JPS5832778B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS5832778B2
JPS5832778B2 JP13523779A JP13523779A JPS5832778B2 JP S5832778 B2 JPS5832778 B2 JP S5832778B2 JP 13523779 A JP13523779 A JP 13523779A JP 13523779 A JP13523779 A JP 13523779A JP S5832778 B2 JPS5832778 B2 JP S5832778B2
Authority
JP
Japan
Prior art keywords
film
semiconductor
mixed film
oxide
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13523779A
Other languages
Japanese (ja)
Other versions
JPS5570033A (en
Inventor
武 松尾
秀雄 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13523779A priority Critical patent/JPS5832778B2/en
Publication of JPS5570033A publication Critical patent/JPS5570033A/en
Publication of JPS5832778B2 publication Critical patent/JPS5832778B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体装置に関し半導体表面に露出するPN接
合部の被覆保護に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device and relates to covering and protecting a PN junction exposed on a semiconductor surface.

一般に誘電体薄膜の製造方法としては周知のようにDC
反応スパッタリングやRFスパッタリングや蒸着(電子
ビーム蒸着も含む)などの物理蒸着法、陽極酸化法、プ
ラズマ酸化法等があり、此等の方法で製造された誘電体
薄膜はキャパシターとして実用に供せられている。
Generally speaking, as a method for manufacturing dielectric thin films, DC
There are physical vapor deposition methods such as reactive sputtering, RF sputtering, vapor deposition (including electron beam evaporation), anodic oxidation methods, plasma oxidation methods, etc., and dielectric thin films manufactured by these methods cannot be put to practical use as capacitors. ing.

処が半導体表面に露出するPN接合部のパッシベーショ
ン膜として見た場合には上記物理蒸着膜より化学蒸着膜
の方が種々の点で優れているので、少数の例を除いては
殆んど化学蒸着法によってパッシベーション膜を得てい
るのが現状である。
When viewed as a passivation film for the PN junction exposed on the semiconductor surface, chemical vapor deposited films are superior to the above-mentioned physical vapor deposited films in various respects. Currently, passivation films are obtained by vapor deposition.

このような化学蒸着膜としては周知のように酸化シリコ
ン(S i02 )窒化シリコン(S t 2 N4
)−酸化アルミニウム(Ae203)等の絶縁膜があり
、夫夫の特長を生かして実用に供せられている。
As is well known, such chemical vapor deposition films include silicon oxide (S i02 ), silicon nitride (S t 2 N4
) - There are insulating films such as aluminum oxide (Ae203), which are put to practical use by taking advantage of their characteristics.

此等の絶縁膜の誘電率は酸化シリコンが約4.窒化シリ
コンが約7.酸化アルミニウムが約9程度である。
The dielectric constant of these insulating films is about 4. Silicon nitride is about 7. Aluminum oxide is about 9.

これらの膜を半導体表面に露出する特に高耐圧のPN接
合部のパッシベーションとして用いた場合には製造工程
中或いは使用中PN接合の逆方向耐圧とか逆方向漏洩電
流とかが劣化したり変動することがあって信頼性の点で
不充分で、従ってもつと誘電率が大きく安定な保護膜が
必要となる。
When these films are used as passivation for PN junctions exposed on the semiconductor surface, especially those with high breakdown voltages, the reverse breakdown voltage and reverse leakage current of the PN junctions may deteriorate or fluctuate during the manufacturing process or during use. However, it is insufficient in terms of reliability, and therefore requires a stable protective film with a large dielectric constant.

このような必換から例えば酸化タンクツぼTa203)
酸化ニオビウム(Nb205′)、酸化チタン(T t
02 )酸化ハフニウム(Hf02失酸化ジルコニウ
ム(Z r02 )、酸化イツトリウム(Y2O3)等
のような酸化シリコンや窒化シリコンに比べて高誘電率
の絶縁膜をパッシベーションに用いた半導体装置も検討
されている。
Because of this necessity, for example, oxidation tank pot Ta203)
Niobium oxide (Nb205'), titanium oxide (T t
02) Semiconductor devices using insulating films with higher dielectric constants than silicon oxide or silicon nitride, such as hafnium oxide (Hf02), deoxidized zirconium (Zr02), and yttrium oxide (Y2O3), are also being considered for passivation.

しかし乍らこのような高誘電率の絶縁膜1例えば酸化ク
ンクル膜を電子顕微鏡で分析すると、この膜には数百〜
数千穴程度の大きさの結晶粒界(GRAIN)の成長が
認められるので、かかる絶縁膜を特に高耐圧のPN接合
部のパッシベーションとして用いた場合には、上記結晶
粒界を媒介としてPN接合の逆方向耐圧とか漏洩電流と
かが変動劣化し、従って信頼性の高い半導体装置を得る
ことは尚困難であった。
However, when an insulating film 1 with such a high dielectric constant, such as an oxidized Kunkle film, is analyzed using an electron microscope, it is found that this film contains several hundred to
Since the growth of grain boundaries (GRAIN) with a size of several thousand holes is observed, when such an insulating film is used as passivation for a PN junction with a particularly high breakdown voltage, the PN junction is The reverse breakdown voltage and leakage current of the semiconductor device fluctuate and deteriorate, making it still difficult to obtain a highly reliable semiconductor device.

父上記したような高誘電率の絶縁膜は単体として化学的
エツチング液例えば弗酸系のエツチング液に対して溶は
難いので、半導体表面に電極を設ける場合に絶縁膜の一
部を蝕刻除去することができないか又は更に複雑な工程
をエツチングのために必要とするという欠点がある。
The insulating film with a high dielectric constant as mentioned above is difficult to dissolve in chemical etching solutions such as hydrofluoric acid-based etching solutions, so when an electrode is provided on the semiconductor surface, a part of the insulating film is removed by etching. The disadvantage is that it is not possible or requires a more complicated process for etching.

本発明は従来の上記欠点に鑑みなされたもので。The present invention was made in view of the above-mentioned drawbacks of the conventional technology.

高誘電率を維持し且つ無定形(上記Al2O3゜Si3
N4など)ないしはそれに近い電気伝導度の小さな混合
薄膜を半導体表面に露出するPN接合部のパッシベーシ
ョンに用いたものである。
It maintains a high dielectric constant and is amorphous (the above Al2O3゜Si3
A mixed thin film with a low electrical conductivity (such as N4) or similar to it is used for passivation of the PN junction exposed on the semiconductor surface.

即ち本発明はTiO2、Ta2O3、ZrO2、Nb2
O5。
That is, the present invention uses TiO2, Ta2O3, ZrO2, Nb2
O5.

Y2O3等のような高誘電率を有する所謂多結晶性絶縁
膜とSi3N4等のような所謂無定形(Arnor−p
hous )絶縁膜(酸化アルミニウム膜を含む)を混
合することにより、高誘電率を有し且つ無定形のの上記
Si3N3やAl2O3膜と同程度の比抵抗を有する混
合膜を形成し、これを半導体表面に露出するPN接合部
の被覆に用いたものである。
A so-called polycrystalline insulating film having a high dielectric constant such as Y2O3, etc. and a so-called amorphous (Arnor-p) insulating film such as Si3N4 etc.
By mixing an insulating film (including an aluminum oxide film), a mixed film having a high dielectric constant and a resistivity comparable to that of the amorphous Si3N3 or Al2O3 film is formed, and this is used as a semiconductor film. This was used to cover the PN junction exposed on the surface.

以下に本発明の一実施例をTa205−A12o3系の
混合膜を用いた場合について説明する。
An embodiment of the present invention will be described below using a Ta205-A12o3 mixed film.

先ずTa205膜のソースとしてはタンクルペンタメト
キサイド(Ta(OCH3)5)やペインタエキサイド
(Ta(OC2H6)等のようなタンクルアルコキサイ
ドか又は五塩化タンタル等のようなタンクルハライドを
用いる。
First, as a source for the Ta205 film, a tank alkoxide such as tank pentamethoxide (Ta(OCH3)5) or painter's oxide (Ta(OC2H6)) or a tank halide such as tantalum pentachloride is used.

一方Al2O8膜のソースとしては三塩化アルミ(Al
O13)を用いる。
On the other hand, aluminum trichloride (Al
O13) is used.

そしてタンクルペンタメトキサイドを一方の蒸発器に収
納しこの中にキャリアガスとして例えばアルゴン等のよ
うな不活性ガス若しくは例えばアルゴン等のような不活
性ガス若しくは水素ガスを又反応ガスとしてN2+CO
2ガスを両者合せて約0.5/I!/minの流量流し
込む。
Then, tank pentamethoxide is stored in one evaporator, in which an inert gas such as argon or hydrogen gas is contained as a carrier gas, and N2+CO is used as a reaction gas.
Approximately 0.5/I for both gases! /min flow rate.

一方三塩化アルミを地方の蒸発器に収納し約110℃に
維持し乍ら、この中に例えばアルゴンのような不活性ガ
ス若しくは水素ガスを約11/minの流量流し込む。
Meanwhile, aluminum trichloride is stored in a local evaporator and maintained at about 110° C., while an inert gas such as argon or hydrogen gas is flowed into it at a flow rate of about 11/min.

然して石英製のミキサーで上記T a (OCH3)
5+ N2 + CO2の混合ガスとklce3蒸気と
を混合し、これを反応管内に導入することによって、所
定の温度例えば約850°Cに加熱された半導体例えば
シリコンのPN接合の露出部を含む表面にT a205
A1202系の混合膜を約8OA/minの速度で
堆積させた。
However, using a quartz mixer, the above T a (OCH3)
By mixing a mixed gas of 5+ N2 + CO2 and KLCE3 vapor and introducing the mixture into a reaction tube, a surface of a semiconductor, such as silicon, including an exposed part of a PN junction, heated to a predetermined temperature, for example, about 850°C, is heated. T a205
A mixed film based on A1202 was deposited at a rate of about 8 OA/min.

このような混合膜の成長機構は余り明白でないが、分析
によると混合膜中の結晶粒界の成長が著しく抑制され、
この結果混合膜は非常に小さい結晶粒界からなっている
か若しくはほぼ無定形に近い性質を帯びていて、第1図
に示す如く電流−電圧特性はシリコン窒化膜や酸化アル
ミニウムとほぼ同程度であることが判明した。
Although the growth mechanism of such a mixed film is not very clear, analysis shows that the growth of grain boundaries in the mixed film is significantly suppressed.
As a result, the mixed film consists of very small grain boundaries or has almost amorphous properties, and as shown in Figure 1, the current-voltage characteristics are almost the same as those of silicon nitride films and aluminum oxide films. It has been found.

又混合膜の誘電率は混合膜の容積比(Ae2o3/Ta
203)を選択することによって任意の値に制御するこ
とができ、例えば(Ae203/Ta203)が約4倍
の場合誘電率は約15〜20となり、S A02の約4
倍、A1205 、 S t 3 N4等の約2倍とい
う高誘電率を維持することができた。
The dielectric constant of the mixed film is determined by the volume ratio of the mixed film (Ae2o3/Ta
203) can be controlled to any value. For example, if (Ae203/Ta203) is about 4 times the dielectric constant, the dielectric constant will be about 15 to 20, which is about 4 of S A02.
It was possible to maintain a high dielectric constant of approximately twice that of A1205, S t 3 N4, etc.

従ってかかる混合膜で半導体(例えばシリコン)表面に
露出する特に高耐圧のPN接合部を被覆した本発明に係
る半導体装置は従来の装置に比較して逆方向耐圧や漏洩
電流等の点で信頼性を大巾に向上させることができた。
Therefore, the semiconductor device according to the present invention in which the PN junction, which has a particularly high breakdown voltage and is exposed on the semiconductor (for example, silicon) surface, is covered with such a mixed film has higher reliability in terms of reverse breakdown voltage, leakage current, etc. compared to conventional devices. We were able to significantly improve this.

父上記したような混合膜は化学的エツチング液例えば容
積比で弗酸対水が20対50のようなエツチング液に対
して溶解するばかりでなく、第2図に示すように混合膜
の容積比を選択することによって、エツチング速度を任
意に制御することができ、この結果半導体表面に電極を
設ける場合に混合膜の一部を選択的に蝕刻除去すること
が容易となった。
The mixed film as described above not only dissolves in a chemical etching solution, such as an etching solution with a volume ratio of hydrofluoric acid to water of 20:50, but also dissolves in a chemical etching solution with a volume ratio of hydrofluoric acid to water of 20:50, as shown in Figure 2. By selecting , the etching rate can be arbitrarily controlled, and as a result, when an electrode is provided on the semiconductor surface, it becomes easy to selectively etch away a part of the mixed film.

尚以上の実施例ではPN接合の露出部を含む半導体表面
を直接混合膜で被覆したが、この混合膜はシリコン等に
対して若干高い表面準位を形成する傾向があるので、上
記PN接合の露出部を含む半導体表面を酸化シリコン薄
膜等を介して混合膜で被覆するのが更に望ましい。
In the above embodiments, the semiconductor surface including the exposed part of the PN junction was directly covered with the mixed film, but since this mixed film tends to form a slightly higher surface level than silicon etc., It is more desirable to cover the semiconductor surface including the exposed portion with a mixed film via a silicon oxide thin film or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は混合膜の電圧−電流特性を示す図、第2図は混
合膜の容積比とエツチングレートとの関係を示す曲線図
である。
FIG. 1 is a diagram showing the voltage-current characteristics of the mixed film, and FIG. 2 is a curve diagram showing the relationship between the volume ratio and etching rate of the mixed film.

Claims (1)

【特許請求の範囲】 1 半導体表面に露出するPN接合表面をアルミナと酸
化イツ) IJウムとの混合膜をもって被覆するように
したことを特徴とする半導体装置。 2 半導体表面に露出するPN接合表面をアルミナと酸
化ジルコニウムとの混合膜をもって被覆するようにした
ことを特徴とする半導体装置。 3 半導体表面に露出するPN接合表面をアルミナと酸
化ハフニウムとの混合膜をもって被覆するようにしたこ
とを特徴とする半導体装置。 4 半導体表面に露出するPN接合表面をアルミナと酸
化ニオビウムとの混合膜をもって被覆するようにしたこ
とを特徴とする半導体装置。 5 半導体表面に露出するPN接合表面を酸化シリコン
被膜を介してアルミナと酸化イツトリウムとの混合膜を
もって被覆するようにしたことを特徴とする半導体装置
。 6 半導体表面に露出するPN接合表面を酸化シリコン
被膜を介してアルミナと酸化ジルコニウムとの混合膜を
もって被覆するようにしたことを特徴とする半導体装置
。 7 半導体表面に露出するPN接合表面を酸化シリコン
被膜を介してアルミナと酸化ハフニウムとの混合膜をも
って被覆するようにしたことを特徴とする半導体装置。 8 半導体表面に露出するPN接合表面を酸化シリコン
被膜を介してアルミナと酸化ニオビウムとの混合膜をも
って被覆するようにしたことを特徴とする半導体装置。
[Scope of Claims] 1. A semiconductor device characterized in that a PN junction surface exposed on a semiconductor surface is coated with a mixed film of alumina and IJ oxide. 2. A semiconductor device characterized in that the PN junction surface exposed on the semiconductor surface is coated with a mixed film of alumina and zirconium oxide. 3. A semiconductor device characterized in that the PN junction surface exposed on the semiconductor surface is coated with a mixed film of alumina and hafnium oxide. 4. A semiconductor device characterized in that the PN junction surface exposed on the semiconductor surface is coated with a mixed film of alumina and niobium oxide. 5. A semiconductor device characterized in that the PN junction surface exposed on the semiconductor surface is coated with a mixed film of alumina and yttrium oxide via a silicon oxide film. 6. A semiconductor device characterized in that the PN junction surface exposed on the semiconductor surface is coated with a mixed film of alumina and zirconium oxide via a silicon oxide film. 7. A semiconductor device characterized in that the PN junction surface exposed on the semiconductor surface is coated with a mixed film of alumina and hafnium oxide via a silicon oxide film. 8. A semiconductor device characterized in that the PN junction surface exposed on the semiconductor surface is coated with a mixed film of alumina and niobium oxide via a silicon oxide film.
JP13523779A 1979-10-22 1979-10-22 semiconductor equipment Expired JPS5832778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13523779A JPS5832778B2 (en) 1979-10-22 1979-10-22 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13523779A JPS5832778B2 (en) 1979-10-22 1979-10-22 semiconductor equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12092077A Division JPS5341181A (en) 1977-10-11 1977-10-11 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5570033A JPS5570033A (en) 1980-05-27
JPS5832778B2 true JPS5832778B2 (en) 1983-07-15

Family

ID=15147010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13523779A Expired JPS5832778B2 (en) 1979-10-22 1979-10-22 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS5832778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5802091A (en) * 1996-11-27 1998-09-01 Lucent Technologies Inc. Tantalum-aluminum oxide coatings for semiconductor devices

Also Published As

Publication number Publication date
JPS5570033A (en) 1980-05-27

Similar Documents

Publication Publication Date Title
CA2136581C (en) Gallium oxide thin films
Fujikawa et al. Effects of additive elements on electrical properties of tantalum oxide films
Balog et al. Thin films of metal oxides on silicon by chemical vapor deposition with organometallic compounds. I
US6989573B2 (en) Lanthanide oxide/zirconium oxide atomic layer deposited nanolaminate gate dielectrics
TWI240315B (en) A method for making a semiconductor device having a high-K gate dielectric
US6075691A (en) Thin film capacitors and process for making them
US4804640A (en) Method of forming silicon and aluminum containing dielectric film and semiconductor device including said film
JP3390495B2 (en) MIM structure element and method of manufacturing the same
US20040214399A1 (en) Atomic layer deposited ZrTiO4 films
JPH0658966B2 (en) Semiconductor element
JPH0379869B2 (en)
Conley et al. Atomic layer deposition of hafnium oxide using anhydrous hafnium nitrate
JPH06196654A (en) Semiconductor memory and its preparation
JPH0714064B2 (en) Method for passivating the surface of a compound semiconductor
JP2008294402A (en) Method for manufacturing oxide thin film transistor element
Choi et al. Ferroelectric YMnO3 thin films grown by metal-organic chemical vapor deposition for metal/ferroelectric/semiconductor field-effect transistors
Wilmsen The MOS/InP interface
EP3291304A1 (en) Oxide semiconductor thin film, thin-film transistor, and preparation method and device
JPS5832778B2 (en) semiconductor equipment
US4144634A (en) Fabrication of gallium arsenide MOS devices
KR20020075735A (en) Mfmos capacitors with high dielectric constant materials and a method of making the same
US5616233A (en) Method for making a fluorinated silicon dioxide layer on silicon substrate by anodic oxidation at room temperature
Choi et al. Control of the interfacial layer thickness in hafnium oxide gate dielectric grown by PECVD
JPS5832779B2 (en) semiconductor equipment
US6174213B1 (en) Fluorescent lamp and method of manufacturing same