JPS5832668B2 - Ultrasonic measuring device - Google Patents

Ultrasonic measuring device

Info

Publication number
JPS5832668B2
JPS5832668B2 JP52159726A JP15972677A JPS5832668B2 JP S5832668 B2 JPS5832668 B2 JP S5832668B2 JP 52159726 A JP52159726 A JP 52159726A JP 15972677 A JP15972677 A JP 15972677A JP S5832668 B2 JPS5832668 B2 JP S5832668B2
Authority
JP
Japan
Prior art keywords
wave
output
circuit
amplitude
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52159726A
Other languages
Japanese (ja)
Other versions
JPS5489778A (en
Inventor
幸久 敷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP52159726A priority Critical patent/JPS5832668B2/en
Publication of JPS5489778A publication Critical patent/JPS5489778A/en
Publication of JPS5832668B2 publication Critical patent/JPS5832668B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 この発明は、超音波距離測定装置(超音波水位計を含む
)や超音波流速測定装置のように、静止ないし流動する
媒質中で、短時間のみ持続する超音波を送信波として送
信子から発し、これを直接にないし反射面を介して受信
波として受信子で受け、送信波を発した時から受信波を
受けた時までの経過時間に基いて、超音波の通路の全長
に関連する長さないしその通路に沿う方向の媒質の分速
度を算定する超音波利用測定装置に関する。
Detailed Description of the Invention The present invention uses ultrasonic waves that last only for a short time in a stationary or flowing medium, such as an ultrasonic distance measuring device (including an ultrasonic water level gauge) or an ultrasonic current measuring device. The ultrasonic wave is emitted from the transmitter as a transmitted wave, and is received by the receiver as a received wave either directly or through a reflective surface. The present invention relates to an ultrasonic measuring device for calculating the minute velocity of a medium in a direction related to the total length of a passage or along the passage.

超音波距離測定装置は、媒質中の音速v1前記経過時間
T、及び超音波の通路の全長りの間の、L=VXTなる
関係に基いてLに関連する長さを算定するものであり、
超音波流速測定装置は、前記の諸量、V、T、L、媒質
の流速υ、及び媒質の流れ方向と超音波の通路に沿う方
向とのなす角θ 間の、L=(■+υ・cosθ)×T
1即ちυ・cosθ=(L/T)−Vに基いて流速υを
算定するものであって、倒れも経過時間Tの測定値を算
定の基礎としている。
The ultrasonic distance measuring device calculates the length related to L based on the relationship L=VXT between the sound velocity v1 in the medium, the elapsed time T, and the total length of the ultrasonic path,
The ultrasonic flow velocity measuring device measures L=(■+υ・cosθ)×T
In other words, the flow velocity υ is calculated based on υ·cos θ=(L/T)−V, and the measurement value of the elapsed time T is used as the basis for calculating the collapse.

この種の装置の送信子は、例えばセラミックスなどの誘
電体を使用する超音波の周波数を共振周波数とする平板
の形に形成し、両面を導電性の被膜で覆ったもので、こ
の両崩間1こ共振周波数の交番電圧を印す口して電歪現
象により両面間の距離に振動的変化をひきおこさせ、こ
れにより隣接する空気を強制的に振動させるものである
が、急激に大きな交番電圧を印加しても、誘電体自身の
慣性や被膜の内部摩擦などのために、振幅は徐々にしか
大きくならない。
The transmitter of this type of device is formed into a flat plate whose resonance frequency is the ultrasonic frequency using a dielectric material such as ceramics, and both sides are covered with a conductive coating. By applying an alternating voltage with one resonant frequency, an oscillatory change is caused in the distance between the two surfaces due to electrostrictive phenomena, which forces the adjacent air to vibrate. Even when a voltage is applied, the amplitude only increases gradually due to the inertia of the dielectric itself and the internal friction of the coating.

このため、第1図aに示すように振幅が全期間均一な交
番電圧を印加した場合に生ずる送信波は、第1図すに示
すように最初の振幅がきわめて小さく、従って受は波も
同様に最初の振幅がきわめて小さくなるのが通例である
Therefore, as shown in Figure 1a, when an alternating voltage with a uniform amplitude is applied throughout the period, the transmitted wave that is generated has an extremely small initial amplitude, as shown in Figure 1A, and therefore the received wave is also similar. The initial amplitude is usually very small.

ところで、従来の超音波利用測定装置では、前記経過時
間Tとして、送信波の始点から受信波の始点までの時間
を使用しており、送信波の始点は送信波発生手段の作動
に基いて正確に検出できるが、受信波の始点は前記の事
情で検出が甚だ困難であるため、1〜2周期分の測定誤
差を避けることができない点に問題があった。
By the way, in conventional ultrasonic measurement devices, the time from the start point of the transmitted wave to the start point of the received wave is used as the elapsed time T, and the start point of the transmitted wave is determined accurately based on the operation of the transmitted wave generating means. However, due to the above-mentioned circumstances, it is extremely difficult to detect the starting point of the received wave, so there is a problem in that a measurement error of one to two cycles cannot be avoided.

この測定誤差は、使用周波数fを大きく選んで波長λ=
V/fを小さくしても、この場合は減衰のためlζ振幅
が小さくなり、始点の検出が困難になるため、事態は少
しも改善されない。
This measurement error can be solved by choosing a large frequency f and wavelength λ=
Even if V/f is reduced, the situation will not be improved at all because in this case, the lζ amplitude will become smaller due to attenuation, making it difficult to detect the starting point.

このような事情のため、従来から周波数fを10〜50
KHz程度とするのが普通であるが、この場合音速V=
340m/s 、f=50KHzとすると波長λ=V/
f = 6.8mmとなるから、この1〜2倍即ち6
.8〜13.6mm程度の距離測定誤差は不可避であっ
た。
Due to these circumstances, the frequency f has traditionally been set at 10 to 50.
It is normal to set it to around KHz, but in this case the sound speed V=
340m/s, f=50KHz, wavelength λ=V/
f = 6.8mm, so 1 to 2 times this, or 6
.. A distance measurement error of about 8 to 13.6 mm was unavoidable.

これに対処して、送信波として振幅がほとんど0から漸
増の後に急減するものを用い、受信波に基づく受信信号
に対して半周期遅れの遅延信号を作ってこれを受信信号
に加算して、最後のひと山を残して他をほとんど相殺し
、最後のひと山の発生時点を検出して発信波の最後のひ
と山から受信波の最後のひと山までの経過時間を実測す
るものが提案されている。
To deal with this, we use a transmitted wave whose amplitude gradually increases from almost 0 and then rapidly decreases, create a delayed signal that is half a cycle behind the received signal based on the received wave, and add this to the received signal. It has been proposed to leave the last peak and cancel out most of the others, detect the point at which the last peak occurs, and actually measure the elapsed time from the last peak of the transmitted wave to the last peak of the received wave.

←特開昭52−6556号)しかし、受信波の振幅は、
実際には、誘電体自身の慣性によるエネルギの放出や本
来以外の通路を経由する反射波などのために、第1図す
に示す発信波にもまして、後縁で漸減し、従って受信信
号と前記遅延信号とを加算すると、振幅の漸減に対応し
て最後のひと山の代りに多数の低い波を生じ、その位相
は振幅の漸増時に対し半周期ずれており山の高さは多少
高いとしても、振幅減少開始時点を明確ζこ検出できる
ほどの顕著な差異がないので、経過時間の正確な測定が
困難である。
←Unexamined Japanese Patent Publication No. 52-6556) However, the amplitude of the received wave is
In reality, due to the release of energy due to the inertia of the dielectric itself and the reflected waves passing through other paths than the original one, the wave gradually decreases at the trailing edge compared to the transmitted wave shown in Figure 1, and therefore the received signal When added to the delayed signal, many low waves are generated in place of the last peak in response to the gradual decrease in amplitude, and the phase is shifted by half a cycle compared to when the amplitude gradually increases, so even if the height of the peak is somewhat higher, , it is difficult to accurately measure the elapsed time because there is no significant enough difference to clearly detect the point at which the amplitude begins to decrease.

このため、例えば開渠流量計において、液面の上方に液
面を対象物とする送信子及び受信子を配置して、液面ま
での距離を測定する液位計であって、測定距離の範囲が
20071m以下と小さいものに使用するのには、従来
のままの超音波距離測定装置では誤差が太き過ぎて実用
にならないし、超音波の通路の全長りが小さい超音波流
量計についても同様な理由で実用にならない点に問題が
あった。
For this reason, for example, in an open channel flow meter, a level meter that measures the distance to the liquid surface by arranging a transmitter and a receiver whose object is the liquid surface above the liquid level is used. Conventional ultrasonic distance measuring devices have too large an error to be practical when used for objects with a small range of 20,071 m or less, and ultrasonic flowmeters with a small total length of ultrasonic path also cannot be used. There was a problem in that it was not practical for the same reason.

この発明は、従来と同程度の周波数の超音波を使用し、
しかも測定誤差をきわめて小さくして、前記の問題を解
決した、超音波利用測定装置の実現を自力とするもので
ある。
This invention uses ultrasonic waves of the same frequency as conventional ones,
Moreover, the present invention aims to realize an ultrasonic measuring device that solves the above-mentioned problems by minimizing measurement errors.

この発明は、実施例について後記する通り、前記の超音
波利用測定装置において、送信波としてその持続時間の
過程に振幅が最大値から比較的急速に縮小するものを使
用し、受信波の振幅に追従する出力と、これにその増大
時にのみ追従し減少時は不変の出力とを作り、前者が後
者より小さくなったことによって受信波の振幅の縮小の
事実を検出してその瞬間に計時信号を発する受信波振幅
縮小検出手段を設け、送信波の振幅の縮小から計時信号
までの時間に基づいて前記経過時間を算定することを特
徴とする、超音波利用測定装置である。
As will be described later in connection with the embodiments, the present invention uses a transmitting wave whose amplitude decreases relatively rapidly from its maximum value over the course of its duration in the ultrasonic measuring device described above, and which reduces the amplitude of the received wave. It creates an output that follows this, and an output that follows only when it increases and remains unchanged when it decreases, and when the former becomes smaller than the latter, it detects the fact that the amplitude of the received wave has decreased, and at that moment outputs a timing signal. This ultrasonic measuring device is characterized in that it includes a means for detecting a reduction in the amplitude of the received wave to be emitted, and calculates the elapsed time based on the time from the reduction in the amplitude of the transmitted wave to the time signal.

この種の装置では、受信波の振幅は減衰により送信波の
振幅より全般的に小さいが、持続時間中の各波の振幅の
大小関係は相似する。
In this type of device, the amplitude of the received wave is generally smaller than the amplitude of the transmitted wave due to attenuation, but the magnitude relationship between the amplitudes of each wave during the duration is similar.

本件発明では、前記のように、持続時間の過程に振幅が
最大値から比較的急速に縮小する送信波を使用するから
、受信波の振幅も同様の過程で変化し、振幅の急速な縮
小を生ずる波は互に対応している。
As described above, the present invention uses a transmitted wave whose amplitude decreases relatively rapidly from the maximum value over the course of its duration, so the amplitude of the received wave also changes in the same process, causing a rapid decrease in amplitude. The resulting waves correspond to each other.

そして、送信波の振幅縮小時期は、送信波をだすために
送信子を駆動する駆動電圧の振幅の縮小の時期によって
知ることができ、受信波の振幅の縮小の時期は、受信子
が生ずる受信電圧の振幅の縮小の事実を検出してその瞬
間に計時信号を発する受信波振幅縮小検出手段を使用し
て正確に知ることができる。
The timing of the amplitude reduction of the transmitted wave can be determined by the timing of the reduction in the amplitude of the driving voltage that drives the transmitter to generate the transmitted wave, and the timing of the reduction of the amplitude of the received wave can be determined by the timing of the reduction of the amplitude of the driving voltage that drives the transmitter to generate the transmitted wave. This can be accurately known by using a received wave amplitude reduction detection means that detects the fact that the voltage amplitude is reduced and issues a timing signal at that moment.

又、駆動電圧と送信波との間、及び受信波と受信電圧と
の間に位相の差異があるが、それは一定値であるから、
それを補正することによって送信波を発してから受信波
を受けるまでの経過時間Tを正しく知ることができ、媒
質の温度に関連して音速Vを補正すれば、超音波の通路
の全長りに関連する長さや、流速υを正確に算定するこ
とができる。
Also, there are phase differences between the driving voltage and the transmitted wave, and between the received wave and the received voltage, but these are constant values, so
By correcting this, it is possible to accurately know the elapsed time T from when the transmitted wave is emitted until receiving the received wave, and by correcting the sound speed V in relation to the temperature of the medium, the entire length of the ultrasonic path can be determined. The relevant lengths and flow velocities υ can be calculated accurately.

第2図にブロック図を示す実施例は、開渠流量計の液面
の上方の定位置に下方に向けて送信子と受信子とを兼ね
る送受信子を設けて、液面までの距離の2倍を超音波の
通路の全長りとして、液位を測定する超音波液位計であ
って、次のようにして送信波を生ずる。
In the embodiment shown in the block diagram in Fig. 2, a transmitter/receiver that serves as a transmitter and a receiver is provided downward at a fixed position above the liquid level of the open channel flowmeter, and the distance to the liquid level is 2. This is an ultrasonic level meter that measures the liquid level by taking the total length of the ultrasonic path as the length of the ultrasonic wave path, and generates a transmitted wave as follows.

まず発振回路1で100 KHzの方形波を作り、分周
回路2で50KHz及び更に下位周波数の方形波を作り
、同期微分回路3で第2図gに示す周波数100 X
2− ” 2K Hz % 周期40.96m5の方形
波と、第2図すに示す周期40.96m5毎ζこ0.3
Zms間持続する負論理のパルスを生ずる。
First, the oscillation circuit 1 creates a square wave of 100 KHz, the frequency divider circuit 2 creates a square wave of 50 KHz and lower frequencies, and the synchronous differentiator circuit 3 creates a square wave of 100 KHz as shown in Figure 2g.
2- ” 2K Hz % Square wave with a period of 40.96 m5 and a period of 40.96 m5 as shown in Fig. 2 ζ 0.3
Produces a negative logic pulse lasting Zms.

このパルスの0.32 msの期間に、送信用ランプ発
振回路4は第2図gに示すように振幅が漸増急減的に変
化するのこぎり波を生じ、送信パルス形成回路5は第2
図gに示すように50KHzの送信パルスを16波生じ
、スイッチング変調回路6は第2図gに示すように振幅
が漸増急激的に変化する16波の変調パルスを生ずる。
During the 0.32 ms period of this pulse, the transmission lamp oscillation circuit 4 generates a sawtooth wave whose amplitude gradually increases and decreases as shown in FIG.
As shown in FIG. 2g, 16 transmission pulses of 50 KHz are generated, and the switching modulation circuit 6 generates 16 modulation pulses whose amplitude gradually increases and rapidly changes as shown in FIG.

これを受けてドライバ回路γは第2図下に示すような振
動電流を生じ、これを電力増幅回路8で増幅して第2図
gに示すような駆動電流を作り、これで共振周波数が5
0KHzの送受信子9を駆動して、第2図りに示すよう
な送信波を生ずる。
In response to this, the driver circuit γ generates an oscillating current as shown in the lower part of Figure 2, which is amplified by the power amplifier circuit 8 to create a drive current as shown in Figure 2g.
The 0 KHz transmitter/receiver 9 is driven to generate a transmission wave as shown in the second diagram.

送信波は媒質である空気中を進行し、液面で反射して逆
方向1こ空気中を進行して、受信波として送受信子9に
達するときには、第2図下に示すように、振幅の変化傾
向は送信波と同様であるが、減衰のため振幅は全般的に
、超音波の通路の全長に反比例して小さくなる。
The transmitted wave travels through the air, which is a medium, is reflected from the liquid surface, travels in the opposite direction through the air, and when it reaches the transmitter/receiver 9 as a received wave, the amplitude changes as shown in the lower part of Figure 2. The change trend is similar to that of the transmitted wave, but due to attenuation, the amplitude generally decreases in inverse proportion to the total length of the ultrasound path.

送受信子9は受信波を受けて対応する受信電圧を生じ前
段増幅回路10に伝える。
Transmitter/receiver 9 receives the received wave, generates a corresponding received voltage, and transmits it to preamplifier circuit 10 .

前段増幅回路10では第3図に示すように初段の増幅に
エミッタ接地のトランジスタ(Tr)をベース・エミッ
タ間の電圧の増加に伴うコレクタ電流が次第に増加する
領域で使用し、そのベースに利得調節回路11によるバ
イアスをかけ、このバイアスは平素は0.6Vとし、同
期微分回路3の第2図gに示した方形波の出力の立下り
に起因して利得調節回路11の主要部をなす積分回路を
始動させて、第2図下部の線図jに示すように、時の経
過とともに所定の経過で漸増させ、その結果、超音波の
通路の全長の変化範囲、従って測定距離範囲の全域に亘
り、少くとも受信波の振幅の最大時の近辺では、前記ト
ランジスタを能動領域の一定の範囲内1こあらしめ、こ
れによって前段増幅回路10の出力の水準をほぼ一定に
保つ。
In the front-stage amplifier circuit 10, as shown in FIG. 3, a common-emitter transistor (Tr) is used for first-stage amplification in a region where the collector current gradually increases as the voltage between the base and emitter increases, and a gain adjustment circuit is used at the base. A bias is applied by the circuit 11, and this bias is normally 0.6 V, and due to the fall of the square wave output shown in FIG. The circuit is started and gradually increases over time in a predetermined manner, as shown in diagram j at the bottom of Figure 2, so that the range of change in the total length of the ultrasonic path and therefore the entire measurement distance range is At least near the maximum amplitude of the received wave, the number of transistors is set to one within a certain range of the active region, thereby keeping the level of the output of the front stage amplifier circuit 10 almost constant.

前段増幅回路10の出力を後段増幅回路12で増幅し、
更に、半波整流回路13で整流して、第2図kに示すよ
うに、最大振幅が約10vの正論理の半波を作る。
The output of the front stage amplifier circuit 10 is amplified by the rear stage amplifier circuit 12,
Furthermore, it is rectified by a half-wave rectifier circuit 13 to produce a positive logic half-wave with a maximum amplitude of about 10V, as shown in FIG. 2k.

後段増幅回路12の途中の増幅段の出力に基き同調増幅
回路14、パルス化回路15、及び振幅標本化パルス形
成回路16を経て、半波整流回路13の出力する各半波
にの振幅の極大値の瞬間毎に、第2図1に示すような、
長さ1μsの標本化パルスを作る。
Based on the output of the intermediate amplification stage of the subsequent amplification circuit 12, the peak amplitude of each half-wave output from the half-wave rectification circuit 13 is determined through the tuned amplification circuit 14, the pulse generation circuit 15, and the amplitude sampling pulse formation circuit 16. At each instant of value, as shown in Fig. 2,
Create a sampling pulse with a length of 1 μs.

振幅標本値保持回路11は、振幅標本化パルス形成回路
16の標本化パルスと、半波整流回路13の半波とを同
時に受けて、第2図mに示すように、標本化パルスのつ
とその時の半波整流回路13の出力?・こ対応する出力
を次の標本化パルスまで保持する。
The amplitude sample value holding circuit 11 simultaneously receives the sampling pulse from the amplitude sampling pulse forming circuit 16 and the half wave from the half wave rectifier circuit 13, and stores one of the sampling pulses and its time as shown in FIG. 2m. The output of the half-wave rectifier circuit 13?・The corresponding output is held until the next sampling pulse.

ピーク値保持回路18は、振幅標本値保持回路1γの出
力の増大時にのみその出力にその最初の縮小時の縮小量
である図示の値S未満の範囲内で小さい値を保持しつつ
追従して増大し、減少時は変化しないで第2図nに示す
ように最大出力を保持する。
The peak value holding circuit 18 follows the output of the amplitude sample value holding circuit 1γ only when its output increases while maintaining a small value within a range less than the illustrated value S, which is the reduction amount at the time of the first reduction. When the output increases, the output does not change when the output decreases, and the maximum output is maintained as shown in FIG. 2n.

比較回路19は、振幅標本値保持回路1γの出力mとピ
ーク値保持1路18の出力nとを比較して前者が後者よ
り小さくなった瞬間に計時信号を発する。
The comparison circuit 19 compares the output m of the amplitude sample value holding circuit 1γ and the output n of the peak value holding circuit 18, and issues a timing signal at the moment the former becomes smaller than the latter.

計時用標本化パルス形成回路20は、比較回路1aの計
時信号のつと長さ2〜3μsの計時用の標本化パルスを
作る。
The time measurement sampling pulse forming circuit 20 generates a time measurement sampling pulse having a length of 2 to 3 μs along with the time measurement signal of the comparison circuit 1a.

同期微分回路3の第2図aの方形波の出力の立下りから
2ms遅れて、リセット信号形成回路21の出力が低電
位となる。
With a delay of 2 ms from the fall of the square wave output of the synchronous differentiator 3 shown in FIG. 2a, the output of the reset signal forming circuit 21 becomes low potential.

この結果、振幅標本値保持回路11とピーク値保持回路
18とが作動可能状態になる。
As a result, the amplitude sample value holding circuit 11 and the peak value holding circuit 18 become operational.

この時フリップフロップ22のリセット入力端子Rは低
電位となるが出力は変化しないO 半波、整流回路13の第2図kに示す半波の出力が2v
を越えると、しきい値検出回路23が出力を生じフリッ
プフロップ22のセット入力端子Sは高電位となり、そ
の結果、一方の出力端子Qが低電圧となり、振幅標本値
保持回路1γが作動を開始し、ピーク値保持回路18も
出力を生じ始める。
At this time, the reset input terminal R of the flip-flop 22 becomes a low potential, but the output does not change.
When the threshold value detection circuit 23 outputs an output, the set input terminal S of the flip-flop 22 becomes a high potential, and as a result, one output terminal Q becomes a low voltage, and the amplitude sample value holding circuit 1γ starts operating. Then, the peak value holding circuit 18 also starts producing an output.

(第2図m、n参照)一方の出力端子Qが低電圧となる
と同時に他方の出力端子Qが高電位となり、それより、
第2図mの振幅標本値保持四路11の出力の開始から、
比較回路19の計時信号までの時間を若干越える時間で
ある0、4msだけ遅れて利得調節回路11の出力によ
り前段増幅回路10の前記トランジスタのベースにかか
るバイアスは0.6Vに戻る。
(See Figure 2 m, n) At the same time one output terminal Q becomes a low voltage, the other output terminal Q becomes a high potential, and from that,
From the start of the output of the amplitude sample value holding four-way 11 in FIG.
After a delay of 0.4 ms, which is a time that slightly exceeds the time until the time signal from the comparator circuit 19, the bias applied to the base of the transistor of the preamplifier circuit 10 returns to 0.6V by the output of the gain adjustment circuit 11.

バイアスが0.6v近辺では、正規の受信波でない雑音
によっても半波整流回路13に出力を正するが、それが
2vを越えない限り、振幅標本値保持回路1γとピーク
値保持回路18とに出力を正じないから、雑音の影響を
受けるおそれがない。
When the bias is around 0.6V, the output to the half-wave rectifier circuit 13 is corrected even by noise that is not a normal received wave, but as long as it does not exceed 2V, the output is corrected by the amplitude sample value holding circuit 1γ and the peak value holding circuit 18. Since the output is not corrected, there is no risk of being affected by noise.

又、比較回路19の計時信号後しばらくしてバイアスを
0.6Vに戻し、しきい値検出回路23゜フリップフロ
ップ22を介して振幅標本値保持回11を不作動とする
から、例えば、短い測定距離の場合などに、第1回の受
信波が送受信子9近辺で再び反対されて液面ンこ向い、
液面から第2回の反射波が再び送受信子9に到達しても
、前段増幅回路10以降が作動しない。
In addition, the bias is returned to 0.6 V after a while after the time signal from the comparison circuit 19 is received, and the amplitude sample value holding circuit 11 is inactivated via the threshold detection circuit 23 and the flip-flop 22, so that, for example, short measurements can be performed. In the case of distance, etc., the first received wave is opposed again near the transmitting/receiving element 9 and is directed towards the liquid surface.
Even if the second reflected wave from the liquid surface reaches the transmitting/receiving element 9 again, the preceding stage amplifier circuit 10 and subsequent stages do not operate.

即ち、第2回以降の反射波による誤動作を防止している
In other words, malfunctions due to second and subsequent reflected waves are prevented.

基準電圧回路24で作った基準電圧を計時用ランプ発振
回路25に入力し、同期微分回路3の第2図aの方形波
出力の立下りを起点として、第2図下端の線図pに示す
ように0.6Vから時の経過とともに直線的に増大する
出力を生ずる。
The reference voltage generated by the reference voltage circuit 24 is input to the timekeeping lamp oscillation circuit 25, and the falling edge of the square wave output of the synchronous differentiator circuit 3 shown in FIG. It produces an output that increases linearly over time from 0.6V.

この出力は、第2図aに示す同期微分回路3の方形波出
力の立上りより前に最高値に達し、立上りとともに0.
6Vに戻る。
This output reaches its maximum value before the rise of the square wave output of the synchronous differentiator circuit 3 shown in FIG.
Return to 6V.

この方形波の立下りから、最高値に達するまでの時間に
よって、経過時間Tの最高値従って測定距離の最高値が
定まる。
The maximum value of the elapsed time T and therefore the maximum value of the measured distance is determined by the time from the fall of this square wave until it reaches the maximum value.

計時用標本値保持回路26は、計時用標本化パルス形成
回路20の標本化パルス毎にそのときの計時用ランプ発
振回路25の出力を反覆的に検知し、それを平滑化して
最近値を常時記憶する。
The timekeeping sample value holding circuit 26 repeatedly detects the output of the timekeeping lamp oscillation circuit 25 for each sampling pulse of the timekeeping sampling pulse forming circuit 20, smoothes it, and constantly displays the latest value. Remember.

この記憶値に、温度検知器28の出力1こ基いて温吠補
正回路29で温度補正を行ない、0点補正装置2γで所
要の0点補正を行ない、このようにして得た経過時間に
よって得た液面までの距離の測定値1こ基き、引算回路
30で流量に直接に関係する水位に換算し、スパン調整
回路31で使用目的に応じて測定範囲を調整したうえ、
V−I変換回路32で、測定値に関連する電流値に変換
して、離隔位置の受信装置に伝送する。
Based on this stored value, the temperature correction circuit 29 performs temperature correction based on the output of the temperature sensor 28, and the required zero point correction is performed using the zero point correction device 2γ. Based on the measured value of the distance to the liquid level, the subtraction circuit 30 converts it to a water level that is directly related to the flow rate, and the span adjustment circuit 31 adjusts the measurement range according to the purpose of use.
A V-I conversion circuit 32 converts the measured value into a related current value and transmits it to a remote receiving device.

第2図の実施例は液位針lこ関するものであるが、利得
調節回路11を除き、超音波流量計の経過時間Tの測定
にも利用できるものである。
Although the embodiment shown in FIG. 2 is related to the liquid level needle, the gain adjustment circuit 11 is omitted and the embodiment can also be used to measure the elapsed time T of an ultrasonic flowmeter.

この発明によると、超音波利用測定装置において、経過
時間の測定精度の向上を介して目的の物理量の測定精度
を高めることができるから、産業上極めて有用である。
According to the present invention, in an ultrasonic measuring device, the measurement accuracy of a target physical quantity can be improved through the improvement of the measurement accuracy of elapsed time, and therefore it is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは、従来の超音波利用測定装置の送信波及
び受信波の波形を示す線図、第2図は、この発明の一実
施例のブロック図、第2図a−pは、第2図の実施例の
主要部分の出力を示す線図である。 第3図は前段増幅回路10の回路図である。 9・・・・・・送信子、受信子(受信波振幅縮小検知手
段)、10・・・・・・前段増幅回路(増幅回路)(受
信波振幅縮小検知手段)、12・・・・・・後段増幅回
路(増幅回路)(受信波振幅縮小検知手段)、13・・
・・・・半波整流回路(受信波振幅縮小検知手段)、1
6・・・・・・振幅標本化パルス形成回路(受信波振幅
縮小検知手段)、11・・・・・・振幅標本値保持回路
(受信波振幅縮小検知手段)、18・・・・・・ピーク
値保持回路(受信波振幅縮小検知手段)、19・・・・
・・比較回路(受信波振幅縮小検知手段)、11・・・
・・・利得調整回路(受信波振幅縮小検知手段)、Tr
・・・・・・トランジスタ(受信波振幅縮小検知手段)
Figures 1a and 1b are diagrams showing the waveforms of transmitted waves and received waves of a conventional ultrasonic measurement device, Figure 2 is a block diagram of an embodiment of the present invention, and Figures 2a-p are , is a diagram showing the output of the main parts of the embodiment of FIG. 2; FIG. 3 is a circuit diagram of the pre-stage amplifier circuit 10. 9... Transmitter, receiver (received wave amplitude reduction detection means), 10... Pre-stage amplifier circuit (amplifier circuit) (received wave amplitude reduction detection means), 12...・Late stage amplifier circuit (amplifier circuit) (received wave amplitude reduction detection means), 13...
...Half-wave rectifier circuit (received wave amplitude reduction detection means), 1
6... Amplitude sampling pulse forming circuit (received wave amplitude reduction detection means), 11... Amplitude sample value holding circuit (received wave amplitude reduction detection means), 18... Peak value holding circuit (received wave amplitude reduction detection means), 19...
...Comparison circuit (received wave amplitude reduction detection means), 11...
...gain adjustment circuit (received wave amplitude reduction detection means), Tr
...Transistor (received wave amplitude reduction detection means)
.

Claims (1)

【特許請求の範囲】 1 静止ないし流動する媒質中で、短時間のみ持続する
超音波を送信波として送信子から発し、これを直接にな
いし反射面を介して受信波として受信子で受け、送信波
を発した時から受信波を受けた時までの経過時間に基づ
いて、超音波の通路の全長に関連する長さないしその通
路に沿う方向の媒質の分速度を算定する超音波流用測定
装置において、送信波としてその持続時間の過程に振幅
が最大値から比較的急速に縮小するものを使用し、受信
波の振幅に追従する出力と、これにその増大時にのみ追
従し減少時は不変の出力とを作り前者が後者より小さく
なったことによって、受信波の振幅の縮小の事実を検出
してその瞬間に計時信号を発する受信波振幅縮小検出手
段を設け、送信波の振幅の縮小から計時信号までの時間
に基づいて前記経過時間を算定することを特徴とする、
超音波利用測定装置。 2、特許請求の範囲第1項に記載の超音波利用測定装置
において、受信波振幅縮小検知手段として、受信波を電
気信号に変換する受信子、受信子の電気信号を増幅する
増幅回路、増幅回路の出力の一方極性の各半波のみに対
応する出力を生ずる半波整流回路、半波整流回路の出力
の各半波の振幅の極大値に合致して瞬間的のパルスを発
する振幅標本化パルス形成回路、振幅標本化パルス形成
回路のパルスのつとその時の半波整流回路の出力に対応
する出力を次のパルスまで保持する振幅標本値保持回路
、振幅標本値保持回路の出力の増大時にのみその出力に
その最初の縮小時の縮小量未満の範囲内で小さい値を保
持しつつ追従して増大し減少時は変化しない出力を保持
するピーク値保持回路、及び:振幅標本値保持回路の出
力とピーク値保持回路の出力とを比較して前者が後者よ
り小さくなった瞬間に計時信号を発する比較回路を設け
たことを特徴とする、超音波利用測定装置。 3 特許請求の範囲第2項に記載の超音波利用測定装置
であって、送信子から送信波を対象物に向けて発し対象
物からの反射波を受信波として受信子が受けて送信波を
発した時から受信波を受けた時までの経過時間に基づい
て送信子ないし受信子から対象物までの距離を算定する
ようにした超音波距離測定装置において、受信子の、出
力を増幅する増幅回路における初段の増幅にトランジス
タをエミッタ接地接続でベース・エミッタ間の電圧の増
加に伴いコレクタ電流が次第に増加する領域で使用し、
このトランジスタのベースに送信波以後の時の経過とと
もに漸次増大するバイアスをかける利得調節回路を設け
て、距離測定範囲の全域に亘り、受信波の最大振幅時近
辺において、前記トランジスタを能動領域の一定の範囲
内にあらしめることを特徴とする、超音波距離測定装置
[Claims] 1 Ultrasonic waves that last only for a short time are emitted from a transmitter as a transmission wave in a stationary or flowing medium, are received by a receiver as a reception wave either directly or via a reflecting surface, and are transmitted. An ultrasonic diversion measuring device that calculates the length related to the total length of the ultrasonic path or the minute velocity of the medium in the direction along the path based on the elapsed time from the time the wave is emitted to the time the received wave is received. In this method, we use a transmitting wave whose amplitude decreases relatively rapidly from its maximum value over the course of its duration, and we have an output that follows the amplitude of the received wave, and an output that follows only when it increases and remains unchanged when it decreases. When the former becomes smaller than the latter, a received wave amplitude reduction detection means is provided which detects the fact that the amplitude of the received wave is reduced and issues a timing signal at that moment, and measures time from the reduction in the amplitude of the transmitted wave. The elapsed time is calculated based on the time until the signal.
Ultrasonic measurement device. 2. In the ultrasonic measuring device according to claim 1, the received wave amplitude reduction detection means includes a receiver that converts the received wave into an electrical signal, an amplification circuit that amplifies the electrical signal of the receiver, and an amplification device. A half-wave rectifier circuit that produces an output that corresponds only to each half-wave of one polarity of the output of the circuit, and an amplitude sampling circuit that emits an instantaneous pulse in accordance with the maximum amplitude of each half-wave of the output of the half-wave rectifier circuit. Pulse forming circuit, amplitude sampling Amplitude sampling value holding circuit that holds the output corresponding to one pulse of the pulse forming circuit and the output of the half-wave rectifier circuit at that time until the next pulse, only when the output of the amplitude sampling value holding circuit increases A peak value holding circuit that holds the output at a small value within a range less than the amount of reduction at the time of the first reduction, increases by following the output, and holds the output unchanged when decreasing; and: Output of the amplitude sample value holding circuit. 1. An ultrasonic measurement device characterized by comprising a comparison circuit that compares the output of the peak value holding circuit with the output of the peak value holding circuit and emits a timing signal at the moment the former becomes smaller than the latter. 3. The ultrasonic measuring device according to claim 2, in which a transmitter emits a transmission wave toward an object, and a receiver receives the reflected wave from the object as a reception wave. In an ultrasonic distance measuring device that calculates the distance from a transmitter or receiver to an object based on the elapsed time from the time the wave is emitted to the time the received wave is received, an amplification device that amplifies the output of the receiver. For the first stage of amplification in the circuit, a transistor is used with its emitter connected to ground in the region where the collector current gradually increases as the voltage between the base and emitter increases.
A gain adjustment circuit is provided at the base of this transistor to apply a bias that gradually increases as time passes after the transmitted wave. An ultrasonic distance measuring device characterized by being able to measure distances within a range of .
JP52159726A 1977-12-27 1977-12-27 Ultrasonic measuring device Expired JPS5832668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52159726A JPS5832668B2 (en) 1977-12-27 1977-12-27 Ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52159726A JPS5832668B2 (en) 1977-12-27 1977-12-27 Ultrasonic measuring device

Publications (2)

Publication Number Publication Date
JPS5489778A JPS5489778A (en) 1979-07-17
JPS5832668B2 true JPS5832668B2 (en) 1983-07-14

Family

ID=15699927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52159726A Expired JPS5832668B2 (en) 1977-12-27 1977-12-27 Ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JPS5832668B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326784Y2 (en) * 1981-04-30 1988-07-20

Also Published As

Publication number Publication date
JPS5489778A (en) 1979-07-17

Similar Documents

Publication Publication Date Title
WO2021008234A1 (en) Method, apparatus and system for continuously modulating ultrasonic precision ranging
US6788296B2 (en) Coordinate data entry device
US4234942A (en) Apparatus for measuring the length of pipe and other hollow members
US4307456A (en) Ultrasonic rangefinder
EP0142733A2 (en) Ultrasonic rangefinder
US7327635B2 (en) Adaptive comparator circuit and acoustic distance sensor comprising said circuit
JPS6070383A (en) Ultrasonic obstacle detecting apparatus
JPH0735854A (en) Apparatus and method of measuring distance of obstruction by utilizing ultrasonic sensor
JPS5832668B2 (en) Ultrasonic measuring device
JP2003014515A (en) Ultrasonic flowmeter
JPH0758179B2 (en) Clad thickness measuring device
JPH1019619A (en) Method of ultrasonic measuring flow velocity
CN211061694U (en) Continuous modulation ultrasonic precise distance measuring system
JPH02236421A (en) Ultrasonic level measuring instrument
JP3419341B2 (en) Flow measurement device
JP4774618B2 (en) Flow measuring device
JPH0117090B2 (en)
JPS59790B2 (en) object detection device
JP2000329623A (en) Temperature-measuring device
JPS5812640B2 (en) vehicle detector
SU1451743A1 (en) Method and device for correcting readout signal frequency
CN114370931A (en) Method for rapidly calculating frequency of ultrasonic transducer
RU1812446C (en) Method for measurement of speed increment of ultrasound waves
SU1114945A1 (en) Device for determination of concrete strength
JPS606000B2 (en) Ultrasonic object detection device