JPS5832234B2 - Manufacturing method of cathode electrode for electrolysis - Google Patents

Manufacturing method of cathode electrode for electrolysis

Info

Publication number
JPS5832234B2
JPS5832234B2 JP56026402A JP2640281A JPS5832234B2 JP S5832234 B2 JPS5832234 B2 JP S5832234B2 JP 56026402 A JP56026402 A JP 56026402A JP 2640281 A JP2640281 A JP 2640281A JP S5832234 B2 JPS5832234 B2 JP S5832234B2
Authority
JP
Japan
Prior art keywords
nickel
electrode
molybdenum
salt
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56026402A
Other languages
Japanese (ja)
Other versions
JPS57140880A (en
Inventor
昇 若林
洋二 川見
栄一 鳥養
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56026402A priority Critical patent/JPS5832234B2/en
Publication of JPS57140880A publication Critical patent/JPS57140880A/en
Publication of JPS5832234B2 publication Critical patent/JPS5832234B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 本発明は電解用の陰極電極の製造方法に関し、更に詳し
くは水電解や食塩電解において水素を発生させる陰極電
極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cathode electrode for electrolysis, and more particularly to a method for manufacturing a cathode electrode for generating hydrogen in water electrolysis or salt electrolysis.

アルカリ水溶液の電解における陰極材料には古くから低
炭素鋼、鉄、チタン、ニッケル、クロム及びこれらの金
属の合金より選ばれた金属材料が使用可能とされてきた
Metal materials selected from low carbon steel, iron, titanium, nickel, chromium, and alloys of these metals have long been available as cathode materials for electrolysis of aqueous alkaline solutions.

古くは有孔板または網状の上記金属材料が陰極として使
用されてきたが、近年電解効率を上昇させるために益々
厳しい条件が要求され、高電流密度、高温度となり、こ
のためこれら電極材料の表面に各種の金属又はこれらの
合金を被覆したり、或いは作動表面積の大きい表面拡大
陰極が使用される傾向にある。
In the past, the metal materials mentioned above in the form of perforated plates or meshes were used as cathodes, but in recent years more and more severe conditions have been required to increase electrolytic efficiency, resulting in high current densities and high temperatures, which has caused the surface of these electrode materials to deteriorate. There is a tendency to use cathodes coated with various metals or alloys thereof, or surface enlarged cathodes with a large working surface area.

例えば白金のような貴金属触媒を被覆することにより、
従来より使用されてきた陰極電極に比し陰極電位を低く
できるという利点がある。
For example, by coating with a noble metal catalyst such as platinum,
It has the advantage that the cathode potential can be lowered compared to conventionally used cathode electrodes.

しかし貴金属触媒は高価であり、経済面での不利は避け
られない。
However, noble metal catalysts are expensive and have unavoidable economic disadvantages.

また電極触媒としてコバルト、モリブテン複酸化物の使
用が提案されている。
The use of cobalt and molybdenum double oxides as electrode catalysts has also been proposed.

この電極は、電解当初においては温度70℃、電流密度
1.00 A7’diで可逆水素電極に対し一182m
Vという低い陰極電位を有する。
At the beginning of electrolysis, this electrode was placed at a temperature of 70°C and a current density of 1.00 A7'di, at a temperature of 1182 m with respect to the reversible hydrogen electrode.
It has a low cathode potential of V.

しかしながら、該電極をアルカリ性溶液に浸漬したまま
長時間に亘り電解槽に電気が流れない状態に置いた場合
には、該電極の活性が実質的に減少するという難点があ
る。
However, if the electrode is left immersed in an alkaline solution without electricity flowing into the electrolytic cell for a long period of time, there is a drawback that the activity of the electrode is substantially reduced.

本発明者らは、斯かる現状に鑑み陰極電位が低く、且つ
その活性を長期に亘り維持し得る電解用の陰極電極の研
究を従来から続けてきた。
In view of the current situation, the present inventors have been conducting research on cathode electrodes for electrolysis that have a low cathode potential and can maintain their activity over a long period of time.

この研究においてニッケルーモリブデン合金が低い陰極
電位を有することを見い出した。
In this study it was found that nickel-molybdenum alloy has a low cathodic potential.

この発見に基すき、ニッケルーモリブデン合金をニッケ
ル電極(表面拡大ニッケル電極も含む)上に強固に被覆
する方法を探究した結果、遂に本発明を完成したもので
あって、即ち本発明は、ニッケル電極を酸化性雰囲気中
で加熱して表面にニッケル酸化物を生成せしめ、次いで
モリブデン塩溶液又はモリブデン塩とニッケル塩との混
合溶液で処理した後、還元性雰囲気中で加熱することを
特徴とする電解用の陰極電極の製造方法に係るものであ
る。
Based on this discovery, the present invention was finally completed as a result of searching for a method for strongly coating nickel electrodes (including surface enlarged nickel electrodes) with nickel-molybdenum alloy. The electrode is heated in an oxidizing atmosphere to generate nickel oxide on the surface, then treated with a molybdenum salt solution or a mixed solution of molybdenum salt and nickel salt, and then heated in a reducing atmosphere. The present invention relates to a method of manufacturing a cathode electrode for electrolysis.

本発明者の研究に依れば、ニッケル電極上にニッケル・
モリブデンを被覆するに際し、ニッケルをいったん酸化
物に代え、その上にモリブデン塩又はモリブデン塩及び
ニッケル塩を被覆してこれを還元するときは、ニッケル
電極上lこ強固にニッケルーモリブデン合金を被覆出来
ることが明らかになった。
According to the research of the present inventor, nickel is deposited on the nickel electrode.
When coating molybdenum, if nickel is replaced with an oxide and then coated with molybdenum salt or molybdenum salt and nickel salt and then reduced, the nickel-molybdenum alloy can be firmly coated on the nickel electrode. It became clear.

更に詳しくは、ニッケル電極上に直接モリブデン塩を塗
布し還元雰囲気中で加熱しても基体ニッケルとモリブデ
ンとの濡れが均一にゆかず、蒸発時に流れ、析出するモ
リブデンは偏在することとなる。
More specifically, even if a molybdenum salt is applied directly onto a nickel electrode and heated in a reducing atmosphere, the base nickel and molybdenum will not be uniformly wetted, and the molybdenum that flows and precipitates during evaporation will be unevenly distributed.

しかるにニッケル電極を予め酸化雰囲気中で加熱して酸
化物としておけばモリブデンとの親和性が大きく、均一
にしかも薄く、ニッケルーモリブデン合金が析出するこ
とが本発明者の研究に依り判明したものである。
However, the inventor's research has revealed that if the nickel electrode is heated in an oxidizing atmosphere beforehand to form an oxide, it has a greater affinity with molybdenum and a nickel-molybdenum alloy is precipitated uniformly and thinly. be.

本発明に於いては、ニッケル基体電極は、酸素の存在す
る雰囲気中で900℃以上で焼威し、いったん酸化物被
膜を形成させる。
In the present invention, the nickel-based electrode is fired at 900° C. or higher in an atmosphere containing oxygen to once form an oxide film.

この酸化物被膜はポーラスであり、モリブデン塩溶液又
はモリブデン塩・ニッケル塩溶液が均一に濡れ、内部ま
で含浸される。
This oxide film is porous, and the molybdenum salt solution or molybdenum salt/nickel salt solution is uniformly wetted and impregnated to the inside.

次いで水素気流中300〜600℃の還元処理により金
属モリブデンがニッケル表面に析出し、同時にニッケル
と反応して強固なニッケルーモリブデン合金層を形成す
る。
Next, metallic molybdenum is precipitated on the nickel surface by reduction treatment at 300 to 600° C. in a hydrogen stream, and simultaneously reacts with nickel to form a strong nickel-molybdenum alloy layer.

従って直接ニッケル極に析出させる場合に比し、強固な
結合層を形成する。
Therefore, a stronger bonding layer is formed than when deposited directly on the nickel electrode.

本発明に於いて使用される基体のニッケル極としては、
有孔板状または網状のものも使用できるが、表面拡大ニ
ッケル電極が好ましい。
The nickel electrode of the base used in the present invention is as follows:
Surface-enlarged nickel electrodes are preferred, although perforated plates or nets can also be used.

表面拡大ニッケル電極としては従来から知られている各
種のものがいずれも有効に使用出来、たとえば焼結、溶
出、溶射被覆等によって製造されたものが例示出来る。
As the surface enlarged nickel electrode, any of the conventionally known ones can be effectively used, and examples include those manufactured by sintering, elution, thermal spray coating, etc.

更に詳しくは発泡状ニッケルを基体とし、この上に微粉
状ニッケルを散布、焼結する方法、鍍金等により、ニッ
ケル合金を被覆させた後、溶出法で他成分を除く方法、
あるいはまたプラズマ溶射等でニッケルーアルミニウム
合金を被覆させた後、アルカリで展開して活性層を得る
方法等で製造されたものが例示出来る。
More specifically, there is a method in which foamed nickel is used as a base and finely powdered nickel is sprinkled on the base and sintered, a method in which a nickel alloy is coated by plating or the like and other components are removed by an elution method,
Another example is one manufactured by coating a nickel-aluminum alloy by plasma spraying or the like and then developing it with an alkali to obtain an active layer.

これ等基体ニッケル極は、空気中または酸素を含む混合
ガス中で900℃以上溶融温度以下好ましくは900〜
1100℃において加熱すると、表面にNi0層が生成
する。
These base nickel electrodes are heated at a temperature of 900°C or higher and lower than the melting temperature, preferably 900°C or higher, in air or a mixed gas containing oxygen.
When heated at 1100° C., a Ni0 layer is formed on the surface.

900℃5下の温度では酸化物の生成が充分に起こり難
い。
At temperatures below 900° C., it is difficult to form oxides.

本発明では次にモリブデン塩溶液又はモリブデン塩とニ
ッケル塩との混合溶液で処理する。
In the present invention, the material is then treated with a molybdenum salt solution or a mixed solution of a molybdenum salt and a nickel salt.

モリブデン塩としては塩化物、硫酸塩、アンモニウム塩
等の水溶性塩類が使用出来、特にモリブデン酸アンモニ
ウムが好ましい。
As the molybdenum salt, water-soluble salts such as chlorides, sulfates, and ammonium salts can be used, and ammonium molybdate is particularly preferred.

またニッケル塩としては塩化物、硫酸塩、硝酸塩等の水
溶性塩類が使用出来る。
Further, as the nickel salt, water-soluble salts such as chloride, sulfate, and nitrate can be used.

これら塩類は通常水溶液または別にアンモニア水に溶解
させた溶液として用いられる。
These salts are usually used as an aqueous solution or a solution separately dissolved in aqueous ammonia.

斯かる溶液中に含有されるべきモリブデン塩の量として
は特に限定されず広い範囲内で適宜選択することができ
るが、通常0.02〜0.1モル濃度程度となるように
モリブデン塩を配合するのがよい。
The amount of molybdenum salt to be contained in such a solution is not particularly limited and can be appropriately selected within a wide range, but the molybdenum salt is usually mixed so that the concentration is about 0.02 to 0.1 molar. It is better to do so.

また溶液中に含有されるべきニッケル塩の量としては特
に限定されず広い範囲内で適宜選択することができるが
、通常は後記に示す処理によりニッケル電極上に形成さ
れるニッケルーモリブデン合金が1:1の合金組成とな
るようニッケル塩を上記溶液に配合するのがよい。
The amount of nickel salt to be contained in the solution is not particularly limited and can be appropriately selected within a wide range, but usually the nickel-molybdenum alloy formed on the nickel electrode by the treatment described below is : It is preferable to mix nickel salt into the above solution so that the alloy composition becomes 1.

例えばニッケル塩が0.01〜0.4モル濃度程度とな
るように配合するのがよい。
For example, it is preferable to mix the nickel salt so that the concentration is about 0.01 to 0.4 molar.

本発明では作業性等の観点よりモリブデン塩溶液で処理
するのが好ましい。
In the present invention, it is preferable to treat with a molybdenum salt solution from the viewpoint of workability and the like.

モリブデン塩溶液又はモリブデン塩とニッケル塩との混
合溶液の処理は通常室温附近で塗布、スプレー等の手段
により遂行されるが、電極表面の含浸濃度を高めるため
に、電極を加熱しておいてスプレー噴霧する方法も用い
られる。
Treatment with a molybdenum salt solution or a mixed solution of molybdenum salt and nickel salt is usually carried out by coating or spraying at around room temperature, but in order to increase the impregnation concentration on the electrode surface, the electrode is heated and then sprayed. A method of spraying is also used.

つぎに、水素または水素と不活性ガスの混合気体中で加
熱し還元する。
Next, it is heated and reduced in hydrogen or a mixed gas of hydrogen and an inert gas.

還元温度は300〜600℃、好ましくは400〜50
0℃である。
Reduction temperature is 300-600℃, preferably 400-50℃
It is 0°C.

600℃以上では焼結が進んで拡大表面が縮少する傾向
がある。
At temperatures above 600°C, sintering progresses and the enlarged surface tends to shrink.

還元処理は通常1〜3時間行われる。この還元工程にお
いて、モリブデン塩、ニッケル塩およびニッケル酸化物
は完全に金属まで還元され、表面積の大きいニッケルー
モリブデン合金被覆電極が得られる。
The reduction treatment is usually carried out for 1 to 3 hours. In this reduction process, molybdenum salts, nickel salts, and nickel oxides are completely reduced to metals, and a nickel-molybdenum alloy coated electrode with a large surface area is obtained.

本発明電極は、いったんニッケルを酸化物とし、その後
モリブデン塩溶液またはモリブデン塩とニッケル塩との
混合溶液を含浸せしめ、これを還元雰囲気下に加熱する
ことにより、モリブデン塩等の濡れ性が大きく、均一に
モリブデン等がニッケル表面上に析出し、しかも同時に
ニッケルと反応してニッケル〜モリブデン合金を生成し
て強固な被膜を形成する。
In the electrode of the present invention, nickel is made into an oxide, and then impregnated with a molybdenum salt solution or a mixed solution of molybdenum salt and nickel salt, and heated in a reducing atmosphere. Molybdenum and the like are uniformly precipitated on the nickel surface and simultaneously react with the nickel to form a nickel-molybdenum alloy to form a strong film.

このために極めて長期間の使用に耐える特性を有する。For this reason, it has the property of being able to withstand use for an extremely long period of time.

以下lこ実施例をあげて本発明を具体的に説明する。The present invention will be specifically explained below with reference to several examples.

実施例 1 80朋φ、5rruntの発泡状ニッケル(住友電工製
、「セルメツt−/1621)の表面にニッケルーアル
ミニウム合金(重量比Ni / M! = 4 / 1
)をプラズマ溶射法で厚み10〜100μの範囲で均
一に被覆し、30%KOH水溶液で室温乃至400Gで
アルミニウムを溶出させ表面拡大電極を作成した。
Example 1 A nickel-aluminum alloy (weight ratio Ni/M! = 4/1) was applied to the surface of a foamed nickel (manufactured by Sumitomo Electric Industries, Ltd., "Serumets T-/1621") of 80 mm diameter and 5 rrunt.
) was coated uniformly to a thickness of 10 to 100 μm using a plasma spraying method, and aluminum was eluted with a 30% KOH aqueous solution at room temperature to 400 G to create a surface enlarged electrode.

この電極を空気雰囲気中1000℃、1時間焼成して表
面にNiOを生成させた。
This electrode was fired at 1000° C. for 1 hour in an air atmosphere to generate NiO on the surface.

ついで、モリブデン酸アンモニウムを1/30モル濃度
で溶解した水溶液200m1に、アンモニア水(28φ
)5mlを加えた溶液に上記焼成物を充分浸漬して含浸
させ、さらに水素雰囲気炉に移して400℃、1時間還
元処理を行った。
Next, aqueous ammonia (28φ
) The above baked product was sufficiently immersed in a solution to which 5 ml of 5 ml of the above-mentioned material had been added to impregnate it, and then transferred to a hydrogen atmosphere furnace and subjected to a reduction treatment at 400° C. for 1 hour.

かくして得られた電極の性能評価は、次のような電解装
置を用いて行なった。
Performance evaluation of the electrode thus obtained was performed using the following electrolysis device.

即ち、ニッケル製のフランジ(150mmφ×15mm
C)2枚を用い、試験電極(陰陽極)と隔膜をアフラス
(旭硝子株式会社製、フッ素ゴム)バッキングで挟みセ
ルを組立てた。
That is, a nickel flange (150 mmφ x 15 mm
C) Using two sheets, a test electrode (cathode and anode) and a diaphragm were sandwiched between Aflas (manufactured by Asahi Glass Co., Ltd., fluororubber) backing to assemble a cell.

電解液はセルの下部から電極間または電極−隔膜間を流
れて上部から排出するようにした。
The electrolytic solution was configured to flow from the bottom of the cell between the electrodes or between the electrodes and the diaphragm and be discharged from the top.

隔膜は有孔テフロンにチタン酸カリウムを充填した複合
材料膜(実効抵抗0.28Ω−一、25℃)を使用した
As the diaphragm, a composite material membrane (effective resistance 0.28 Ω-1, 25° C.) consisting of perforated Teflon filled with potassium titanate was used.

そしてニッケル製の気液分離器と浴液貯槽を兼ねた21
内容の容器にヒーターを取付け、室温から110℃まで
の温度調節ができるようにした。
And 21 which doubles as a nickel gas-liquid separator and bath liquid storage tank.
A heater was attached to the container containing the contents, allowing the temperature to be adjusted from room temperature to 110°C.

電解液は30%KOH水溶液でこれを0.5〜11/分
で電解槽を通して循環させた。
The electrolytic solution was a 30% KOH aqueous solution, which was circulated through the electrolytic cell at a rate of 0.5 to 11 min.

電解はニッケル端子板に電流を通じ、20A/diで約
5時間ならし運転をした後、一定温度における電流密度
−摺電圧の関係を求めた。
For electrolysis, a current was passed through the nickel terminal plate, and after a break-in operation at 20 A/di for about 5 hours, the relationship between current density and sliding voltage at a constant temperature was determined.

この結果を第1図に示す。The results are shown in FIG.

第1図中人は平板ニッケル電極、Bは表面拡大電極、C
は本発明電極を表わす。
Figure 1 shows a flat nickel electrode, B shows an enlarged surface electrode, and C shows a flat nickel electrode.
represents the electrode of the present invention.

実施例 2 実施例1と同じ発泡状ニッケルに、カルボニル分解ニッ
ケル(約5μ)をカルボキシメチルセルローズと共にペ
ースト状にしたものをニッケル1g当り0.02〜0.
2gとなるように均一に塗布し、水素気流中で1000
℃、30分焼結して基体電極を作成した。
Example 2 Carbonyl decomposed nickel (approximately 5μ) was made into a paste with carboxymethyl cellulose to the same foamed nickel as in Example 1, and the mixture was mixed with 0.02 to 0.0% per gram of nickel.
Apply it evenly to a total weight of 2g, and apply it at 1000 g in a hydrogen stream.
℃ for 30 minutes to create a base electrode.

この電極を空気中1000’C,1時間焼成し、表面に
酸化物層を生成させた後、実施例1と同様に処理してニ
ッケルーモリブデン合金層を析出させた。
This electrode was fired in air at 1000'C for 1 hour to form an oxide layer on the surface, and then treated in the same manner as in Example 1 to deposit a nickel-molybdenum alloy layer.

比較例 1 上記実施例2に於いて、酸化処理を全く行わないで基体
電極をモリブデン塩溶液に浸漬し、以後同様に処理した
Comparative Example 1 In Example 2 above, the base electrode was immersed in a molybdenum salt solution without any oxidation treatment, and the same treatment was carried out thereafter.

実施例1と同じ装置で性能を比較した結果を第2図に示
した。
The results of comparing the performance using the same apparatus as in Example 1 are shown in FIG.

カルボニル分解ニッケルを焼結した電極(図のD)とそ
れにモリブデンを含浸させて還元させた電極(図のE)
はほとんど同じ値が得られ、ニッケルーモリブデン合金
層覆が均一に行われていないことを示した。
An electrode made of sintered carbonyl-decomposed nickel (D in the figure) and an electrode made by impregnating it with molybdenum and reducing it (E in the figure)
Almost the same values were obtained, indicating that the nickel-molybdenum alloy layer was not uniformly coated.

一方、本発明による電極(図のF)は上記2種の電極(
D、E)に比し低い陰極電位を示した。
On the other hand, the electrode according to the present invention (F in the figure) is the above two types of electrodes (
It showed a lower cathode potential than D and E).

実施例 3 モリブデン酸アンモニウムを1/30モル濃度で溶解し
た水溶液501rLlと硝酸ニッケルを0.2モル濃度
で溶解した水溶液50m1との混合溶液にアンモニア水
(28%)20mlを加え、この溶液に上記実施例2に
於いて酸化処理を行なった基体電極を浸漬し、以後実施
例1と同様に処理した。
Example 3 20 ml of ammonia water (28%) was added to a mixed solution of 501 rL of an aqueous solution in which ammonium molybdate was dissolved at a 1/30 molar concentration and 50 ml of an aqueous solution in which nickel nitrate was dissolved at a 0.2 molar concentration, and the above solution was added. The base electrode subjected to the oxidation treatment in Example 2 was immersed, and thereafter treated in the same manner as in Example 1.

かくして得られた電極の性能は実施例2で得られた電極
と同程度であった。
The performance of the electrode thus obtained was comparable to that of the electrode obtained in Example 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3種類の電極を用いて水電解した場合の摺電圧
と電流密度との関係を示すグラフであり、また第2図は
、3種類の電極を用いて水電解した場合の摺電圧と電流
密度との関係を示すグラフである。
Figure 1 is a graph showing the relationship between sliding voltage and current density when water is electrolyzed using three types of electrodes, and Figure 2 is a graph showing the relationship between sliding voltage and current density when water is electrolyzed using three types of electrodes. It is a graph which shows the relationship between and current density.

Claims (1)

【特許請求の範囲】 1 ニッケル電極を酸化性雰囲気中で加熱して表面にニ
ッケル酸化物を生成せしめ、次いでモリブデン塩溶液又
はモリブデン塩とニッケル塩との混合溶液で処理した後
、還元性雰囲気中で加熱することを特徴とする電解用の
陰極電極の製造方法。 2 ニッケル電極が表面拡大ニッケル電極である特許請
求の範囲第1項記載の方法。
[Claims] 1. A nickel electrode is heated in an oxidizing atmosphere to generate nickel oxide on the surface, then treated with a molybdenum salt solution or a mixed solution of molybdenum salt and nickel salt, and then heated in a reducing atmosphere. 1. A method for producing a cathode electrode for electrolysis, the method comprising heating the cathode electrode by heating the cathode electrode. 2. The method according to claim 1, wherein the nickel electrode is a surface enlarged nickel electrode.
JP56026402A 1981-02-24 1981-02-24 Manufacturing method of cathode electrode for electrolysis Expired JPS5832234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56026402A JPS5832234B2 (en) 1981-02-24 1981-02-24 Manufacturing method of cathode electrode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56026402A JPS5832234B2 (en) 1981-02-24 1981-02-24 Manufacturing method of cathode electrode for electrolysis

Publications (2)

Publication Number Publication Date
JPS57140880A JPS57140880A (en) 1982-08-31
JPS5832234B2 true JPS5832234B2 (en) 1983-07-12

Family

ID=12192557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56026402A Expired JPS5832234B2 (en) 1981-02-24 1981-02-24 Manufacturing method of cathode electrode for electrolysis

Country Status (1)

Country Link
JP (1) JPS5832234B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514990B2 (en) * 1987-11-19 1996-07-10 古河電気工業株式会社 Manufacturing method of electrode with metal oxide catalyst
CN110863213B (en) * 2019-12-02 2022-01-11 东北石油大学 Method for improving corrosion resistance of nickel electrode in molten salt system

Also Published As

Publication number Publication date
JPS57140880A (en) 1982-08-31

Similar Documents

Publication Publication Date Title
US4302321A (en) Novel sintered electrodes
US4116804A (en) Catalytically active porous nickel electrodes
US4169025A (en) Process for making catalytically active Raney nickel electrodes
US4765874A (en) Laminated electrode the use thereof
Singh et al. Preparation of thin Co3O4 films on Ni and their electrocatalytic surface properties towards oxygen evolution
WO1980000715A1 (en) Electrodes containing nickel alloys as electrocatalysts
US20080237036A1 (en) Method for Forming an Electrocatalytic Surface on an Electrode and the Electrode
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
US3926773A (en) Metal anode for electrochemical processes and method of making same
US4238311A (en) Cathode for use in electrolysis and method for the production thereof
JPH0694597B2 (en) Electrode used in electrochemical process and manufacturing method thereof
JPS60184690A (en) Durable electrode and its manufacture
JPS6136591B2 (en)
US4138510A (en) Metal anode for electrochemical processing and method of making same
US4240895A (en) Raney alloy coated cathode for chlor-alkali cells
CA1072915A (en) Cathode surfaces having a low hydrogen overvoltage
US4518457A (en) Raney alloy coated cathode for chlor-alkali cells
JP7121861B2 (en) electrode for electrolysis
JPH0689469B2 (en) Cathode for electrolysis of aqueous solution
CA1165213A (en) Electrode and the method for producing the same
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JPS5832234B2 (en) Manufacturing method of cathode electrode for electrolysis
US4849085A (en) Anodes for electrolyses
JP3676554B2 (en) Activated cathode
WO1986006107A1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same