JPS5832959B2 - Glutamine - Google Patents

Glutamine

Info

Publication number
JPS5832959B2
JPS5832959B2 JP50142029A JP14202975A JPS5832959B2 JP S5832959 B2 JPS5832959 B2 JP S5832959B2 JP 50142029 A JP50142029 A JP 50142029A JP 14202975 A JP14202975 A JP 14202975A JP S5832959 B2 JPS5832959 B2 JP S5832959B2
Authority
JP
Japan
Prior art keywords
glutamic acid
concentration
current density
solution
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50142029A
Other languages
Japanese (ja)
Other versions
JPS5266686A (en
Inventor
浤二 戸井
敏男 高橋
里次 高橋
隆 大貫
洋子 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP50142029A priority Critical patent/JPS5832959B2/en
Publication of JPS5266686A publication Critical patent/JPS5266686A/en
Publication of JPS5832959B2 publication Critical patent/JPS5832959B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 発酵法で生産されたグルタミン酸の含有液をイオン交換
膜を用いて電気透析を行うことは既に知られている。
DETAILED DESCRIPTION OF THE INVENTION It is already known to electrodialyze a glutamic acid-containing solution produced by a fermentation method using an ion exchange membrane.

このばあいのグルタミン酸濃度は通例597dl程度で
あり、又、電流密度はIAzam″程度である。
In this case, the glutamic acid concentration is usually about 597 dl, and the current density is about IAzam''.

電流密度を高めることが装置を有効利用するためには好
渣しいが、電流密度には一定の限界があり、この限界を
高めるためには液のイオン濃度を高める必要がある。
Although it is preferable to increase the current density in order to effectively utilize the device, there is a certain limit to the current density, and in order to increase this limit, it is necessary to increase the ion concentration of the liquid.

従来このような低濃度かつ低電流密度で行なわれた理由
は明確ではないが、たとえばグルタミン酸発酵液を除菌
濃縮した液を高濃度かつ高電流密度で室温で電気透析す
ると膜の目詰1す、劣化等が生じて電圧が異常に上昇し
て電流効果が低下するためこの方法が実用的でなかった
ことによるのではないかと思われる。
It is not clear why conventional treatments were carried out at such low concentrations and low current densities, but for example, when a sterilized and concentrated glutamic acid fermentation solution is electrodialyzed at room temperature at high concentrations and current densities, membrane clogging occurs. This seems to be because this method was not practical because deterioration occurred, causing the voltage to rise abnormally and the current effect to decline.

本発明者らは該グルタミン酸含有液の温度を40〜60
℃、流入速度(膜面線速度)を4〜6C1rL/5ec
1 グルメミノ酸濃度を15〜30g/dlにして電流
密度2〜4A/’diで電気透析を行えば電圧上昇もほ
とんどなく安定して運転を続けることができることを見
出し、この知見に基づいて本発明を完成したものである
The present inventors set the temperature of the glutamic acid-containing liquid to 40-60°C.
°C, inflow velocity (membrane surface linear velocity) of 4 to 6C1rL/5ec
1. It was discovered that if electrodialysis is carried out at a current density of 2 to 4 A/'di with a glumemino acid concentration of 15 to 30 g/dl, stable operation can be continued with almost no voltage rise, and based on this knowledge, the present invention was developed. This is the completed version.

本発明の方法は発酵法で生産されたグルタミン酸の含有
液のグル汐□ン酸濃度を15〜309/dlとし、かつ
電流密度を2〜4人/d7r+2として陽イオン交換膜
および陰イオン交換膜を用いて電気透析を行う方法であ
る。
In the method of the present invention, the glutamic acid concentration of the glutamic acid-containing solution produced by the fermentation method is set to 15 to 309/dl, and the current density is set to 2 to 4 persons/d7r+2, and the cation exchange membrane and anion exchange membrane are This method uses electrodialysis.

発酵法で生産されたグルタミン酸ノ含有液とはたとえば
除菌発酵液、粗結晶溶解液、粗結晶母液のようなもので
ある。
The glutamic acid-containing liquid produced by the fermentation method includes, for example, a sterilized fermentation liquid, a crude crystal solution, and a crude crystal mother liquor.

グルタミン酸の濃度は15〜30 j!/dlの範囲が
適当である。
The concentration of glutamic acid is 15-30 J! /dl range is appropriate.

15g/dl以下では、室温の場合限界電流密度が低く
、又加温すると腐敗によるグルタミン酸の損失が問題に
なる。
Below 15 g/dl, the limiting current density is low at room temperature, and loss of glutamic acid due to putrefaction becomes a problem when heated.

一方30 g/di以上ではやはり限界電流密度が低い
On the other hand, at 30 g/di or more, the limiting current density is still low.

電流密度は高いほど工業的設備は小さくてすむが、グル
タミン酸含有液の場合は2〜4A/dm!が適当である
The higher the current density, the smaller the industrial equipment needs to be, but in the case of glutamic acid-containing liquids, it is 2 to 4 A/dm! is appropriate.

2人/d−取下では特に色素性夾雑物による膜の目詰り
が生じて電流゛効率が低下し、ひいては透析時間が長く
なるので不利であり、且つ、腐敗によるグルタミン酸の
損失が失する。
2-person/d-removal is particularly disadvantageous because the membrane is clogged with pigmented impurities, reducing current efficiency and lengthening the dialysis time, and glutamic acid is lost due to putrefaction.

一方、4A/drn’を起えて通電を続行すると、グル
タミン酸が膜に付着しはじめ、その結果、電流が極度に
流れなくなり、安定して電気透析ができなくなる。
On the other hand, if 4A/drn' is generated and the current is continued, glutamic acid will begin to adhere to the membrane, and as a result, the current will extremely stop flowing, making stable electrodialysis impossible.

これを続行すればイオン交換膜の劣化が激しい。If this continues, the ion exchange membrane will deteriorate significantly.

図1は本発明を実施するために用いられる装置の1例を
示す概略説明図である。
FIG. 1 is a schematic explanatory diagram showing one example of an apparatus used to carry out the present invention.

槽1中には陰イオン交換膜A1.A2.A3・・・・・
・、Aloと陽イオン交換膜C1,C2,C3・・・・
・・、C1oとが交互に配設され、さらにC1oの次に
CI 1 * C1□と順次配設されて隔室22・・・
・・・を構成し、槽の端部には対向して陽極3と陰極4
が備えられている。
In the tank 1, there is an anion exchange membrane A1. A2. A3...
・Alo and cation exchange membranes C1, C2, C3...
..., C1o are arranged alternately, and then CI 1 * C1□ are arranged sequentially after C1o to form the compartment 22...
..., with an anode 3 and a cathode 4 facing each other at the end of the tank.
is provided.

グルl’ ミン酸含有液は導管5およびその枝管6,7
,8・・・14を経て槽中に供給され、陰イオン交換膜
と陽イオン交換膜と(7J、fflを通り、枝管6/、
7/、 8/・・・・・・14’および導管5′を経
て排出される。
Glu l'mic acid-containing liquid flows through conduit 5 and its branch conduits 6 and 7.
, 8...14 into the tank, passing through an anion exchange membrane and a cation exchange membrane (7J, ffl, branch pipe 6/,
7/, 8/...14' and is discharged via conduit 5'.

またグルタミン酸を捕集するための水溶液を導管15お
よび枝管16゜17.18・・・・・・25を経て槽中
に導入し、枝管16’、 17’、 18’・・・・・
・25′および導管15′を経て取り出す。
Further, an aqueous solution for collecting glutamic acid is introduced into the tank through the conduit 15 and branch pipes 16, 17, 18, 25, and branch pipes 16', 17', 18', .
- Take out via 25' and conduit 15'.

他方、極液として適当な塩たとえば硫酸ナトリウムの溶
液を導管26およばその枝管27.28,29,30を
経て導入し枝管271゜28’、29’、30%よび導
管26′を経て排出される。
On the other hand, a solution of a suitable salt, e.g. sodium sulfate, as polar liquid is introduced via line 26 and its branches 27, 28, 29, 30 and discharged via branches 271, 28', 29', 30% and line 26'. be done.

この間両極間は直流電流を通じる。槽に導入するグルタ
ミン酸捕集液のpHは、グルタミン酸の等電点以外であ
ればよいが、通常はpH7付近に調節して使用される。
During this time, direct current is passed between the two poles. The pH of the glutamic acid collection solution introduced into the tank may be other than the isoelectric point of glutamic acid, but it is usually adjusted to around pH 7 before use.

調節に使用される。used for regulation.

調節に使用されるカチオンは、ナトリウム、カリウム、
アンモニウムなどでよい。
The cations used for regulation are sodium, potassium,
Ammonium etc. may be used.

このグルタミン酸含有液の温度は電圧の異常上昇を防止
するために40〜60℃に保つ必要がある。
The temperature of this glutamic acid-containing liquid must be kept at 40 to 60°C to prevent abnormal voltage rise.

80℃付近迄温度を高めることは膜の耐熱性に問題があ
る。
Increasing the temperature to around 80°C poses a problem in the heat resistance of the film.

グルタミン酸含有液の流入速度としては、膜面線速度1
m/sec以上、好捷しくは4〜6c11L/sec
が用いられる。
The inflow velocity of the glutamic acid-containing liquid is the membrane surface linear velocity 1
m/sec or more, preferably 4 to 6c11L/sec
is used.

本発明で使用される陰イオン交換膜および陽イオン交換
膜は市販品のものでよく、たとえばセレミオンCMV(
旭硝子社製品、登録商標)、セレミオンAMV(同上)
などをあげることができる。
The anion exchange membrane and cation exchange membrane used in the present invention may be commercially available products, such as Selemion CMV (
Asahi Glass Company product, registered trademark), Selemion AMV (same as above)
etc. can be given.

透析液からグルl”zン酸を取得するには、特に困難は
なく、目的とする結晶の取得の常法にしたがって行えば
よい。
There is no particular difficulty in obtaining glucinic acid from the dialysate, and it may be carried out in accordance with a conventional method for obtaining desired crystals.

たとえばグルタミン酸ナトリウム結晶の形で取得する場
合には、もしナトリウムイオンがグルメ□ン酸ナトリウ
ムを晶析しうる程度にあれば必要によりpHを調整し、
活性炭を用いて脱色後濃縮晶析させればよい。
For example, when obtaining monosodium glutamate in the form of crystals, if sodium ions are present at an enough level to crystallize sodium glutamate, adjust the pH as necessary;
What is necessary is to concentrate and crystallize after decolorizing using activated carbon.

ナトリウムイオンが不足しているか、または純度が悪い
ときは、酸を加えて一旦グルタミン酸結晶の形で分離し
、これを水酸化ナトリウムを用いて、グルタミン酸ナト
リウム溶液としてから脱色し、濃縮晶析させる。
When sodium ions are insufficient or the purity is poor, acid is added to separate the glutamic acid crystals, which are then converted into a sodium glutamate solution using sodium hydroxide, decolorized, and concentrated and crystallized.

アンモニウムイオンが多い場合には、これを置換しうる
に足る量の水酸化ナトリウムを加えてアンモニウムを除
去したのち、脱色、濃縮晶析する方法によることも出来
る。
When there is a large amount of ammonium ions, it is also possible to remove ammonium by adding enough sodium hydroxide to replace the ammonium ions, followed by decolorization and concentration crystallization.

グルタミン酸結晶の形で取得する場合には、脱色後、中
和晶析すればよい。
If it is obtained in the form of glutamic acid crystals, it may be neutralized and crystallized after decolorization.

上記方法はいずれも取得結晶の純度により再結晶を繰り
返す。
In all of the above methods, recrystallization is repeated depending on the purity of the obtained crystal.

本発明の方法を用いれば電圧の異常上昇もなく又腐敗に
よるグルタミン酸のロスも問題にならず安定して長時間
にわたり電気透析を行うことが可能である。
By using the method of the present invention, it is possible to stably perform electrodialysis over a long period of time without causing abnormal voltage increases or loss of glutamic acid due to putrefaction.

除菌発酵液を用いて各温度における限界電流密度とグル
タミン酸濃度との関係を測定した結果を図2に示す。
FIG. 2 shows the results of measuring the relationship between the limiting current density and the glutamic acid concentration at each temperature using the sterilized fermentation liquid.

実験はセレ□オンCMVおよびセレミオンAMVを装着
した図1の装置(有効膜面積2 d m’、膜間隔2m
m)を用いて行った。
The experiment was carried out using the apparatus shown in Figure 1 equipped with Selemion CMV and Selemion AMV (effective membrane area 2 d m', membrane spacing 2 m).
m) was used.

グルタミン酸濃度10 g/dl、15g/dl、20
9/dl。
Glutamic acid concentration 10 g/dl, 15 g/dl, 20
9/dl.

25 g/di!、 309/dl、 35 g/
dl、アンモニア水でpH=6.5に調整した発酵液を
調製し、その1Mを透析槽の導管5及び15へ同時に導
入し導管5及び15から同時に排出せしめ循環した。
25 g/di! , 309/dl, 35 g/
A fermentation solution adjusted to pH=6.5 with dl and aqueous ammonia was prepared, and 1M thereof was simultaneously introduced into conduits 5 and 15 of the dialysis tank, discharged from conduits 5 and 15 simultaneously, and circulated.

各導管の導入量は450 l/hであった。The introduction volume of each conduit was 450 l/h.

温度は30℃、40℃、50℃、60’Cにそれぞれ保
持した。
The temperature was maintained at 30°C, 40°C, 50°C, and 60'C, respectively.

透析槽に通電して電流密度を段階的に増大せしめ、摺電
圧が急激に増大する時点での電流密度を限界電流密度と
して測定記録した。
Electricity was applied to the dialysis tank to increase the current density in stages, and the current density at the point when the sliding voltage suddenly increased was measured and recorded as the critical current density.

伺、極液として5g/dlのNa2SO4水溶液21を
同時に透析槽へ循環した。
At the same time, a 5 g/dl Na2SO4 aqueous solution 21 was circulated to the dialysis tank as a polar liquid.

以下に実施例を示す。Examples are shown below.

実施例 1 酢酸を原料としたグルタミン酸発酵液を除菌しアンモニ
ア水でp H6,3に調整したのた濃縮して得られた2
7.09 /di濃度のグルタミン酸含有液を調製し
た。
Example 1 2 obtained by sterilizing a glutamic acid fermentation liquid using acetic acid as a raw material, adjusting the pH to 6.3 with aqueous ammonia, and concentrating it.
A glutamic acid-containing solution with a concentration of 7.09/di was prepared.

この液151を55℃に保持して図1に示した透析槽へ
膜面線速度5cm/sec付近になるように450 l
/hの速度で循環した。
This liquid 151 was kept at 55°C and poured into the dialysis tank shown in Fig. 1 at a membrane surface linear velocity of around 5 cm/sec.
It circulated at a speed of /h.

グルタミン酸捕集液として3g/di濃度のN a C
1水溶液21を透析槽へ循環した。
Na C at a concentration of 3 g/di as a glutamic acid collection liquid
1 aqueous solution 21 was circulated to the dialysis tank.

また、極液として5g/dl濃度のNa2SO4水溶液
21を透析槽へ循環した。
Further, an aqueous Na2SO4 solution 21 having a concentration of 5 g/dl was circulated to the dialysis tank as an polar liquid.

透析槽に3A/di’の直流電流を通電した。A direct current of 3 A/di' was applied to the dialysis tank.

18時間後グルタミン酸捕集液は1Mとなり、そのグル
汐□ン酸含有量を測定した結果24.8g/dlであっ
た。
After 18 hours, the glutamic acid collection liquid became 1M, and the glutamic acid content was measured to be 24.8 g/dl.

これはグルタミン酸含有液中の98%のグルタミン酸が
透析されたことを示している。
This indicates that 98% of the glutamic acid in the glutamic acid-containing solution was dialyzed.

通電時間中、摺電圧は常に12.9〜14.0ボルトを
示し、電圧上昇は見られず安定して透析が行われた。
During the current application time, the sliding voltage always showed 12.9 to 14.0 volts, and dialysis was performed stably without any voltage increase.

次に、上記方法においてグルタミン酸含有液の温度を2
5°Cに保持する以外には条件を変えずに電気透析を行
った。
Next, in the above method, the temperature of the glutamic acid-containing liquid was lowered to 2
Electrodialysis was performed without changing the conditions except for maintaining the temperature at 5°C.

摺電圧は透析開始時18ボルトを示したが、1時間後に
は32ボルトに上昇し、その後は急激に更に上昇した。
The sliding voltage was 18 volts at the beginning of dialysis, but rose to 32 volts after 1 hour, and then rapidly increased further.

電圧を18ボルトにもどして電流を測定すると0.2A
/dm以下であり、はとんどグルタミン酸の透析は行わ
れていないことが判った。
When the voltage is returned to 18 volts and the current is measured, it is 0.2A.
/dm or less, indicating that glutamic acid dialysis was not performed in most cases.

実施例 2 糖を原料とするグルタミン酸発酵液より分′離した粗グ
ル汐ミン酸結晶を水に懸濁し、濃N a OH水でp
H7,0に調整して25 g/dl濃度のグルタミン酸
含有液を調製した。
Example 2 Crude glutamic acid crystals separated from a glutamic acid fermentation liquid using sugar as a raw material were suspended in water and purified with concentrated NaOH water.
A glutamic acid-containing solution with a concentration of 25 g/dl was prepared by adjusting the concentration to H7.0.

該グルタミン酸含有液151を52°Cに保持し、実施
例1と全く同様に透析槽へ導入して実験を行った。
The glutamic acid-containing liquid 151 was maintained at 52°C and introduced into a dialysis tank in exactly the same manner as in Example 1 to carry out an experiment.

16時時間後ルタミン酸捕集液量は161となり、その
グルタミン酸含量は23.09/dlであったのでグル
タミン酸含有液中の98饅のグルタミン酸が透析された
ことになる。
After 16 hours, the amount of glutamic acid collection liquid was 161, and the glutamic acid content was 23.09/dl, which means that 98 pieces of glutamic acid in the glutamic acid-containing liquid had been dialyzed.

透析時間中摺電圧は13.5〜14.4ボルトを示し、
電圧上昇も見られず安定して電気透析が行われた。
The sliding voltage during the dialysis time was 13.5-14.4 volts;
Electrodialysis was performed stably with no voltage increase observed.

次に、上記方法においてグルタミン酸含有液の温度を3
0℃に保持した以外は、全く同様にして電気透析を行っ
た。
Next, in the above method, the temperature of the glutamic acid-containing liquid was adjusted to 3
Electrodialysis was performed in exactly the same manner except that the temperature was maintained at 0°C.

透析開始時の摺電圧は17ボルトであったが、15時間
後には42ボルトを示し、更に経時的に急激に上昇を続
けた。
The sliding voltage at the start of dialysis was 17 volts, but after 15 hours it reached 42 volts, and continued to rise rapidly over time.

摺電圧17ボルトにもどして電流を測定したところ0.
2A/d−以下ではもはやグルタミン酸の透析は不能で
あった。
When I returned the sliding voltage to 17 volts and measured the current, it was 0.
Dialysis of glutamic acid was no longer possible below 2 A/d-.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明の方法の実施に用いられる装置の1例を示
す概略説明図である。 図中符号・1は槽本体、A1.・・・・・・は陰イオン
交換膜、3は陽極、4は陰極である。 図2は除菌発酵液を用いて限界電流密度とグルタミン酸
濃度の関係を測定した結果を示す。
FIG. 1 is a schematic explanatory diagram showing one example of an apparatus used to carry out the method of the present invention. In the figure, 1 is the tank body, A1. ... is an anion exchange membrane, 3 is an anode, and 4 is a cathode. FIG. 2 shows the results of measuring the relationship between limiting current density and glutamic acid concentration using a sterilized fermentation solution.

Claims (1)

【特許請求の範囲】[Claims] 1 陽イオン交換膜と陰イオン交換膜を用いて発酵法で
生産されたグルl’ ミン酸の含有液よりグル汐□ン酸
を精製する方法において、該含有液のグルタミン酸濃度
15〜30 g/ dls流入速度(膜面線速度)4〜
6crfL/5ec1温度40〜60℃、かつ電流密度
2〜4 A/ d rrlにて電気透析を行うことを特
徴とするグルメ□ンm精製方法。
1. A method for purifying glutamic acid from a solution containing glutamic acid produced by a fermentation method using a cation exchange membrane and an anion exchange membrane, in which the concentration of glutamic acid in the solution is 15 to 30 g/ dls inflow velocity (membrane surface linear velocity) 4~
6crfL/5ec1 A gourmet m purification method characterized by performing electrodialysis at a temperature of 40 to 60°C and a current density of 2 to 4 A/drrl.
JP50142029A 1975-11-27 1975-11-27 Glutamine Expired JPS5832959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50142029A JPS5832959B2 (en) 1975-11-27 1975-11-27 Glutamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50142029A JPS5832959B2 (en) 1975-11-27 1975-11-27 Glutamine

Publications (2)

Publication Number Publication Date
JPS5266686A JPS5266686A (en) 1977-06-02
JPS5832959B2 true JPS5832959B2 (en) 1983-07-16

Family

ID=15305701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50142029A Expired JPS5832959B2 (en) 1975-11-27 1975-11-27 Glutamine

Country Status (1)

Country Link
JP (1) JPS5832959B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952961A1 (en) * 1999-11-03 2001-05-10 Basf Ag Process for the purification of amino acid solutions by electrodialysis

Also Published As

Publication number Publication date
JPS5266686A (en) 1977-06-02

Similar Documents

Publication Publication Date Title
US11597740B2 (en) Process for efficient purification of neutral human milk oligosaccharides (HMOs) from microbial fermentation
CA1151591A (en) Fractionation of protein mixtures
US4636295A (en) Method for the recovery of lithium from solutions by electrodialysis
US20220251130A1 (en) Purification of oligosaccharides from a fermentation broth by using filtration
CN109180745B (en) Method for preparing N-acetylneuraminic acid by separating and purifying polysialic acid-containing material
JPS62133092A (en) Production of organic acid
US4400315A (en) Method of removing phosphate materials from deproteinized cheese whey
JP5052234B2 (en) Method for producing succinic acid
JPS5832959B2 (en) Glutamine
JP2002284749A (en) Method for producing basic amino acid solution
CN203866227U (en) System capable of separating and purifying amino acid continuously
KR100191357B1 (en) Recovery method of organic acid
JP3614279B2 (en) Method for producing galactosyl sucrose
JPS581106B2 (en) Glutamine
JPS59179099A (en) Desalting of sugar liquid
JPH11215980A (en) Treatment of liquid containing microbial cell
JPS6068008A (en) Process for transferring, removing, or concentrating electrolyte or ion of electrolyte contained in organic non-electrolyte solution by electrodialysis
JPS604168A (en) Crystallization of tryptophan
JPH08325191A (en) Method for separating and recovering organic acid and device therefor
JPS59152355A (en) Method for concentrating aqueous solution of amino acid
JPH09509095A (en) Guanidine salt recovery method
CA2028300C (en) Membrane process for acid recovery
JPH06506911A (en) Method
JPS62195351A (en) Method for recovering amino acid
CN116253335A (en) Salt separation process of quaternary water salt system