces the same function as the state in which it is arranged in pairs.

このこと鴎単純な構造で磁気軸受のラジアルバネ定数を
増大させること(こつながる。
This leads to increasing the radial spring constant of the magnetic bearing with a simple structure.

本実施例のラジアルばね定数は、回転側磁石2と固定側
磁石5間のラジアルばね定数に、同軸側磁石2と回転側
磁石2Aとの間のラジアルばね定数を加えたものlこほ
ぼ等しい。
The radial spring constant of this embodiment is approximately equal to the sum of the radial spring constant between the rotating side magnet 2 and the stationary side magnet 5 and the radial spring constant between the coaxial side magnet 2 and the rotating side magnet 2A.

これらのラジアルはね定数は、正(安定)である。These radial spring constants are positive (stable).

実際には、回転側磁石2と固定側磁石5Aとの間のラジ
アルばね定数および回転側磁石2Aと固定側磁石5との
間のラジアルばね定数を考慮する必要がある。
Actually, it is necessary to consider the radial spring constant between the rotating magnet 2 and the fixed magnet 5A and the radial spring constant between the rotating magnet 2A and the fixed magnet 5.

これらのラジアルばね定数は、前述のものとに逆で負(
不安定)となり、前述の2つラジアルばね定数を加えた
値を減少させることになる。
These radial spring constants are negative (
(unstable), which reduces the sum of the two radial spring constants mentioned above.

しかし、負のラジアルばね定数を加えた値の給体値は、
回転側磁石2と回転側磁石2Aとの間のラジアルばね定
数の絶対値Oこ比べて極めて小さな値となり、無視して
もよい。
However, the feed value of the value plus the negative radial spring constant is
This value is extremely small compared to the absolute value O of the radial spring constant between the rotating side magnet 2 and the rotating side magnet 2A, and may be ignored.

また、本実施例は、第2図に示す磁石軸受と同様fこ、
回転側磁石2が軸方向に移動してもラジアルばね定数が
ほとんど変化しない。
Also, in this example, similar to the magnetic bearing shown in FIG.
Even if the rotating magnet 2 moves in the axial direction, the radial spring constant hardly changes.

本実施例によれば、ラジアルばね定数が大きくなりしか
も軸方向変位に対してラジアルばね定数の値がほとんど
変化しないので、クリチカル回転数を通過する際に発生
する振れ廻り振動を抑制でき、回転体を高速まで安定に
運転することができる。
According to this embodiment, the radial spring constant becomes large, and the value of the radial spring constant hardly changes with respect to the axial displacement, so it is possible to suppress the run-out vibration that occurs when the rotating body passes through the critical rotation speed. can be operated stably up to high speeds.

耐震性も向上する。第6図は本発明の他の実施例である
磁気軸受を示すものである。
Earthquake resistance will also be improved. FIG. 6 shows a magnetic bearing according to another embodiment of the present invention.

本実施例は、回転側磁石2の軸方向の長さを固定側磁石
5のその長さよりも長くし、磁性板11を回転側磁石2
の下部の磁極面に配置したものである。
In this embodiment, the length of the rotating side magnet 2 in the axial direction is made longer than that of the fixed side magnet 5, and the magnetic plate 11 is attached to the rotating side magnet 2.
It is placed on the lower magnetic pole surface.

本実施例においても前述の実施例と同様な効果が得られ
る。
In this embodiment as well, the same effects as in the above-mentioned embodiment can be obtained.

磁性板は、磁石Q)一方の磁極面またはそれらの両方に
取付けてもよい。
The magnetic plate may be attached to one pole face of the magnet Q) or to both of them.

本発明によれば、単純な構造で大きなラジアルばね定数
を得ることができ、磁石の軸方向の変位lこ対してもラ
ジアルばね定数はほとんど変化しない。
According to the present invention, a large radial spring constant can be obtained with a simple structure, and the radial spring constant hardly changes even if the magnet is displaced l in the axial direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気軸受の縦断面図、第2図は第1図に
示す磁気軸受の改良案である磁気軸受の縦断面図、第3
図は第2図に示す磁気軸受の原理を示す説明図、第4図
は軸方向変位に対するラジアルばね定数を第1図と第2
図の磁気軸受にて比較した特性図、第5図は本発明の好
適な一実施例である磁気軸受の縦断面図、第6図は本発
明の他の実施例の縦断面図である。 2・・・・・・回転側磁石、2′・・・・・・回転側磁
石の虚像、3・・・・・・保護リング、4・・・・・・
軸、5,5’・・・・・・固定側磁石、5′/−・・・
・・固定側磁石の虚像、6・・・・・・取付板、7.8
,9.10・・・・・・円形電流、11・・・・・・磁
性板N、S・・・・・・極性、hl・・・・・・回転側
磁石の軸方向高さ、h2・・・・・・固定側磁石の軸方
向高さ。
Figure 1 is a vertical cross-sectional view of a conventional magnetic bearing, Figure 2 is a vertical cross-sectional view of a magnetic bearing that is an improved version of the magnetic bearing shown in Figure 1, and Figure 3 is a vertical cross-sectional view of a magnetic bearing that is an improved version of the magnetic bearing shown in Figure 1.
The figure is an explanatory diagram showing the principle of the magnetic bearing shown in Figure 2, and Figure 4 shows the radial spring constant against axial displacement in Figures 1 and 2.
FIG. 5 is a longitudinal cross-sectional view of a magnetic bearing according to a preferred embodiment of the present invention, and FIG. 6 is a longitudinal cross-sectional view of another embodiment of the present invention. 2...Rotating side magnet, 2'...Virtual image of rotating side magnet, 3...Protection ring, 4...
Shaft, 5, 5'...Fixed side magnet, 5'/-...
...Virtual image of fixed side magnet, 6...Mounting plate, 7.8
, 9.10... Circular current, 11... Magnetic plate N, S... Polarity, hl... Axial height of rotating side magnet, h2・・・・・・Axial height of fixed side magnet.

Claims (1)

【特許請求の範囲】[Claims] 1 異なる直径を有するリング状の1対の磁石を同心状
(こ半径方向で対向するように配置してなる磁気軸受に
おいて、対向して配置された一方の前記磁石の軸方向の
長さを、他方の前記磁石の軸方向の長さよりも長くし、
長さの長い前記磁石の軸方向の少なくとも一方の磁極面
に、磁性板を配置してなる磁気軸受。
1. In a magnetic bearing in which a pair of ring-shaped magnets having different diameters are arranged concentrically (opposing each other in the radial direction), the length in the axial direction of one of the magnets arranged oppositely is: longer than the length in the axial direction of the other magnet;
A magnetic bearing in which a magnetic plate is arranged on at least one magnetic pole surface in the axial direction of the long magnet.
JP54035573A 1979-03-28 1979-03-28 magnetic bearing Expired JPS5833936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54035573A JPS5833936B2 (en) 1979-03-28 1979-03-28 magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54035573A JPS5833936B2 (en) 1979-03-28 1979-03-28 magnetic bearing

Publications (2)

Publication Number Publication Date
JPS55129617A JPS55129617A (en) 1980-10-07
JPS5833936B2 true JPS5833936B2 (en) 1983-07-23

Family

ID=12445493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54035573A Expired JPS5833936B2 (en) 1979-03-28 1979-03-28 magnetic bearing

Country Status (1)

Country Link
JP (1) JPS5833936B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL189929C (en) * 1979-12-19 1993-09-01 Ultra Centrifuge Nederland Nv RING MAGNETIC SYSTEM.
JPH048913A (en) * 1990-04-26 1992-01-13 Sumitomo Heavy Ind Ltd Non-contact bearing using superconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536635A (en) * 1978-09-04 1980-03-14 Sumitomo Special Metals Co Ltd Magnetic bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536635A (en) * 1978-09-04 1980-03-14 Sumitomo Special Metals Co Ltd Magnetic bearing

Also Published As

Publication number Publication date
JPS55129617A (en) 1980-10-07

Similar Documents

Publication Publication Date Title
US5894181A (en) Passive magnetic bearing system
IE56198B1 (en) Magnetic bearing for the triaxial positional stabilization of bodies
US3698775A (en) Magnetic support and motor structure
JPH0646036B2 (en) Axial flow molecular pump
US3909082A (en) Magnetic bearing devices
JPH0569397U (en) pump
JPH06508194A (en) magnetic bearing cell
US20200165010A1 (en) Single-gimbal magnetically suspended control moment gyroscope
US3929390A (en) Damper system for suspension systems
JPS58148296A (en) Turbo-molecular pump
JPS5833936B2 (en) magnetic bearing
JPS6146683B2 (en)
JPH08322194A (en) Axial magnetic levitation motor and rotating machine employing it
JPH0884454A (en) Damping apparatus for rotary machine
JPS6327577B2 (en)
JPH09322473A (en) Spindle motor of which rotary shaft having magnetic bearings rotates
JPH06200941A (en) Magnetic supporter
JPS59489Y2 (en) magnetic bearing
JPS631812A (en) Magnetic top bearing device for vertical type rotor
JPH0624383U (en) Variable gap synchronous motor
JPS6215775B2 (en)
JPS6020605B2 (en) magnetic bearing
RU2697636C2 (en) Hybrid magnetic bearing
JPH03255220A (en) Magnetic bearing device
JPH0343467Y2 (en)