JPS5832927A - Gas turbine device - Google Patents

Gas turbine device

Info

Publication number
JPS5832927A
JPS5832927A JP12936881A JP12936881A JPS5832927A JP S5832927 A JPS5832927 A JP S5832927A JP 12936881 A JP12936881 A JP 12936881A JP 12936881 A JP12936881 A JP 12936881A JP S5832927 A JPS5832927 A JP S5832927A
Authority
JP
Japan
Prior art keywords
heat
air
gas turbine
gas
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12936881A
Other languages
Japanese (ja)
Inventor
Iwao Kusaka
日下 巌
Ikuo Kotaka
高鷹 生男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12936881A priority Critical patent/JPS5832927A/en
Publication of JPS5832927A publication Critical patent/JPS5832927A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To prevent the output fluctuation of a gas turbin caused by atmospheric temperature while keeping air to be supplied to a compressor in desired low temperature by cooling the combustion air of the gas turbin through liquid fuel and a heat pipe. CONSTITUTION:Branch lines 20 and 30 are provided on the seawater line 2A of an evaporator 2 to make it possible to supply pure water from a raw water tank 9, and a heat exchanger 8 for cooling air to be supplied to a compressor 5 is provided, allowing water after heat exchanging in the evaporator 2 to be circulated into said heat exchanger 8. The fuel of a gas turbin 4 is fed from a LNG tank 1, and is changed to normal temperature gas by an LNG evaporator 2 and sent to a combustor 3. On the other hand, combustion air required for the combustor 3 is sucked by an air compressor 5, and heat exchanged with water by the heat exchanger 8 provided at the inlet of the air compressor 5 to be adjusted to prescribed temperature.

Description

【発明の詳細な説明】 本発明状ガスタービン装置に関し、さらに詳しくは大気
温度に影響されず、ガスタービンの出力を一定に保持し
得るガスタービン装置Kllするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas turbine device, and more specifically, to a gas turbine device that is not affected by atmospheric temperature and can maintain a constant output of the gas turbine.

ガスタービン装W!1.は、大量の空気を圧縮し、気体
または液体燃料と振合燃焼させ、この時の膨張エネルギ
ーを利用して1回転エネルギーを得、さらにヒれを電気
エネルギーに変換するものである。
Gas turbine installation W! 1. The compressor compresses a large amount of air, performs concentric combustion with gas or liquid fuel, uses the expansion energy at this time to obtain energy for one revolution, and further converts the fins into electrical energy.

近年、ガスタービン装置から排出される常温ガスを利用
し、蒸気を駆動源とする蒸気タービンを並設した、いわ
ゆる複合発電プラントが知られている。
2. Description of the Related Art In recent years, so-called combined power generation plants have been known that use room-temperature gas discharged from a gas turbine device and have steam turbines installed in parallel that use steam as a driving source.

第1図れ、仁のような従来の複合発電プラントの装置系
統図を示すものである。す壜わち、との設備は、液体燃
料タンク1と、海水雪Aによる皺液体燃料の気化器2と
、該燃料タンクに連結された燃焼l13と、該a’*器
5に圧縮空気を供給する圧縮器5と、前記燃焼115に
連結されたガスタービン番と、それに直結して発電させ
る発電設備6と、ガスタービン番から排出される高温ガ
スを利用して蒸気を発生させる廃熱回収熱交換器(HR
so)xaと、HR8Gで発生した蒸気を駆動源とする
蒸気タービン16およびその発電設備6人から構成され
る。
Figure 1 shows an equipment system diagram of a conventional combined cycle power plant, such as Ren. The equipment includes a liquid fuel tank 1, a vaporizer 2 for liquid fuel wrinkled by seawater snow A, a combustion l13 connected to the fuel tank, and a compressed air supply to the a'* device 5. A compressor 5 to be supplied, a gas turbine connected to the combustion 115, a power generation facility 6 directly connected to it to generate electricity, and a waste heat recovery system that generates steam using high-temperature gas discharged from the gas turbine. Heat exchanger (HR
so) xa, a steam turbine 16 whose driving source is steam generated by HR8G, and its power generation equipment for six people.

上記構成において、大気温度が変化すると、圧縮器3)
(供給される空気6Aの比容積が増減する九めに1ガス
タ一ビン番への取込み空気重量(流量)が変わり、大気
温度によってガスタービンの出力が変化するという欠点
がある。fたガスタービンの出力が変化するとHR8G
への熱量久方が変わり、蒸気タービン出方も変化する。
In the above configuration, when the atmospheric temperature changes, the compressor 3)
(As the specific volume of the supplied air 6A increases or decreases, the weight (flow rate) of the air taken into the first gas turbine will change, which has the drawback that the output of the gas turbine will change depending on the atmospheric temperature.) When the output changes, HR8G
The amount of heat generated changes, and the way the steam turbine comes out also changes.

すなわち大気温度の変化はプラント総合出力に大幅な影
響を及ぼすととkなる。試算に依れば大気温度が20°
0上昇すると、プラント出方は約10−ダウンする。電
力需要のピ、−り社夏季の最も暑す時期に集中する傾向
にあ抄、かつ電力プラント立地の厳しい国内において杜
、プラント総合出方が大気温度に左右されること社、重
要な問題である。tた夏季に定格出力を得ようとしてと
九に合せた設備を保有することは、年間を通じた場合に
過剰な設備となり、経済的に不利となる。
In other words, changes in atmospheric temperature have a significant effect on the overall plant output. According to estimates, the atmospheric temperature is 20°.
When going up by 0, the plant output goes down by about 10-. In Japan, where electricity demand tends to be concentrated during the hottest period of the summer, and where it is difficult to locate power plants, it is an important issue that the overall output of plants is affected by atmospheric temperature. be. In order to obtain the rated output during the hot summer months, it would be economically disadvantageous to have equipment that is adjusted to the maximum output during the summer season, as this would result in excessive equipment throughout the year.

本発明の目的は、上記従来技術の欠点を解消し、圧縮器
への供給空気をy望の低温[K保持し、大気温度による
。ガスタービンの出力変動を防止したガスタービン装置
を提供する仁とにある。
The object of the present invention is to overcome the drawbacks of the prior art described above, and to maintain the supply air to the compressor at a desired low temperature [K], depending on the ambient temperature. Our company provides gas turbine equipment that prevents fluctuations in gas turbine output.

本発明は、従来、海水の熱量によル液体燃料(以下、L
NGで代表する)を気化していたものを、ガスタービン
吸入空気によ秒気化するとと−に1LNGとの熱交換に
よシ空気温度を低下させ、ガスタービンおよび付属設備
を含むプラント総合出力の増大安定化を図ったものであ
る。すなわち、本発明は、空気圧縮器と、該圧縮器で得
られた圧縮空気と燃料とを混合燃焼させる燃焼器と、該
燃焼器の燃焼ガスを膨張させてタービンを回転させルカ
スタービンとを備え九ガスタービン1ltKThいて、
空気圧縮器に供給する空気の冷却装置を設けたことを特
徴とする。
The present invention conventionally uses liquid fuel (hereinafter referred to as L) based on the calorific value of seawater.
When LNG (represented by NG) is vaporized by the gas turbine intake air, the air temperature is lowered by heat exchange with the LNG, and the total output of the plant including the gas turbine and auxiliary equipment is reduced. This is intended to increase and stabilize the amount. That is, the present invention includes an air compressor, a combustor that mixes and burns compressed air obtained by the compressor and fuel, and a turbine that expands combustion gas in the combustor to rotate a turbine. Nine gas turbines 1ltKTh,
It is characterized by being provided with a cooling device for the air supplied to the air compressor.

以下、本発明を図面によシさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第2図は、本発明の一実施例を示す機会発電プラントの
装置系統図である。第1図の従来装置と異なる点は、気
化器2の海水ライン11AK分岐ライン20および30
を設け、原水タンク9から真水を供給可能にするとと4
.に、圧縮115に供給さ・れる空気を冷却するための
熱交換器8を設け、核熱交換器8に気化器3で熱交換し
先後Q媒体を循環させるようKl、九ことである。原水
タンク9からの原水供給ラインには真水取入弁9Aが設
けられ%また水循環ライン20には循環ポ′ンプフ、循
環ポンプ人口止弁12および流量調整弁1番が、7さら
に海水供給ライン30FCは海水取水止弁10が設けら
れている。ま九気化器2と熱交換器8の間の循環ライン
には循環ポンプ出口止弁13、および海水放出止弁11
を有する海水放出ラインが設ゆられている。
FIG. 2 is an equipment system diagram of an opportunity power generation plant showing one embodiment of the present invention. The difference from the conventional device shown in FIG. 1 is that the seawater line 11AK branch lines 20 and 30 of the vaporizer 2
4 to enable fresh water to be supplied from the raw water tank 9.
.. A heat exchanger 8 is provided to cool the air supplied to the compressor 115, and the vaporizer 3 exchanges heat with the nuclear heat exchanger 8, and the Q medium is then circulated. The raw water supply line from the raw water tank 9 is provided with a fresh water intake valve 9A, and the water circulation line 20 is equipped with a circulation pump, a circulation pump stop valve 12, and a flow rate adjustment valve No. 1, and a seawater supply line 30FC. A seawater intake stop valve 10 is provided. A circulation pump outlet stop valve 13 and a seawater discharge stop valve 11 are installed in the circulation line between the vaporizer 2 and the heat exchanger 8.
A seawater discharge line with a

上記構成において、ガスタービン番の燃料はLNOタン
クlから導びかれ、LNG気化器2によって常温のガス
体にして燃焼器3に送られるが、本発明でaLNGの気
化用の熱源として、通常循環ポンプマによって取水され
る海水の代抄に、ま泌乍れと併用し、原水、y、、ゆら
導い、れ、腐蝕性物質含有量の少ない水が用いられる。
In the above configuration, the fuel of the gas turbine number is led from the LNO tank 1 and is converted into a gaseous body at room temperature by the LNG vaporizer 2 and sent to the combustor 3. For substituting the seawater taken by the pump, raw water, water with a low content of corrosive substances, is used in combination with water extraction.

一方、燃焼・器3.に必要な燃焼用空気は、空気圧縮機
6によシ吸引され、空気圧縮機6の入口に設置された熱
交換器8によ抄、上述の水と熱交換され、所定の温度K
1m1節される。大気温度が低い場合には、熱交換器8
において大気中の湿分が伝熱面に氷結、閉塞の可能性が
あるため、この場合祉弁10,11.12.13の切替
操作によ砂従来の海水による気化系統を使用することが
できる。
On the other hand, combustor 3. The combustion air necessary for
1m1 section is performed. When the atmospheric temperature is low, the heat exchanger 8
In this case, moisture in the atmosphere may freeze or block the heat transfer surface, so in this case, the conventional seawater vaporization system can be used by switching the safety valves 10, 11, 12, and 13. .

上記実施例によれば、LNGの気化@sPよび圧縮機の
供給空気との熱交換を、主として水を介して行う丸め、
機器類の腐食が少なく、まえ熱交換器8に直接LNGを
通して熱交換させる方法と比較して4、チューブリーク
等によるLNGの爆発の危険等を避けることができ、ま
九施工も容易である。さらに熱交換器8で故障を生じた
としても。
According to the above embodiment, the LNG vaporization @sP and the rounding that performs heat exchange with the supply air of the compressor mainly through water;
There is less corrosion of equipment, and compared to the method of directly passing LNG through the heat exchanger 8 for heat exchange, it is possible to avoid the risk of LNG explosion due to tube leaks, etc., and construction is easy. Furthermore, even if a failure occurs in the heat exchanger 8.

プラント停止までkは到らないという長所4得られる。Advantage 4: k does not reach the point where the plant is shut down.

−例によれば、LNG燃料の潜熱および顕熱を利用して
ガスタービン燃焼用空気温度を35℃から約115’O
まで低下させ、かつ熱回収を図るととKよ抄、プラント
効率を約10%以上増大させることができた。
- According to an example, the latent heat and sensible heat of LNG fuel are used to increase the gas turbine combustion air temperature from 35°C to approximately 115'O
By reducing the amount of heat and recovering heat, we were able to increase the plant efficiency by about 10% or more.

上記実施例において、原水′タンク9は非腐食性の水を
用いたが、海水、プライン、その他の媒体を用いて屯よ
い。
In the above embodiment, non-corrosive water was used in the raw water tank 9, but seawater, prine, or other medium may also be used.

次に943図は、本発明の他の実施例を示す同様な装置
系統図であるが、第2図の実施例と異なる点は、LNG
気化器2と熱交換器8の間に中間熱交換器17を設置し
、この熱交換器1フの管内にポンプ18、流量調節弁1
番を介してフ鼾オン等の熱媒体を循環させ、管外に気化
器2からの海水等を流通させ、これらの間に間接的に熱
交換を行慶わせるようにしたものである。この場合は、
大気1lrFにより第2図に示したような熱媒体(水ま
た社海水)の切替操作が不要とな秒、また大気温度が低
い鳩舎に本、熱交換器8にセける交換熱量が少なくなる
だけで氷結その他のトラブルは解消され、連続運転が容
易になる。
Next, FIG. 943 is a similar equipment system diagram showing another embodiment of the present invention, but the difference from the embodiment in FIG.
An intermediate heat exchanger 17 is installed between the vaporizer 2 and the heat exchanger 8, and a pump 18 and a flow rate control valve 1 are installed in the pipe of the heat exchanger 1.
A heat medium such as a fluoride tube is circulated through the pipe, and seawater from the vaporizer 2 is circulated outside the pipe, thereby indirectly performing heat exchange between them. in this case,
Due to the atmospheric temperature of 1lrF, there is no need to switch the heat medium (water or seawater) as shown in Figure 2, and the amount of exchange heat that can be transferred to the pigeon house and heat exchanger 8, where the atmospheric temperature is low, is reduced. This will eliminate icing and other problems, making continuous operation easier.

次に第4図は、熱交換装置としてヒートパイプを用いた
本発明の実施例を示すガスタービンatの系統図である
。図において、ガスタービン燃料用LNGIAは、ヒー
トパイプ2番で連結された熱交換器22および2吋=ツ
で燃焼用空気8と熱交換し、はぼ大気温度まで加熱され
る。さらに必要によっては、他のと一ドパイブ2″1を
有する熱交換器25.26によって熱交換され、 11
50〜200 ’O以上に再加熱され、ガスタービン番
の燃焼器3へ供給される。ヒートパイプ熱交換器(22
および23)の蒸発側23で冷却され九慾焼用空気8は
、ガスタービン番、発電機6と同軸で駆動されている圧
縮器5で圧縮された後、燃焼器Sへ供給される。一方、
ガスタービン番を出た廃ガス31は、ボイラ28を経て
他のヒートバイブ熱交換1i(25お↓び26)の、凝
縮1126でさらに熱回収され、大気へ放出される。
Next, FIG. 4 is a system diagram of a gas turbine AT showing an embodiment of the present invention using a heat pipe as a heat exchange device. In the figure, LNGIA for gas turbine fuel exchanges heat with combustion air 8 through heat exchanger 22 and 2-inch heat pipe connected by heat pipe No. 2, and is heated to approximately atmospheric temperature. Furthermore, if necessary, heat is exchanged by a heat exchanger 25, 26 having another pipe 2"1, 11
It is reheated to 50-200'O or more and supplied to the combustor 3 of the gas turbine number. Heat pipe heat exchanger (22
The air 8 for air 8 cooled on the evaporation side 23 of 23) is supplied to the combustor S after being compressed by the compressor 5 which is driven coaxially with the gas turbine and generator 6. on the other hand,
The waste gas 31 that has exited the gas turbine passes through the boiler 28, is further heat-recovered in the condensation 1126 of the other heat-vib heat exchangers 1i (25 and 26), and is released into the atmosphere.

上記ヒートパイプ2゛′番は、約−160”0f)LN
Gと約30℃の空気との間の熱交換を行なうため1、そ
の封入媒体としては高圧とならず、かつ閾化し愈い媒体
、例えばプロパンが好適である。一方、ヒートパイプ2
1は、常温域での熱來換であり、水が量適である。なお
、ヒートパイプ24の媒体として水も使用できるが、各
熱交換器22.23の設計および起動、停止に考慮を要
する。
The heat pipe No. 2' is approximately -160"0f) LN
In order to carry out heat exchange between G and air at about 30° C., a suitable enclosing medium is a medium that does not generate high pressure and has a threshold value, such as propane. On the other hand, heat pipe 2
1 is heat exchange at room temperature, and water is used in an appropriate amount. Note that water can also be used as a medium for the heat pipe 24, but consideration must be given to the design, starting, and stopping of each heat exchanger 22, 23.

上記実施例忙よれば、ガスタービンの燃焼用空気を液体
燃料およびヒートパイプを介して冷却することによ勢、
ガスタービンの大気温度の変化による出力変動をなくシ
、そのサイクル効率を上げ、また廃ガスの熱回収を行う
仁とにより、プラント効率亀向上させることができる。
According to the above-mentioned embodiments, the combustion air of the gas turbine is cooled through the liquid fuel and the heat pipe.
Plant efficiency can be improved by eliminating output fluctuations due to changes in the atmospheric temperature of the gas turbine, increasing its cycle efficiency, and recovering heat from waste gas.

さらに熱交換器の一部としてヒートパイプを用いたこと
により、伝熱管の破損等によるLNGと空気の混合が防
止され、安全性の高いシステムとする仁とができる。
Furthermore, by using a heat pipe as a part of the heat exchanger, mixing of LNG and air due to breakage of the heat exchanger tube can be prevented, resulting in a highly safe system.

またヒートパイプによシ熱交換伜を分離して配置する仁
とができ、例えばLNGの蒸発セクションをガスタービ
ンセクションから離れ九場所に設置し、安全性をさらに
高めることができる。
In addition, the heat pipe can be used to separate the heat exchanger and the heat exchanger, and for example, the LNG evaporation section can be installed at a distance from the gas turbine section to further improve safety.

第4図においては、ヒートパイプ熱交換器として、蒸発
側23’および36と凝縮側12.25に分離された熱
交換器が示され、それぞれパイプ2番および2’PK媒
体を循環させて熱交換を行う例が示されているが、本発
明状これに限定されるものでなく、例えば蒸発部と凝縮
部が一体となったヒートバイブ熱交換a醇を用いること
ができる。
In FIG. 4, a heat pipe heat exchanger is shown that is separated into evaporation sides 23' and 36 and condensation side 12.25, and the heat exchangers are heated by circulating PK medium in pipes 2 and 2', respectively. Although an example in which exchange is performed is shown, the present invention is not limited to this, and for example, a heat-vib heat exchanger in which an evaporating section and a condensing section are integrated can be used.

また本発明に用いる液体燃料としては、1.NO以外に
、例えばLPG、石炭液化ガス等を使用することもでき
る。
Further, as the liquid fuel used in the present invention, 1. In addition to NO, for example, LPG, coal liquefied gas, etc. can also be used.

以上、本発明によれば、ガスタービン入口空気冷却用の
熱交換器を設け、これと液体燃料の気化設備を組合せる
ことKより、大気温度によ為出力変動を生じる仁となく
、高いガスタービン出力値を保持するとと4IC,安全
かつ運転の容易1m置とすることができる。
As described above, according to the present invention, by providing a heat exchanger for cooling the gas turbine inlet air and combining this with a liquid fuel vaporization equipment, a high gas If the turbine output value is maintained, 4 ICs can be set at 1 m for safe and easy operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のガスタービン装置の系統図。 第2図、第3図および第4図は、本発明の種々の実施例
を示すガスタービン装置の系統図である。 、l・・・・・・LNGタンク、2・−・−・LNG気
化器、3・・・・・・燃焼器、番・・・・・・ガスター
ビン、5・・・−空気圧縮機、−6・・・・・・発電機
、ツ・・・・−循環ポンプ、8・・・・・燃交換器、9
・・・・・・原水タンク、10・・−・−・海水取水止
弁、24.27曲・・ ヒートパイプ。 代理人 弁理士   川 北 武 長 11図 第2図
FIG. 1 is a system diagram of a conventional gas turbine device. 2, 3, and 4 are system diagrams of gas turbine apparatuses showing various embodiments of the present invention. , l... LNG tank, 2... LNG vaporizer, 3... combustor, number... gas turbine, 5...- air compressor, -6... Generator, 2...- Circulation pump, 8... Fuel exchanger, 9
・・・・・・Raw water tank, 10・・−・−・Seawater intake stop valve, 24.27 songs・・Heat pipe. Agent Patent Attorney Takeshi Kawakita Figure 11 Figure 2

Claims (1)

【特許請求の範囲】 (1)空気圧縮器と、該圧aSSで得られた圧縮空気と
燃料とを拠金燃焼させる燃焼器と、該燃焼器の燃焼ガス
を膨張させてタービンを回転させるガスタービンを備え
たガスタービン装置11において、空気圧縮111に供
給する空気の冷却atを設けたことを特徴とするガスタ
ービン装置。 (2、特許請求の範囲第1項において、前記冷却装置は
、液体燃料を冷熱源とした空気と水また社他O媒体との
熱交換装量であることを特徴とするガスタービン装置。 (3)特許請求の範囲fJ2項において、液婦燃料社液
体天−ガス(LNG)である仁とを特徴とするガスター
ビン装置。 (4)4IN請求の範囲轄2項において、前記熱交換装
置は熱媒体を封入したヒートパイプを利用し丸ものであ
ることを特徴とするガスタービン装置。
[Scope of Claims] (1) An air compressor, a combustor that combusts the compressed air obtained by the pressure aSS and fuel, and a gas that expands the combustion gas of the combustor and rotates a turbine. A gas turbine device 11 equipped with a turbine, characterized in that a cooling at for air supplied to an air compressor 111 is provided. (2. In claim 1, the cooling device is a gas turbine device characterized in that it is a heat exchange device between air and water or other O medium using liquid fuel as a cold heat source. ( 3) In claim fJ2, the gas turbine device is characterized in that the heat exchange device is liquid natural gas (LNG). (4) In claim 2, A gas turbine device characterized by being round and using a heat pipe filled with a heat medium.
JP12936881A 1981-08-20 1981-08-20 Gas turbine device Pending JPS5832927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12936881A JPS5832927A (en) 1981-08-20 1981-08-20 Gas turbine device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12936881A JPS5832927A (en) 1981-08-20 1981-08-20 Gas turbine device

Publications (1)

Publication Number Publication Date
JPS5832927A true JPS5832927A (en) 1983-02-26

Family

ID=15007850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12936881A Pending JPS5832927A (en) 1981-08-20 1981-08-20 Gas turbine device

Country Status (1)

Country Link
JP (1) JPS5832927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113864060A (en) * 2021-10-29 2021-12-31 西安热工研究院有限公司 LNG power station combined cycle unit inlet air temperature adjusting system and method
CN113864060B (en) * 2021-10-29 2024-06-07 西安热工研究院有限公司 Air inlet temperature adjusting system and method for LNG power station combined cycle unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647625A (en) * 1979-09-27 1981-04-30 Osaka Gas Co Ltd Open cycle gas turbine power generating system using cold liquefied natural gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647625A (en) * 1979-09-27 1981-04-30 Osaka Gas Co Ltd Open cycle gas turbine power generating system using cold liquefied natural gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113864060A (en) * 2021-10-29 2021-12-31 西安热工研究院有限公司 LNG power station combined cycle unit inlet air temperature adjusting system and method
CN113864060B (en) * 2021-10-29 2024-06-07 西安热工研究院有限公司 Air inlet temperature adjusting system and method for LNG power station combined cycle unit

Similar Documents

Publication Publication Date Title
JP2856552B2 (en) Improved co-cycle plant using liquefied natural gas as fuel.
ES2251144T3 (en) RECOVERY OF WASTE HEAT IN AN ORGANIC ENERGY CONVERTER USING AN INTERMEDIATE LIQUID CYCLE.
US8250847B2 (en) Combined Brayton-Rankine cycle
EP0828925B1 (en) A liquefied natural gas (lng) fueled combined cycle power plant and an lng fueled gas turbine plant
US4813242A (en) Efficient heater and air conditioner
MXPA02000764A (en) A method and apparatus for vaporizing liquid gas in a combined cycle power plant.
CN105019956A (en) Gas-steam combined cycle power generation waste heat utilization system
CN105401989A (en) System and method for comprehensively utilizing liquefied natural gas (LNG) energy
CN105822431B (en) The combined cycle afterheat utilizing system of the high/low intake air temperature of compressor can be stabilized
KR20120026569A (en) Intake air temperature control device and a method for operating an intake air temperature control device
CN112963732A (en) BOG comprehensive utilization system of LNG receiving station
US10830105B2 (en) System and method for improving output and heat rate for a liquid natural gas combined cycle power plant
CN205243570U (en) System for use multipurposely LNG energy
JP2001193483A (en) Gas turbine system
JPH10288047A (en) Liquefied natural gas evaporating power generating device
KR101397621B1 (en) System for increasing energy efficiency of gas power plant
CN108800651B (en) Thermal power air cooling condenser safety degree summer device based on day and night electric power peak regulation
JP3697476B2 (en) Combined power generation system using gas pressure energy
JP2000018049A (en) Cooling system for combustion air gas turbine and cooling method
JP3696931B2 (en) Power generation facility using liquid air
CN109779709A (en) A kind of cold and hot charge-coupled devices of LNG Power Vessel
CN216282168U (en) Air inlet temperature regulating and controlling system of combined cycle unit based on LNG cold energy and solar energy
JPS5832927A (en) Gas turbine device
JP2005291094A (en) Power plant facility using liquefied gas vaporizing device
JPS55134716A (en) Gas-turbine system