JPS5832973A - Method of taking out motive power by utilizing depth pressure of liquid during its forced circulation - Google Patents

Method of taking out motive power by utilizing depth pressure of liquid during its forced circulation

Info

Publication number
JPS5832973A
JPS5832973A JP55115658A JP11565880A JPS5832973A JP S5832973 A JPS5832973 A JP S5832973A JP 55115658 A JP55115658 A JP 55115658A JP 11565880 A JP11565880 A JP 11565880A JP S5832973 A JPS5832973 A JP S5832973A
Authority
JP
Japan
Prior art keywords
liquid
power
cylinder
tank
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP55115658A
Other languages
Japanese (ja)
Inventor
Kaoru Isobe
磯部 芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP55115658A priority Critical patent/JPS5832973A/en
Publication of JPS5832973A publication Critical patent/JPS5832973A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • F03B17/04Alleged perpetua mobilia

Abstract

PURPOSE:To take out motive power from the pressure of liquid in its deep position, by forcedly circulating the liquid in a vessel. CONSTITUTION:A water pump 12 is driven so that liquid in a liquid reservoir 9 is caused to flow from an outlet port 14 to the surface L of the liquid. The liquid in a pressure-receiving open cylinder 2 is circulated at a constant speed through the cylinder 2, the liquid lifting pump 12 and a liquid reservoir 1 so that a constant depth H4 is maintained. A turbine 5 provided at the open part 4 of the bottom of the pressure-receiving open cylinder 2 is rotated at a constant speed. The turning effort of the turbine 5 is transmitted through a rotary shaft 6 to a motive machine 8 in a motive power chamber 7. Since the height of the liquid surface in the reservoir 1 is kept constant, the force caused at the open part 4 of the bottom of the cylinder 2 is made constant. The force is taken out through the turbine 5.

Description

【発明の詳細な説明】 本発明は一定水位を維持する液槽内又は河川、湖%Ni
%貯水池等に開口受圧筒を設け、該液槽内の液体を強制
循環せしめて液深の深い位置での圧力を利用した動力取
出し方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is designed to maintain a constant water level in liquid tanks, rivers, and lakes.
This invention relates to a power extraction method that utilizes the pressure at a deep position by providing an open pressure receiving cylinder in a water reservoir or the like, forcing the liquid in the liquid tank to circulate, and utilizing the pressure at a deep position.

以下に図示の実施例に基きその内容について説明する0 1け液槽でその深さ■が約12mのものを採用してあり
、液体としては例へば20℃の水、塩水、プロピレング
リコール水溶液(寒冷地方で有効である)等を採用して
いる。
The contents will be explained below based on the illustrated embodiment.A single liquid tank with a depth of approximately 12 m is used, and examples of liquids include water at 20°C, salt water, and propylene glycol aqueous solution (cold water). effective in rural areas).

2け液槽l内に設置した開口受圧筒で高さHlが1mの
支柱3上に設けてあり、下方から液体が流入し易いよう
に考慮しであるO この開口受圧筒2の筒底開口部分4の断面積ムは1♂に
採っである。
It is an open pressure receiving cylinder installed in a 2-layer liquid tank 1, and is installed on a support 3 with a height Hl of 1 m, and is designed so that liquid can easily flow in from below. The cross-sectional area of portion 4 is 1♂.

5は動力取出しのための機器としてのタービンであって
前記筒底開口部分4に配置せしめである0 6Fi回転軸でタービy5と直結してあり、該タービン
5の回転力を動力室7の動力機器8へ伝動する機能を有
している0 9は開口受圧@2の上部に設けた溜液槽で断面積もが1
111’で高さItsが3mである。
Reference numeral 5 denotes a turbine as a device for extracting power, and it is directly connected to the turbine y5 by a rotating shaft arranged in the cylinder bottom opening 4, and the rotational force of the turbine 5 is transferred to the power of the power chamber 7. 09, which has the function of transmitting power to the device 8, is a reservoir tank installed at the top of the open pressure receiving @2, with a cross-sectional area of 1
111' and its height Its is 3 m.

10は開口受圧筒2の上部開口部、11は揚液管で開口
断面積Apが1/、高さH8がImである。
Reference numeral 10 indicates an upper opening of the open pressure receiving cylinder 2, and 11 indicates a liquid pumping pipe, the opening cross-sectional area Ap of which is 1/, and the height H8 of which is Im.

12は揚液ポンプで横軸々流上−ター131Cよって作
動し、開口受圧筒2及び溜液槽9内の液体を揚液し、放
出口!4より液槽1円に放出し液体を強制循環せしめて
いる0 冑、液面りと開口受圧筒2の筒底開口部分4との間の深
さ即ち液深Ha#Pi10 mである。
Reference numeral 12 denotes a liquid lift pump which is operated by a horizontal shaft upstream tank 131C, lifts the liquid in the open pressure receiving cylinder 2 and the stored liquid tank 9, and discharges the liquid from the discharge port! 4, the liquid is forced to circulate in the liquid tank 1, and the depth between the liquid level and the bottom opening 4 of the open pressure receiving cylinder 2, that is, the liquid depth Ha#Pi is 10 m.

次に叙上の構成より成る本発明の作用について説明する
Next, the operation of the present invention constructed as described above will be explained.

先ず、液槽l内の20℃の水の水深Ha= 10m K
於ける静水圧は、 一般式   f a fg@ 1!−・・(1)より求
めることが出来る。
First, the depth of water at 20°C in the liquid tank L is Ha = 10m K
The hydrostatic pressure at is the general formula f a fg @ 1! - It can be obtained from (1).

舷f/Cf=水の密t−9*s神/1 g 冨重力の加速度x9.8m/see”1:: 1!讃水深冨lI4−10m とすると、 冨’378G4 (Nψeeり となる。Gender f/Cf=water density t-9*s god/1 g Gravity acceleration x9.8m/see”1:: 1! Sansui Fukatomi I4-10m Then, Tomi’378G4 (Nψeeri becomes.

一方、水蒙!!4xiom即ち、開口受圧12の筒底開
口部分4に於いて発生する力又は仕事Wは、一般式PG
・ム・v−・・・・・(2)より求めることが出来る。
On the other hand, Suimong! ! 4xiom, that is, the force or work W generated at the cylinder bottom opening portion 4 of the opening pressure receiving pressure 12 is expressed by the general formula PG
・mu・v−・・・・・・It can be obtained from (2).

鼓K  73m静水のゲージ圧−etsoa(’5y 
  、)ムM−曽底開口部分く4)の断面積−IIV=
流体の速度”1%。。(揚液ポンプ12の揚液量をl/
  、とし念場合、−・C 流速はIQ/  となる) S・C とすると、 仕事W−97804(kl/I1.、。。り刈(♂)×
1悄4゜。)−97804(凱嗜、。―) となる。
Tsuzumi K 73m still water gauge pressure - etsoa ('5y
, ) Mu M - cross-sectional area of the bottom opening part 4) - IIV =
Fluid velocity is 1%. (Liquid volume pumped by pump 12 is 1%.
, then, -・C The flow velocity becomes IQ/) S・C Then, the work W-97804 (kl/I1.,... Rearing (♂)×
1° 4°. )-97804 (Kai Shu,.-) becomes.

而して、揚水ポンプ12を作動せしめて溜液槽9円の液
体を毎秒1dstfLすると仮定し、この液tt揚液ポ
ンプ12の放出口14より液面LK放流することKよっ
て、開口受圧筒2内の液体は常に一定の流速で開口受圧
筒2、揚液ポンプ12.液槽lと循環し、液体の自然損
失を無視すれば一定の深さH4−1011を維持するこ
ととなる。
Assuming that the water pump 12 is activated and the liquid in the reservoir tank 9 is increased to 1 dstfL per second, the liquid level LK is discharged from the discharge port 14 of the liquid water pump 12. Therefore, the opening pressure receiving cylinder 2 The liquid inside the open pressure receiving cylinder 2, the liquid pump 12. If the liquid circulates with the liquid tank 1 and the natural loss of liquid is ignored, a constant depth H4-1011 will be maintained.

淘、現実には蒸発郷により液位が変動するので補充する
必要がある。
In reality, the liquid level fluctuates due to evaporation, so it needs to be replenished.

一方、前記した開口受圧筒2の筒底開口部分4に設けた
タービン5は一定の速度で回転し、その回転力を回転軸
6t−介して動力室7内の動力機器8に伝達される。
On the other hand, the turbine 5 provided in the bottom opening portion 4 of the open pressure receiving cylinder 2 rotates at a constant speed, and its rotational force is transmitted to the power equipment 8 in the power chamber 7 via the rotating shaft 6t.

他方、前記した揚液ポンプ12は毎秒1mFの液体を高
さ71HW 1 m%開ロ断面積ム9−1♂の揚液管に
より揚液しているので、横軸々流モー鼾13が揚液に費
すカーは %−F”g−シ・・・・・・・・・(3)によって求め
ることが出来、従って、 WM−998(鵬令)×東8 (m/sea鵞)×1−
;978α4(大口、#・Cり となる。
On the other hand, since the liquid pump 12 described above lifts liquid at a rate of 1 mF per second through the liquid pump with a height of 71 HW and a 1 m% open cross-sectional area M9-1♂, the transverse axis flow mode 13 is The car spent on liquid can be found by %-F''g-shi... (3), therefore, WM-998 (Peng Ling) x East 8 (m/sea) x 1-
;978α4 (large mouth, #/C).

故に、タービン5により砲り出し得る力、即ち仕事W?
は WT冨W″′″町 −97804−9780,4 = 5sozas(!λ1.。。り となる・ 要するに、開口受圧筒2内の液体全揚程して溜液槽9内
に貯った水11mmポンプ12により連絡して揚液し次
いで液槽1の液面LK放出し、液面の高さを一定に維持
することkより、筒底開口部分4に発生する力を一定に
することが出来、この力をタービンSにより仕事Wとし
て引き出し、且つモーターの費し九仕事WMt差し引く
ことKよりW?なる大亀な動力を得ることが出来る。間
、上記の計算例では各部分の損失抵抗を無視したもので
あるが、この損失抵抗を考慮し九としても、その差し引
きは正(プラス)となり大、なる動力を得ることが可能
テアリ1童業上きわめて有益である0淘本実施例では液
槽での例奢示しであるが河川、湖、海、貯水池等で行え
ば更に好結果を生ずるものである。又本発明を複数個並
設して利用、すればより一層大きな動力を得ることがで
きることは勿論である。
Therefore, the force that can be exerted by the turbine 5, that is, the work W?
is WT TomiW'''' Town-97804-9780,4 = 5sozas(!λ1...) In short, the total height of the liquid in the open pressure receiving cylinder 2 is 11 mm of water stored in the reservoir tank 9. By communicating with the pump 12 to pump the liquid and then discharging the liquid level LK in the liquid tank 1 to maintain the liquid level constant, the force generated in the cylinder bottom opening 4 can be made constant. , by extracting this force as work W by the turbine S and subtracting the work done by the motor WMt, we can obtain a large power of W? from K. In the above calculation example, the loss resistance of each part is ignored. However, even if this loss resistance is taken into account, the deduction is positive (plus), and it is possible to obtain a large amount of power. This is a modest example, but even better results will be obtained if it is carried out in rivers, lakes, seas, reservoirs, etc. Also, if multiple units of the present invention are installed in parallel and used, even greater power can be obtained. Of course it can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、第2図は第1図の要部
の横断平面図である。 1・・・液槽  2・・・開口受圧筒 4・・・筒底開口部分  5・・・タービン8・・・動
力機器    9・・・溜液井11・・・揚液管   
12・・・揚液ポンプ第2図 明   細   書            IL 発
明の名称 液体の常時強制循環時に於いて発生する液体の流速と液
深圧力とを利用した動力取出し方法2、特許請求の範囲 液体中に、筒底開口部分4及び溜液槽9を有する開口受
圧筒2t−配置し、前記筒底開口部分4から液体を流入
せしめ、上部開口部10を経程すると筒内の液体は、溜
液槽9の液体が機器により強制揚柳さnて液Ii!に放
出される液量と比例する液11%流速を得て受圧筒2内
を上昇して溜液槽9に至り、更に同層液槽9より機器に
より液体表面へ放出されて、液面を常に一定の高さに維
持すべく該液体を常に強制循環せしめて液圧を不変にす
る一方、前記筒底開ロ部分4附近に動力取出しのための
機器−を配設した゛液体の常時強制循環時に於いて発生
する液体の流速と液深圧力とを利用した動力蛾出し方法
発明の詳細な説明 本発明は一定水位を維持する液槽内又は河川、湖、海、
貯水池等に開口受圧筒を設け、該液槽内の液体を強制循
環せしめて液深の深い位置での圧力を利用し九動力暖出
し方法に関するものである。 以下に図示の実施例に基きその内容について説明する。 1は液槽でその深さ■が約12mのものを採用してあり
、液体としては例へば20℃の水、塩水、プロピレング
リコール及びプロピレングリコール水溶液(共に寒冷地
方で有効である。)等を採用している。 2は液槽1円に設置した高さがIonの開口受圧筒でそ
の上部は液面りより1m下に位置するようにし又高さH
Iが1mの支柱3上に設けてあって、該開口受圧筒2t
−固定し安定を図り且つ下方から液体が流入し易いよう
に考慮しである。 この開口受圧筒2の筒底開口部分4の断面積A#−1t
l♂に採っである。 5は動力取出しの九めの機器としてのタービンであって
、前記筒底開口部分4に配置せしめである。 6Fi回転軸でタービン5と直結してあり、該タービン
5の回転力を動力憲7の動力機器8へ伝動する機能を有
している。 9は開口受圧筒2の上部に設けた溜液槽で断面積ムpが
1m”で高さHlが3mである。10は開口受圧筒2の
上部開口部、11は揚液管で開口断面積ム9が1m/、
高さHaが1mである。 12は揚液するための機器としての揚液ポンプで横軸々
流上−ター13によって作動し、溜液槽9内の液体を揚
液し、放出口14より液槽1内に放出し開口受圧筒2並
びに溜液槽9円の液体を強制循環せしめている・ 尚、液面りと開口受圧筒2の筒底開口部分4との間の深
さ即ち液深H4はl1mである・次に叙上の構成より成
る本発明の作用について説明する。 先ず、液槽1円の20Cの水の水@H4−ttmに於け
る静水圧は、 一般式 r−1・H・・・・・・(1)より求めること
が出来る。 鼓にP−水の密度−9981,4th 6−動の加速度−9−8m/B” H−水深! H,w l l H とすると 静水の圧力Pは P ロ P=−998(Kf/j)X9.8(z//sすXll
(m)中to7ss+(’4/n、sl  )となる。 今、鼓に社団法人日本機械学会発行(昭和54年8月2
0日発行)の機械工学Bエマニュアル「(5)流体工学
・流体機械におけるS工の使い方」と称する文献のP4
に於ける表5・6を単位の換算に採用すると (!! SS S一部抜すい) P=107584(Pa) =107.584(KPa) 中107.6(KPa) となる。 一方、水深114”−11B即ち、開口受圧筒2の筒底
開口部分4に於いて発生する動力又は仕事率Fi 一般式 PaA−V−・・・・・(2)より求めること
が出来る。 鼓Kp−静水の圧力−107584(h/mad” )
ム=筒底開ロ部分4の断面積==1m1V;流体の速度
−1%(揚液ポンプ12の揚液量t−ed19mとした
場合、流速は1 rrXsとなる。) とすると、 動力又は仕事率W筐P@A”V =107584(−・♂企) となる。 この動力又は仕事率wt表5.6により単位の換算を行
うと W−107584(W) =107.584(Kw) +107.58(Kw) となる。 而して、揚水ポンプ12を作動せしめて溜液檜9円の液
体を毎秒1−揚液すると仮定し、この液量を揚液ポンプ
12の放出口14より液面りに放流することによって、
開口受圧筒2同の液体は常に一定の流速で開口受圧筒2
、揚液ポンプ12.液槽1と循環し、液体の自然損失を
無視すれば、一定の深さH4=11mを維持することと
なる。 陶、現実には蒸発等圧より液位が変動するので補充する
必要があり、又液槽lに蓋をして蒸発を防ぐようにして
もよい・ 一方前記した開口受圧筒2の筒底開口部分4に設けたタ
ービン5は一定の速度で回転し、その回転力を回転軸6
1介して動力室7内の動力機器8に伝達さする。 他方、前記した揚液ボンダ12Fi、毎秒111/の液
体を高さ■・−1m、開口断面積ムpm l @″の揚
液管により揚液しているので、横軸々流上−ター13が
揚液に費す動力WMは WM”  I’s l−Ha  e Apll v;P
・ムp@v =  998 (’l/1)X9.8(m/81 )X
 1(+111)XI(IIう刈(ちし≦]= 97&
0.4 (ff@l//is )となる。 これを前記した表器6により単位の換算を行うと WM−9780,4(7) 中948 (KW) となる。 故にタービン5により増り出し得る力、即ち動力WTは WT口w −WM コ107.58(聰)−9,78(KW)諺e 7.8
 (m) となる。 要するに、開口受圧筒2円に流入し溜液槽9内に貯った
水t−揚液ポンプ12により揚液し次いで液槽1の液面
LK放出し、液面の高さを一定に維持することにより、
筒底開口部分4に発生する力を一定にすることが出来、
この力をタービン5により仕事Wとして引き出し、且つ
モーターの費した仕事WMを差し引くことによりWTな
る大きな動力を得ることが出来る。 尚、上記の計算例では各部分の損失抵抗を無視したもの
であるが、この損失抵抗t−考慮したとしても、その差
し引きは正(プラス)となり大きな動力を得ることが出
来、産業上きわめて有益である。 本実施例では液槽での例を示しであるが河川、湖、海、
貯水池等で行えば更に好結果を生ずるものである。 又本発明装置即ち開ロ受圧筒2@:複数個並設して利用
すれば一層大きな動力を得ることができ頁にga図に示
す如く開口受圧筒2の筒底開口部分4を広くすればより
高効率となる。 未 図面の簡単な説明 第1図は本発明の詳細な説明図、第2図は第1図の要部
の横断平面図、第3図は他の実施例としつ開口受圧筒の
筒底開口部分の拡大図である。 1・・・液槽 2・・・開口受圧筒 4・・・筒底開口
部分11・・・揚液管  12・・・揚液ポンプ第・う
図 71.6よ、1□1□81 特許庁長官島田春樹殿 1、事件の表示 2゜ 昭和55年特  許 願第115658号3、 補正を
する者 事件との関係      特 許 出 願 人4、代理
人 発明の名称 液体の常時強制循環時に於いて発生する液体の流速と液
深圧力とを利用した動力権出し方法特許請求の範囲 (1) 有 一層 流 表 2条 時強制循環時に於いて発生する液体の流源液深圧力とを
利用した動力窄めし方法 ■ 特  求の範 第1項の配 に於いて、動設した液
体の常時強制循環時に於いて発生する液体の流速と液深
圧力とを利用した動力申出し方法 本発明は一定水位を維持する液槽内又は河川、湖、海、
貯水池等に開口受圧筒を設け、該液槽内の液体を強制循
環せしめて液深の深い位置での圧力を利用した動力申出
し方法に関するものである。 以下に図示の実施例に基きその内容について説明する。 第一の実施例(第1図乃至第2図)について。 1#′i液槽でその深さHが約12mのものを採用して
あり、液体としては例へば20℃の水、塩水、プロピレ
ングリコール及ヒプロビレングリコール水溶液(共に寒
冷地方で有効である。)等を採用している。 2#′i液槽1内に設置し九高さが10mの開口受圧筒
でその上部は液面りより1m下に位置するようにし又高
さlitが1mの支柱3上に設けてあって、該開口受圧
筒2゛を固定し安定を図り且つ下方から液体が流入し易
いように考直しである。 この開口受圧筒2の筒底開口部分4の断面積Aは1m”
に採っである。 5Fi動力な出しのための機器(動力申出し装置f)と
しての水中タービンであって、前記筒底開口部分4に配
着せしめである。又この水中タービン5を筒底開口部分
4と上部開口W610との間の任意の位置に配設しても
よい。 6は回転軸で水中タービン5と直結してあり、該水中タ
ービン5の回転力を動力室7の動力機器8へ伝動する機
能をも有している。 9は開口受圧筒2の上@に設けた溜液槽で断面積Aoが
111”以上で高さH!が3m以上である。 この溜液槽9の容積は状況により増量することは勿論で
ある・ 10II′i開口受圧筒2の上部開口部、11Fi揚液
管で開口断面積Apが1−1″、高さH3が1mである
。 崗、この揚液管11t−第4図に示す如く揚液ポンプの
一部分とみなしてもよい・ 12Fi揚液するための機器としての揚液ポンプでモー
ター13によりて作動し、舗液槽9内の液体を揚液し、
放出口14より液槽1内に放出し溜液槽9内の液体を強
制循環せしめている・尚、液面りと開口受圧筒2の筒底
開口部分4との間の深さ即ち液深HaF111mである
。 次に斜上の構成より成る本発明の作用について説明する
。 先ず、液槽1内の20℃の水の水深H4=11 tnに
於ける静水圧は、 一般式 ρ・f−H・−(1) より求めることが出来る。 誠に ρ=水の密度=998Et/、/l=重力の加速
度=9.8m152 H=水深=Ha=11m とすると 静水の圧力Pは P=ρ・f@H P=998(−Kgld)X9.8(m/SりX11−
中1()7584(Ke/m@3り となる・ 今、舷に社団法人日本機械学会発行(昭和54年8月2
0日発行)の機械工学SIマニュアルr(51!I体工
学・流体機械におけるSIの使い方Jと称する文献のP
4に於ける表5・6を単位の換算に採用すると (表5.6一部数すい) P=107584(Pa) =107.584(KPa) 中107.6(KPa) となる。 一方、水深H4= 11 m即ち、開口受圧筒2の筒底
開口部分4に於いて発生する動力又は仕事率Wは 一般式 P−A@V・・・・・・■    □より求め
ることが出来る。 1KP=静水の圧力=107584(h/m、S”)A
−筒底開口部分4の断面積=1=1″■−流体の速度=
1呵(揚液ポンプ12の揚液量を1−Hlとした場合、
流速は 1m/Sとなる・) とすると、 a力又a仕事率w= p @A −V = 107584(Kg/m11s冨)xlG4x1(
m/5) =1[17584(K4−膳”/S3)となる0 この動力又は仕事率wt表5.6により単位の換算を行
うと W= 107584 (W) =107.584(Kw) 中107.58(Kw) となる。 而して、揚水ポンプ12’を作動せしめて溜液槽9内の
液体を毎秒iII/揚液すると仮定し、この液量を揚液
ポンプ12の放出口14より液面りに放流することによ
りて、開口受圧筒2内の液体は常に一定の流速で開口受
圧wI2、揚液ポンプ12.液槽1と循環し、液体の1
然損失を無視すれば、一定の深さ)i4=11mを維持
することとなる。 尚、現実に社蒸宛等により液位が変動するので補充する
必要があり、又液槽1rIC!をして蒸発を防ぐように
してもよい。 一方、前記した開口受圧筒2の筒底開口部分4に設は几
タービン5rt一定の速度で回転し、その回転力ft回
転軸6を介して動力室Z内の動力機68に伝達される。 陶、水中タービン5の回転軸6Vc発電*t−附設して
おいて、8m電力を曜り出してもよい。 他方、前記した揚液ポンプ121j、毎秒11I/の液
体の高さH@= 1m、開口断面積Ap= I III
’の揚液管によ0揚液しているので、構簗麩嶽モーター
13が揚液に費す動力WMは Wyl =ρm f e li、 j A、+1 V=
P#A、6V =998(We/d>X9.8(m/S”)x1h#X
1←)Xl(弓4) =9780.4(It−+//Sj) となる。 これを前記し念表5..5 K xり単位の換算を行う
と WM=9780.4v@ 69.78 (ICり となる・ 故にタービン5により申り出し得る力、即ち動力WTF
i WT=W−WM = 10758 (ff) −9,78(KW)=97
.8(KW) となる。 要するに、開口受圧筒2内に流入し溜液槽9内7;に貯
った水t−**ポンプ12により揚液し次いで液槽1の
液面LK放出し、液面の高さを一定に維持することによ
り、筒底開口部分41fC発生する力を一定にすること
が出来、この力をタービン5により仕事Wとして引曇出
し、且つモーターの費した仕事WMを差し引くことによ
りWTなる大きな動力を得ることが出来る。 尚、上記の計算例では各部分の損失抵抗を無視したもの
であるが、この損失抵抗を考慮したとしても、その差し
引きは正(プラス)となり大きな動力を得ることが出来
、産業上きわめて有益である。 本実施例では液槽での例を示しであるが河川、湖、海、
貯水池等で行えば更に好結果を生ずるものである。 又、本発明装置即ち開ロ受圧筒2t−複数個並設して利
用すれば一層大きな動力を得ることができ更に第3図に
示す如く開口受圧筒2の筒底開口部分4t−広くすnば
より高効率となる。 第二の実施例(@4図)について。 本実施例に於いて、第一の実施、、例と同じ部分には同
じ番号を附しである。 次に本実施例の具体例について説明する。 液槽1の深さHtll 5mに採っである。 開口受圧筒2の断面積5Fi11/、高さhは11mに
して、核部2の頂部は液面りと同じにしである。即ち液
深11mということである。 開口受圧筒2の筒底開口部分4の断面積は1♂である。 動力窄めし装置としての水中タービン5には発電機を内
蔵するが、あるいは回転軸6によってその回転力を動力
室7の動力機器8へ伝えてもよい。 開口受圧筒2の上部開口部10と連通しであるM液槽9
は前記上部開口部10より流入する液量よりも大容量で
ありて、その容積は状況によって決定される・ 開口受圧筒2からの上昇液は上部開口部10より溜液槽
9内へ流入し該溜液槽9内の液面L(水槽1の液面りと
同じ)Kまで達する。この上部開口部10の断面積は1
111″に成しである。 揚液管11は揚液ポンプ12と直結してあって溜液槽9
中に1mの深さに沈下して、溜液槽9内の液体1に咳揚
液ポンプ12により揚程するためのものであって、その
断面積Fi1.”である。 揚液ポンプ12#iモーター134Cより作動し、溜液
槽9内の液体を揚液して水槽1の液面しに放出するもの
である・ 14AFi揚液ポンプ12からの液体を液槽1内の液面
りへ放出するための放出管であって断面積は11/以上
にしである。15Fi液槽上端部、16は溜液槽上端部
、17は開口受圧筒2の筒底開口部分4管閉じるための
蓋で蝶番等により開閉自在になしてあり、万−何等かの
事故が生じて修繕するような場合に使用するものである
。 18Fi液槽底部である。 4、図面の簡単な説明 第1図は本発明の詳細な説明図、第2図は第1図の要部
の横断平面図、第3図は開口受圧筒の筒底開口部分の他
の実施例の拡大図である。 第4図は本発明の第二の実施例である。 第5図は第4図の要部の横断平面図である。 1・・・液槽   2・・・開口受圧筒4・・・筒底開
口部分  5・・・動力窄めし装置8・・・動力機器 
   9・・・溜液槽11・・・揚液管   12・・
・揚液ボンプ手続補正書 昭和57年9月2B日 特許庁長官 若 杉 和 夫  殿 L 事件の表示 昭和55年特許願第115658号 2 発明の名称 し方法 a 補正をする者 事件との関係  特許出願人 未代理人 東京都文京区本郷四丁目12番12号 2.41I許請求の範囲 (1)  液体中に、筒底開口部分及び上部開口部を有
する開口受圧部を配設し、該上部開口部と溜液槽とを連
通すると共に開口受圧部の筒底開口部分より上昇する液
体を前記溜液槽内へ流入すべく成す一方、溜液槽の上端
を液体表面と同高若しくはその上方に位置せしめ、然る
後、液体を流入して溜液槽内の液位を液体表面と同一に
する他方、溜液槽内の液体を機器を用いて連続して揚液
し、前記液体表面へ放出して液体表mt常に一定の高さ
Km持する一方、前記筒底開口部分附近の上昇液体中に
動力窄めしのための機器を配設した液体の常時強制循環
時に於いて発生する液体の流速と液深圧力とを利用した
動力申出し方法(零  体中に、筒底開口部分及び上部
開口部をいて発生する液体の流速と1[#圧力とを利用
した動力申出し方法
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 is a cross-sectional plan view of the main part of FIG. 1. 1... Liquid tank 2... Open pressure receiving cylinder 4... Cylinder bottom opening part 5... Turbine 8... Power equipment 9... Reservoir well 11... Lifting pipe
12...Liquid Pump Figure 2 Specification IL Name of the Invention Method 2 for extracting power using the flow rate and deep pressure of liquid generated during constant forced circulation of liquid, Claims: , an open pressure receiving cylinder 2t having a cylinder bottom opening part 4 and a reservoir liquid tank 9 is disposed, and when the liquid is allowed to flow in from the cylinder bottom opening part 4 and passes through the upper opening part 10, the liquid in the cylinder flows into the liquid storage tank. The liquid No. 9 is forcibly pumped up by the device and becomes liquid II! The liquid has a flow rate of 11%, which is proportional to the amount of liquid released into the tank, and rises inside the pressure receiving cylinder 2 to reach the reservoir liquid tank 9, and is further discharged from the same layer liquid tank 9 to the liquid surface by a device to raise the liquid level. The liquid is constantly forced to circulate in order to maintain it at a constant height so that the liquid pressure does not change, while a device for extracting power is installed near the cylinder bottom opening part 4. Detailed Description of the Invention: A Powered Moth Removal Method Using the Liquid Flow Velocity and Liquid Deep Pressure Generated During Circulation The present invention is applicable to a liquid tank that maintains a constant water level, a river, a lake, the sea, etc.
This invention relates to a nine-power warming method in which an open pressure-receiving cylinder is provided in a reservoir or the like, and the liquid in the liquid tank is forcedly circulated to utilize the pressure at a deep position of the liquid. The contents will be explained below based on the illustrated embodiment. 1 is a liquid tank with a depth of approximately 12 m, and the liquid used includes, for example, water at 20°C, salt water, propylene glycol, and a propylene glycol aqueous solution (both of which are effective in cold regions). are doing. 2 is an open pressure receiving cylinder with a height of Ion installed in a liquid tank of 1 yen, the upper part of which is located 1 m below the liquid level, and a height of H.
I is provided on the support column 3 with a length of 1 m, and the open pressure receiving cylinder 2t
- It is designed to be fixed and stable, and to allow liquid to easily flow in from below. Cross-sectional area A#-1t of the cylinder bottom opening portion 4 of this open pressure receiving cylinder 2
It was taken by l♂. Reference numeral 5 denotes a turbine as the ninth device for extracting power, which is disposed in the bottom opening portion 4 of the cylinder. It is directly connected to the turbine 5 through a 6Fi rotating shaft, and has the function of transmitting the rotational force of the turbine 5 to the power equipment 8 of the power chain 7. Reference numeral 9 denotes a storage liquid tank provided at the upper part of the open pressure receiving cylinder 2, and has a cross-sectional area Mp of 1 m" and a height Hl of 3 m. 10 is the upper opening of the open pressure receiving cylinder 2, and 11 is a liquid lifting pipe with an open cutoff. Area m9 is 1m/,
The height Ha is 1 m. Reference numeral 12 denotes a liquid pump as a device for lifting liquid, which is operated by a transverse shaft upstreamer 13, lifts the liquid in the accumulated liquid tank 9, and discharges it into the liquid tank 1 from the discharge port 14. The liquid in the pressure receiving cylinder 2 and the reservoir tank 9 yen is forced to circulate.The depth between the liquid level and the bottom opening 4 of the open pressure receiving cylinder 2, that is, the liquid depth H4, is 11 m.Next The operation of the present invention having the above configuration will be explained below. First, the hydrostatic pressure in 20C water @H4-ttm of 1 yen liquid tank can be calculated from the general formula r-1·H (1). P - Density of water - 9981, 4th 6 - Acceleration of motion - 9 - 8 m/B" H - Depth of water! If H, w l l H then the pressure of static water P is P loP = -998 (Kf/j )X9.8(z//s
(m) Medium to7ss+('4/n, sl). Published by Japan Society of Mechanical Engineers (August 2, 1978)
P4 of the document entitled "(5) How to use S-engine in fluid engineering/fluid machinery" of Mechanical Engineering B Emmanual (published on 0)
If Tables 5 and 6 are used for unit conversion (!! SS S is partially omitted), P = 107584 (Pa) = 107.584 (KPa) Medium 107.6 (KPa). On the other hand, when the water depth is 114"-11B, the power or power generated at the bottom opening 4 of the open pressure receiving cylinder 2 can be determined from the general formula PaA-V- (2). Kp - Hydrostatic pressure - 107584 (h/mad”)
Mu = Cross-sectional area of cylinder bottom open part 4 = = 1 m 1 V; Velocity of fluid - 1% (If the liquid volume t-ed of the liquid pump 12 is 19 m, the flow rate will be 1 rrXs.) Then, the power or Power rate W casing P@A”V = 107584 (-・♂). When converting the unit using this power or power wt Table 5.6, W-107584 (W) = 107.584 (Kw) +107.58 (Kw). Therefore, assuming that the water pump 12 is operated to pump up 1 - 1 yen of liquid per second by operating the water pump 12, this amount of liquid will be pumped from the discharge port 14 of the liquid pump 12. By discharging onto the liquid level,
Open pressure receiving cylinder 2 The same liquid always flows through the open pressure receiving cylinder 2 at a constant flow rate.
, liquid pump 12. If the liquid circulates with the liquid tank 1 and the natural loss of liquid is ignored, a constant depth H4=11 m will be maintained. However, in reality, the liquid level fluctuates due to the equal pressure of evaporation, so it needs to be replenished, and the liquid tank 1 may be covered with a lid to prevent evaporation. A turbine 5 provided in the section 4 rotates at a constant speed and transmits its rotational force to a rotating shaft 6.
1 to the power equipment 8 in the power chamber 7. On the other hand, since the liquid pumping bonder 12Fi mentioned above lifts liquid at a rate of 111/sec through a pumping pipe with a height of 1 m and an opening cross-sectional area of pm l @'', the horizontal axis of the upstream tank 13 The power WM spent on pumping the liquid is WM” I's l-Ha e Apll v;P
・MP@v = 998 ('l/1)X9.8(m/81)X
1 (+111)
0.4 (ff@l//is). When this is converted into units using the table 6 described above, it becomes 948 (KW) in WM-9780, 4 (7). Therefore, the power that can be increased by the turbine 5, that is, the power WT, is WT (w - WM) 107.58 (聰) - 9,78 (KW) 7.8
(m) becomes. In short, the water flowing into the open pressure receiving cylinder 2 and stored in the reservoir tank 9 is pumped up by the liquid pump 12, and then the liquid level LK in the liquid tank 1 is released, keeping the liquid level constant. By doing so,
The force generated in the cylinder bottom opening part 4 can be made constant,
By extracting this force as work W by the turbine 5 and subtracting the work WM spent by the motor, a large power WT can be obtained. In addition, in the above calculation example, the loss resistance of each part is ignored, but even if this loss resistance t- is taken into account, the deduction will be positive and a large amount of power can be obtained, which is extremely useful for industry. It is. In this example, a liquid tank is shown as an example, but rivers, lakes, oceans, etc.
Even better results will be obtained if this is done in a reservoir, etc. In addition, the device of the present invention, that is, the open pressure receiving cylinder 2 @: If a plurality of open pressure receiving cylinders 2 are used in parallel, even greater power can be obtained. Higher efficiency. Brief description of the drawings Fig. 1 is a detailed explanatory diagram of the present invention, Fig. 2 is a cross-sectional plan view of the main part of Fig. 1, and Fig. 3 shows another embodiment and the bottom opening of the open pressure receiving cylinder. It is an enlarged view of a part. 1...Liquid tank 2...Open pressure receiving cylinder 4...Cylinder bottom opening part 11...Liquid lift pipe 12...Liquid pump No. 71.6, 1□1□81 Patent Haruki Shimada, Director-General of the Agency 1. Display of the case 2. Patent Application No. 115658 of 1980 3. Relationship with the case of the person making the amendment Patent applicant 4. Name of the agent's invention During constant forced circulation of liquid Claims (1) Claims (1) A power output method that utilizes the liquid flow velocity and liquid deep pressure generated during forced circulation. Power Constriction Method ■ Scope of Specific Requirements In the arrangement set forth in item 1, the present invention provides a power supply method that utilizes the liquid flow velocity and liquid deep pressure generated during constant forced circulation of a moving liquid. In a liquid tank that maintains the water level, or in a river, lake, sea,
This invention relates to a method of applying power by providing an open pressure receiving cylinder in a reservoir or the like, forcing the liquid in the tank to circulate, and utilizing the pressure at a deep position of the liquid. The contents will be explained below based on the illustrated embodiment. Regarding the first embodiment (FIGS. 1 and 2). A 1#'i liquid tank with a depth H of about 12 m is used, and examples of liquids include water at 20°C, salt water, propylene glycol and hypropylene glycol aqueous solutions (both of which are effective in cold regions). etc. are adopted. 2#'i It is an open pressure receiving cylinder with a height of 10 m installed in the liquid tank 1, and its upper part is located 1 m below the liquid level, and it is installed on a support 3 with a height of 1 m. , the open pressure receiving cylinder 2' was fixed to ensure stability, and it was reconsidered so that liquid could easily flow in from below. The cross-sectional area A of the bottom opening portion 4 of this open pressure receiving cylinder 2 is 1 m''
It was taken in This is an underwater turbine as a device for generating 5Fi power (power supply device f), and is arranged in the cylindrical bottom opening portion 4. Further, this underwater turbine 5 may be arranged at any position between the cylinder bottom opening portion 4 and the upper opening W610. 6 is a rotating shaft that is directly connected to the underwater turbine 5 and also has the function of transmitting the rotational force of the underwater turbine 5 to the power equipment 8 in the power chamber 7. Reference numeral 9 denotes a reservoir tank provided above the open pressure receiving cylinder 2, and has a cross-sectional area Ao of 111" or more and a height H! of 3 m or more. The volume of the reservoir tank 9 can of course be increased depending on the situation. The upper opening of the 10II'i opening pressure receiving cylinder 2 is a 11Fi liquid pumping pipe with an opening cross-sectional area Ap of 1-1'' and a height H3 of 1 m. As shown in Fig. 4, this liquid lift pipe 11t may be regarded as a part of the liquid pump.12Fi is a liquid pump as a device for lifting liquid, and is operated by a motor 13, The liquid is fried,
The liquid in the reservoir tank 9 is discharged from the discharge port 14 into the liquid tank 1 for forced circulation.The depth between the liquid level and the bottom opening 4 of the open pressure receiving cylinder 2, that is, the liquid depth. HaF111m. Next, the operation of the present invention having the slanted configuration will be explained. First, the hydrostatic pressure of water at 20° C. in the liquid tank 1 at a depth H4=11 tn can be obtained from the general formula ρ・f−H・−(1). Sincerely, ρ = Density of water = 998Et/, /l = Acceleration of gravity = 9.8m152 H = Water depth = Ha = 11m Then, the pressure P of static water is P = ρ・f@H P = 998(-Kgld)X9. 8 (m/SriX11-
Junior High School 1 () 7584 (Ke/m@3) Published by Japan Society of Mechanical Engineers (August 2, 1978)
P of the document called Mechanical Engineering SI Manual R (51! I How to Use SI in Body Engineering/Fluid Machinery J) of
If Tables 5 and 6 in 4 are used for unit conversion (Table 5.6 is a portion), P = 107584 (Pa) = 107.584 (KPa) medium 107.6 (KPa). On the other hand, water depth H4 = 11 m, that is, the power or power W generated at the bottom opening portion 4 of the open pressure receiving cylinder 2 can be determined from the general formula P-A@V...■ □ . 1KP = static water pressure = 107584 (h/m, S”)A
- Cross-sectional area of cylinder bottom opening 4 = 1 = 1'' ■ - Velocity of fluid =
1 呵 (If the amount of liquid pumped by the liquid pump 12 is 1-Hl,
The flow velocity is 1m/S.) Then, a force or a power w= p @A −V = 107584 (Kg/m11s) xlG4x1(
m/5) = 1 [17584 (K4-zen"/S3) 0 This power or power wt When the unit is converted according to Table 5.6, W = 107584 (W) = 107.584 (Kw) Medium 107.58 (Kw). Therefore, assuming that the water pump 12' is operated to pump up the liquid in the reservoir tank 9 at a rate of iII/second, this amount of liquid is calculated from the discharge port 14 of the liquid pump 12. By discharging the liquid closer to the liquid level, the liquid in the opening pressure receiving cylinder 2 circulates with the opening receiving pressure wI2, the liquid pump 12, and the liquid tank 1 at a constant flow rate, and the liquid 1
If natural loss is ignored, a constant depth (i4 = 11 m) will be maintained. In addition, in reality, the liquid level fluctuates depending on the steam supply, so it needs to be replenished, and the liquid tank 1rIC! may be used to prevent evaporation. On the other hand, a turbine 5rt installed in the bottom opening portion 4 of the open pressure receiving cylinder 2 rotates at a constant speed, and its rotational force is transmitted to the power machine 68 in the power chamber Z via the rotating shaft 6. It is also possible to install a rotating shaft 6Vc power generation *t- of the underwater turbine 5 and output 8m electric power. On the other hand, the above-mentioned pump 121j has a liquid height of 11 I/sec, H@= 1 m, and an opening cross-sectional area Ap= I III
Since zero liquid is being pumped through the liquid pumping pipe of
P#A, 6V =998(We/d>X9.8(m/S")x1h#X
1←)Xl (bow 4) = 9780.4 (It-+//Sj). Please note this as a reminder 5. .. 5 K x unit conversion becomes WM = 9780.4v @ 69.78 (IC unit) Therefore, the power that can be offered by the turbine 5, that is, the power WTF
i WT=W-WM=10758 (ff) -9,78(KW)=97
.. 8 (KW). In short, the water flowing into the open pressure receiving cylinder 2 and stored in the reservoir tank 9 is pumped up by the pump 12, and then the liquid level LK in the liquid tank 1 is discharged to keep the liquid level constant. By maintaining this, the force generated at the cylinder bottom opening 41fC can be made constant, and this force is extracted as work W by the turbine 5, and by subtracting the work WM spent by the motor, a large power WT is obtained. can be obtained. In addition, in the calculation example above, the loss resistance of each part is ignored, but even if this loss resistance is taken into account, the deduction will be positive and a large amount of power can be obtained, which is extremely useful industrially. be. In this example, a liquid tank is shown as an example, but rivers, lakes, oceans, etc.
Even better results will be obtained if this is done in a reservoir, etc. Further, if the device of the present invention, that is, a plurality of open pressure receiving cylinders 2t, is used in parallel, even greater power can be obtained, and as shown in FIG. This results in higher efficiency. Regarding the second embodiment (@Figure 4). In this embodiment, the same parts as in the first embodiment are given the same numbers. Next, a specific example of this embodiment will be explained. The depth of the liquid tank 1 is 5 m. The cross-sectional area of the open pressure receiving cylinder 2 is 5Fi11/, the height h is 11 m, and the top of the core part 2 is at the same level as the liquid level. In other words, the liquid depth is 11 meters. The cross-sectional area of the bottom opening portion 4 of the open pressure receiving cylinder 2 is 1♂. The underwater turbine 5 serving as a power reducing device has a built-in generator, or its rotational force may be transmitted to the power equipment 8 in the power room 7 through the rotating shaft 6. M liquid tank 9 communicating with the upper opening 10 of the open pressure receiving cylinder 2
is larger than the amount of liquid flowing in from the upper opening 10, and its volume is determined depending on the situation.The rising liquid from the open pressure receiving cylinder 2 flows into the reservoir tank 9 from the upper opening 10. The liquid level L in the reservoir tank 9 reaches K (same as the liquid level in the water tank 1). The cross-sectional area of this upper opening 10 is 1
111". The liquid pump 11 is directly connected to the liquid pump 12 and is connected to the liquid tank 9.
The device sinks to a depth of 1 m in the liquid storage tank 9 and lifts the liquid 1 in the liquid storage tank 9 by the cough liquid pump 12, and has a cross-sectional area Fi1. Lift pump 12 #i It is operated by motor 134C to lift the liquid in the reservoir tank 9 and discharge it to the liquid level in the water tank 1. This is a discharge pipe for discharging to the liquid level in the liquid tank 1, and the cross-sectional area is 11/2 or more.15Fi is the upper end of the liquid tank, 16 is the upper end of the reservoir tank, and 17 is the cylinder of the open pressure receiving cylinder 2. The bottom opening part is a lid to close the 4 pipes, and it can be opened and closed freely with a hinge, etc., and is used in the event that an accident occurs and needs to be repaired. This is the bottom of the 18Fi liquid tank. 4. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a detailed explanatory diagram of the present invention, FIG. 2 is a cross-sectional plan view of the main part of FIG. It is an enlarged view. Fig. 4 is a second embodiment of the present invention. Fig. 5 is a cross-sectional plan view of the main part of Fig. 4. 1... Liquid tank 2... Open pressure receiving cylinder 4... Cylinder bottom opening part 5... Power constriction device 8... Power equipment
9...Storing liquid tank 11...Liquid lift pipe 12...
・Liquid pump procedure amendment September 2B, 1980 Director of the Patent Office Kazuo Wakasugi L. Indication of the case 1982 Patent Application No. 115658 2 Method of naming the invention a Person making the amendment Relationship to the case Patent Applicant, not represented, 4-12-12 Hongo, Bunkyo-ku, Tokyo 2.41I Claims (1) An open pressure receiving part having a cylinder bottom opening and an upper opening is disposed in a liquid, and the upper The opening part communicates with the reservoir tank, and the liquid rising from the cylindrical bottom opening of the open pressure receiving part flows into the reservoir tank, while the upper end of the reservoir tank is at the same level as the liquid surface or above it. After that, liquid is flowed in to make the liquid level in the reservoir tank the same as the liquid surface, and the liquid in the reservoir tank is continuously pumped using a device to reach the liquid surface. While the liquid surface mt is always kept at a constant height Km, a device for power constriction is installed in the rising liquid near the opening at the bottom of the cylinder, and the liquid is generated during constant forced circulation of the liquid. Power application method using the flow velocity and liquid deep pressure (zero Power application method using the flow velocity of the liquid generated through the cylinder bottom opening and the top opening in the body and the 1 [# pressure)

Claims (1)

【特許請求の範囲】[Claims] 液体中に、筒底開口部分4及び溜液槽9を有する開口受
圧筒2を配置し排液ポンプ12により前記筒底開口部分
4から液体を揚種し、上部開口部10を経て溜液槽9な
一旦貯め次いで、該溜液槽9内の液体を再び揚液し液体
表面へ放出し液面を常に一定の高さに維持すぺ〈該液体
を強制循環せしめる一方、前記筒底開口部分4附近に動
力暖めしの九めの機器5を配設し液体の強制循環時に於
ける液深圧力を利用した動力戦出し方法
An open pressure receiving cylinder 2 having a cylinder bottom opening 4 and a reservoir tank 9 is disposed in the liquid, and the liquid is pumped up from the cylinder bottom opening 4 by a drainage pump 12, and passes through the upper opening 10 to the reservoir tank. 9 is once stored, and then the liquid in the reservoir tank 9 is pumped up again and released onto the liquid surface to maintain the liquid level at a constant level. A method for generating power using the deep pressure of the liquid during forced circulation of the liquid by installing a ninth power heating device 5 near 4.
JP55115658A 1980-08-22 1980-08-22 Method of taking out motive power by utilizing depth pressure of liquid during its forced circulation Pending JPS5832973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55115658A JPS5832973A (en) 1980-08-22 1980-08-22 Method of taking out motive power by utilizing depth pressure of liquid during its forced circulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55115658A JPS5832973A (en) 1980-08-22 1980-08-22 Method of taking out motive power by utilizing depth pressure of liquid during its forced circulation

Publications (1)

Publication Number Publication Date
JPS5832973A true JPS5832973A (en) 1983-02-26

Family

ID=14668090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55115658A Pending JPS5832973A (en) 1980-08-22 1980-08-22 Method of taking out motive power by utilizing depth pressure of liquid during its forced circulation

Country Status (1)

Country Link
JP (1) JPS5832973A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074746A (en) * 1989-10-31 1991-12-24 Kubota Corporation Constant speed vertical pump with aeration
ES2060531A2 (en) * 1992-11-20 1994-11-16 Borda Juan Parellada Hydroelectric generator with closed-circuit operation
JP2012237241A (en) * 2011-05-11 2012-12-06 Takeo Terauchi Hydraulic power generating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074746A (en) * 1989-10-31 1991-12-24 Kubota Corporation Constant speed vertical pump with aeration
ES2060531A2 (en) * 1992-11-20 1994-11-16 Borda Juan Parellada Hydroelectric generator with closed-circuit operation
JP2012237241A (en) * 2011-05-11 2012-12-06 Takeo Terauchi Hydraulic power generating device

Similar Documents

Publication Publication Date Title
Anderson Centrifugal pumps and allied machinery
US5169595A (en) Reactor core isolation cooling system
JP2011501811A (en) Reactor with improved cooling in the event of an accident
JPH05501901A (en) water flow energy converter
KR20120050985A (en) Low-drag hydro-pneumatic power cylinder and system
FR2502417A1 (en) ELECTRIC POWER PRODUCTION FACILITY
US9330796B2 (en) Stable startup system for a nuclear reactor
JPS5832973A (en) Method of taking out motive power by utilizing depth pressure of liquid during its forced circulation
US20140348641A1 (en) Low-drag hydro-pneumatic power cylinder and system
US2105624A (en) Water power
US4257819A (en) Method for flushing out a narrow gap
CN111883270B (en) Heat discharging system, pool type reactor and pool type reactor heat discharging method
CN114593026A (en) Cooling system of wind generating set
JP6462872B2 (en) Intake equipment for nuclear power plants
JPS6244692A (en) Decay heat removing device for nuclear reactor
CN111447811A (en) Circulating water cooling device
CN217354787U (en) Dry-wet dual-purpose sewage-discharging submersible electric pump
JPH11351118A (en) Generator using water located at low position without dropping from high position and using wind force, air pressure and water pressure in combination
JPS5958167A (en) Simple automatic power-generator applying specific gravity
JPS5813172A (en) Power-generation method by pumping-up of capillary phenomenon
US2161158A (en) Pressure loaded tank for hydraulic transmissions
CN206709056U (en) A kind of boiler condensation apparatus for recovering
JP3214319U (en) Water pressure power generation system
JPS6363757B2 (en)
KR0180771B1 (en) Vacuum degassification system and method for nuclear reactor system filling and venting