JPS5833880A - Semiconductor photodetector - Google Patents
Semiconductor photodetectorInfo
- Publication number
- JPS5833880A JPS5833880A JP56131528A JP13152881A JPS5833880A JP S5833880 A JPS5833880 A JP S5833880A JP 56131528 A JP56131528 A JP 56131528A JP 13152881 A JP13152881 A JP 13152881A JP S5833880 A JPS5833880 A JP S5833880A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- conductivity type
- semiconductor
- ion implantation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 238000005468 ion implantation Methods 0.000 abstract description 11
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 238000002955 isolation Methods 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 241000751119 Mila <angiosperm> Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/11—Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体受光素子、いわゆるホトダイオードに関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light receiving element, a so-called photodiode.
逆方向にバイアス嘔れた半導体PN接合に元・tあてる
と、光により電子−正孔対が励起嘔れ少数キャリアの濃
度が熱平衡の値よシ大きくなシ逆方間電流が大きくなる
ことに光−電気変換素子に利用したホトダイオード(又
はホトトランジスタ)が知られている。従来のIC用の
日1ホトダイオードは、第1図に示すように例えばN型
エピタキシャル層1の表面にP型不純物、例えばB(ボ
ロン)t−イオン打込みして浅いP型層2を形成して受
光感度を上げるようにしている。この場合のイオン打込
みエネルギーは75KeV@JJiで、第2図に示すよ
うにに型層の表面にそって一つのpit@合を形成して
いる。When a source/t is applied to a semiconductor PN junction biased in the reverse direction, the electron-hole pairs are excited by the light, and the concentration of minority carriers becomes larger than the thermal equilibrium value, resulting in an increase in the reverse current. A photodiode (or phototransistor) used as a photo-electric conversion element is known. As shown in FIG. 1, a conventional photodiode for IC uses, for example, a shallow P-type layer 2 formed by implanting P-type impurities, such as B (boron) t- ions, into the surface of an N-type epitaxial layer 1. I am trying to increase the light receiving sensitivity. The ion implantation energy in this case was 75 KeV@JJi, and one pit was formed along the surface of the mold layer as shown in FIG.
ところでXaの高集積化に伴ないホトダイオードの高密
度化か要求されるが、前記のI’N接合の構造では面積
効率がわるく、これ以上の高密度化は困難である。Incidentally, as the integration of Xa becomes higher, higher density of photodiodes is required, but the above-mentioned I'N junction structure has poor area efficiency and it is difficult to achieve higher density.
本発明は上記の問題点【解決したものでその目的は受光
素子の効率同上にある。The present invention solves the above problems, and its purpose is to improve the efficiency of the light receiving element.
以下本発明は若干の実施例にそって詳述する。The present invention will be described in detail below with reference to some embodiments.
実施例1
#3図、第4図は本発明によるホトダイオードノー例【
示す。1はN型エピタキシャル81%でP−型基板3上
に形成され、PWlアイソレーション層4によって囲ま
れることで他の素子領埴から電気的に分離逼れる。5は
B(ボロン)イオン打込みによシy層1の表面から離れ
た領域に形成したP型層でイオン打込みエネルギーt−
例えば200に@y@度まで高めることで不純物イオン
飛程を深くし、$5gK示すように一回のイオン打込み
でM 81層との間に上下2つのPM接合(xj、
。Example 1 #3 and Figure 4 are examples of photodiodes according to the present invention [
show. 1 is formed on a P-type substrate 3 with 81% N-type epitaxial structure, and is electrically isolated from other device regions by being surrounded by a PWl isolation layer 4. 5 is a P-type layer formed in a region away from the surface of the layer 1 by B (boron) ion implantation, and the ion implantation energy t-
For example, by increasing the impurity ion range to 200°C, the range of impurity ions is deepened, and as shown in the $5gK example, two upper and lower PM junctions (xj,
.
Xj、)を形成するものでメ)、素子の表面から入′射
した党は上のPN接合面と下のPM接合面とで電子−正
孔を励起することにより、感度が増加するとともに面積
効率が大きくなり、受光素子としての効率を同上する。Xj, ), and particles incident from the surface of the element excite electrons and holes at the upper PN junction surface and the lower PM junction surface, increasing the sensitivity and increasing the area. The efficiency increases, and the efficiency as a light receiving element becomes the same as above.
同図において、6はイオン打込み1層5の電極取出しの
ためのP+拡散(ベース拡散時に行なう)層であって、
At電極7によりオーミックコンタクト烙れる。8はM
MilAの電極取出しのためのN+拡散(エミッタ拡散
)層であってAtt極9によりオーミックコンタクトち
れる。lOt:を表面絶縁Ml(81(h等)でめる6
実施例2
第6図、第7図は本発明によるホトダイオードの他の例
を示す。この例では同一マスクを使用し高エネルギー(
250KeV )と低エネルギー(40KeV )の2
度のB(ボロン)イオン打込みによりN型層1ali上
下で挾む形で2層2及びP層5′に形成する。これによ
ってPM接合が第7図に示すよう&C3つの異なる深さ
に形成されることになシ、受光面としてのPM接合面積
か3倍近く増大し、受光感度とともに高集積化が期待で
きる。In the figure, 6 is a P+ diffusion layer (done during base diffusion) for taking out the electrode of the ion-implanted first layer 5,
An ohmic contact is established by the At electrode 7. 8 is M
This is an N+ diffusion (emitter diffusion) layer for taking out the MilA electrode, and is broken into ohmic contact by the Att electrode 9. 6 Example 2 FIGS. 6 and 7 show other examples of photodiodes according to the present invention. In this example, the same mask is used and high energy (
250KeV) and low energy (40KeV).
By repeatedly implanting B (boron) ions, two layers 2 and P layer 5' are formed sandwiching the N-type layer 1ali above and below. As a result, although the PM junctions are formed at three different depths as shown in FIG. 7, the area of the PM junction as a light-receiving surface increases by nearly three times, and high integration as well as light-receiving sensitivity can be expected.
実施fl13
118図、第9図は本発明によるホトダイオードのさら
に他の実施例を示す。この例では同一マスクを使用しB
(ボロン)イオン打込みを高エネルギー(200KeV
)と低エネルギー(50Kev)と2回打込みを行な
って2層2及び2層5會形成し、その後、同じマスクで
2層2と1層5との中間の深さくエネルギー)でP(リ
ン)イオン打込みt行なうことでN 層11を形成する
。これによシ、2層2とN 層1aとの間でPN接合(
Xj、 )、N 層11と1層5との間でPM接合(x
jl)、1層5とM層1との間でPM接合(Xj、)t
−得られる。この例では実施例2 rcN”層11が加
わつ定形であるからこのH層11の存在によシN 取出
し部Bへの電気抵抗を小嘔くすることができる。したが
ってこの例では受光感度及び面積効率を大きくする効果
が−そう期待できる。Embodiment fl13 FIG. 118 and FIG. 9 show still other embodiments of the photodiode according to the present invention. This example uses the same mask and B
(Boron) ion implantation at high energy (200KeV)
) and low energy (50 Kev) to form 2nd layer 2 and 2nd layer 5, and then implant P (phosphorus) with the same mask to a depth between 2nd layer 2 and 1st layer 5. An N layer 11 is formed by performing ion implantation. This creates a PN junction (
Xj, ), N PM junction (x
jl), PM junction (Xj,)t between layer 1 5 and layer M 1
- Obtained. In this example, since the embodiment 2 has a regular shape with the addition of the rcN'' layer 11, the presence of this H layer 11 can reduce the electrical resistance to the N extraction portion B. Therefore, in this example, the light receiving sensitivity and The effect of increasing area efficiency can be expected.
本発明はホトダイオード内蔵No、受光/チツプエ○で
カメラ、光電スイッチ等に利用して極めて有効である。The present invention is extremely effective when used in cameras, photoelectric switches, etc. with built-in photodiodes and light receiving/chip ○.
tJL1図は従来のホトダイオードの原理的構造倉示す
断面図、第2図に′i第1図のムームm!#面における
不純物濃度分布を示す曲線図でおる。
第3図は本発明によるホトダイオードの一実施例を示す
平面図、第4図はaI3図のA−A視断面図、第5図は
第4図に対応する不純物濃度−1図、第6図は本発明に
よるホトダイオードの他の実施例を示す断面図、第7図
は第6図に対応する不純物濃度分布曲線図、第8図は本
発明によるホトダイオードの他の実施例を示す断面図、
第9図は第8図に対応する不純物濃度分布曲線図である
。
l・・・M′f!!!エピタキシャルsi層、2・・・
P型イオン打込み層、3・・・P−型81基板、番・・
・P型アイソレーション、5・・・FWイオン打込み層
、6・・・P+型拡散層、7・・・AAt極、8−・・
N 型拡散層、9・−・ムを電極、10・・・絶に膜、
11・・・N 型イオン打込層。
代理人 弁理士 薄 1)利 辛
第1図
鎖2図
表η ′
面 s’1us9ご
第 3 図
第 4 図Figure 1 is a sectional view showing the basic structure of a conventional photodiode, and Figure 2 is a cross-sectional view showing the basic structure of a conventional photodiode. This is a curve diagram showing the impurity concentration distribution on the # plane. FIG. 3 is a plan view showing an embodiment of a photodiode according to the present invention, FIG. 4 is a sectional view taken along line A-A of FIG. aI3, FIG. 5 is an impurity concentration-1 diagram corresponding to FIG. 4, and FIG. is a sectional view showing another embodiment of the photodiode according to the present invention, FIG. 7 is an impurity concentration distribution curve diagram corresponding to FIG. 6, and FIG. 8 is a sectional view showing another embodiment of the photodiode according to the present invention.
FIG. 9 is an impurity concentration distribution curve diagram corresponding to FIG. 8. l...M'f! ! ! Epitaxial Si layer, 2...
P-type ion implantation layer, 3...P-type 81 substrate, number...
・P type isolation, 5...FW ion implantation layer, 6...P+ type diffusion layer, 7...AAt pole, 8-...
N-type diffusion layer, 9...m electrode, 10... absolutely film,
11...N type ion implantation layer. Agent Patent Attorney Bo 1) Li Xin Figure 1 Chain 2 Diagram η ′ Surface s'1us9 Figure 3 Figure 4
Claims (1)
た領域で浅い第2導電型不純物導入層全形成し、上記基
体半導体と上記不純物導入層の上下両面とによる2つの
PM接合面會受元領域としたこと1ICq#像とする半
導体受光素子。 2、第1導電型半導体基体の5主表面に第2導電型不純
物導入による第1の層を浅く形成するとともに、上記半
導体基体内に第1の層から離れて第2導電蓋不純物導入
による第・20層會浅く形成し、−第1の層の下面、第
2の層の上下両面と基体半導体とによる3つのPM接合
面を受光領域とし友ことt−%黴とする半導体受光素子
。 3、第1導電型手導体基体の5主表面に第2導電型不純
物導入による第1の層を浅く形成し、第1の層から離れ
て基体内に第2導電型不純物導入による第2の層を浅く
形成するととも#C第rの層とI!!2層との聞に第1
導電型不純物導入による@3の層を浅く形成し、算1の
層と第3の層、第3の層の層と第2の層の上面及び第2
の層の下面と基体半導体とによる3つのPM接合面全受
光領域としたことを特徴とする半導体受光素子。[Scope of Claims] 1. Five main surfaces within a first conductivity type semiconductor substrate. A shallow second conductivity type impurity-introduced layer was entirely formed in a region away from the semiconductor light-receiving element to form two PM junction surface receiving regions formed by the base semiconductor and the upper and lower surfaces of the impurity-introduced layer. . 2. Form a shallow first layer on the main surface of the first conductivity type semiconductor substrate by introducing impurities of the second conductivity type, and form a second layer by introducing impurities into the semiconductor substrate away from the first layer into the semiconductor substrate. - A semiconductor light-receiving element in which 20 layers are formed shallowly, and the light-receiving regions are the lower surface of the first layer, the upper and lower surfaces of the second layer, and the base semiconductor. 3. Form a shallow first layer on the main surface of the first conductive substrate by introducing impurities of the second conductivity type, and form a second layer by introducing impurities of the second conductivity type into the substrate away from the first layer. When the layer is formed shallowly, #C-th layer and I! ! The first layer is different from the second layer.
A shallow @3 layer is formed by introducing a conductivity type impurity, and the top surface of the third layer and the third layer, the top surface of the third layer and the second layer, and the second layer are formed.
A semiconductor light-receiving element characterized in that the entire light-receiving area is formed by three PM junction surfaces formed by the lower surface of the layer and the base semiconductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56131528A JPS5833880A (en) | 1981-08-24 | 1981-08-24 | Semiconductor photodetector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56131528A JPS5833880A (en) | 1981-08-24 | 1981-08-24 | Semiconductor photodetector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5833880A true JPS5833880A (en) | 1983-02-28 |
Family
ID=15060170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56131528A Pending JPS5833880A (en) | 1981-08-24 | 1981-08-24 | Semiconductor photodetector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5833880A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS604255A (en) * | 1983-06-13 | 1985-01-10 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | Energy discriminator |
-
1981
- 1981-08-24 JP JP56131528A patent/JPS5833880A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS604255A (en) * | 1983-06-13 | 1985-01-10 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | Energy discriminator |
JPH0263312B2 (en) * | 1983-06-13 | 1990-12-27 | Intaanashonaru Bijinesu Mashiinzu Corp |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101052030B1 (en) | Electromagnetic radiation converter | |
US20040227061A1 (en) | Three-dimensional island pixel photo-sensor | |
KR101111215B1 (en) | Electromagnetic radiation converter and a battery | |
JPH0797653B2 (en) | Photoelectric conversion element | |
US6777729B1 (en) | Semiconductor photodiode with back contacts | |
US20060038249A1 (en) | Semiconductor light-receiving device and UV sensor apparatus | |
US3812518A (en) | Photodiode with patterned structure | |
US4920395A (en) | High sensitivity photodiode | |
US4219830A (en) | Semiconductor solar cell | |
KR20140140200A (en) | Solar cell and method for manufacturing the same | |
CN112289883B (en) | Three-dimensional semiconductor avalanche photoelectric detection chip and preparation method thereof | |
JPS5833880A (en) | Semiconductor photodetector | |
JP3448098B2 (en) | Crystalline silicon solar cells | |
RU2240631C1 (en) | Photodetector | |
JPH0276260A (en) | Integrated semiconductor device and its manufacture | |
KR20010061354A (en) | Method for fabricating photodiode of image sensor | |
JPH01216581A (en) | Semiconductor device | |
JPS5914180B2 (en) | photodetector cell | |
JPS55141766A (en) | Manufacturing of semiconductor light position detector | |
JPH07297444A (en) | Photoelectric conversion device and its manufacture | |
JPH02294079A (en) | Photosensor | |
JPH0559590B2 (en) | ||
JPH0230189A (en) | Semiconductor light detection device | |
KR900005127B1 (en) | Silicon photo diode for low sensing | |
JP3086514B2 (en) | Optical semiconductor device |