JPS5832197B2 - electrorheological fluid - Google Patents

electrorheological fluid

Info

Publication number
JPS5832197B2
JPS5832197B2 JP51091566A JP9156676A JPS5832197B2 JP S5832197 B2 JPS5832197 B2 JP S5832197B2 JP 51091566 A JP51091566 A JP 51091566A JP 9156676 A JP9156676 A JP 9156676A JP S5832197 B2 JPS5832197 B2 JP S5832197B2
Authority
JP
Japan
Prior art keywords
powder
electrorheological
electrorheological fluid
fluid
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51091566A
Other languages
Japanese (ja)
Other versions
JPS5317585A (en
Inventor
修 永田
雅雄 吉和
宏之 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP51091566A priority Critical patent/JPS5832197B2/en
Publication of JPS5317585A publication Critical patent/JPS5317585A/en
Publication of JPS5832197B2 publication Critical patent/JPS5832197B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/001Electrorheological fluids; smart fluids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Magnetically Actuated Valves (AREA)
  • Lubricants (AREA)

Description

【発明の詳細な説明】 本発明は強誘電性を有する粉体と2酸化珪素系微粉体と
を電気絶縁性の大きい油中に分散せしめてなる電気粘性
流体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrorheological fluid made by dispersing ferroelectric powder and silicon dioxide fine powder in highly electrically insulating oil.

ここで電気粘性流体とは流体に電界を位加することによ
り、流体の見掛けの粘度が迅速且つ可逆的に変化する現
象即ち電気粘性効果を呈する流体であり、特定の性質を
具備した細かい粉体を電気絶縁性の勝れた油、即ち分散
媒中に分散させることにより構成される。
Here, an electrorheological fluid is a fluid that exhibits a phenomenon in which the apparent viscosity of a fluid changes rapidly and reversibly by applying an electric field to the fluid, that is, an electrorheological effect, and is a fine powder with specific properties. It is constructed by dispersing it in an oil with excellent electrical insulation properties, that is, a dispersion medium.

従来電気粘性流体としてはその構成要素の1つである粉
体として適量の水分を吸着させ、微細化させたセルロー
ス、デン粉及びシリカゲルが、他の構成要素である分散
媒としては塩化ジフェニル、セバシン酸ジブチル、トラ
ンス油、塩化ハラフィンが使用されていた。
Conventionally, electrorheological fluids are composed of cellulose, starch, and silica gel, which are made into fine powders that adsorb an appropriate amount of water as powders, and other constituents of electrorheological fluids, such as dispersion media, are diphenyl chloride and sebacin. Dibutyl acid, trans oil, and halafine chloride were used.

しかしながら流量制御弁、動力伝達クラッチ等に使用可
能な極めて高性能にして且つ長時間の連続使用にも充分
耐え、安定性が太き(、実用価値のある電気粘性流体は
未だ見出されていない。
However, an electrorheological fluid with extremely high performance that can be used in flow control valves, power transmission clutches, etc., withstands continuous use for long periods of time, and is highly stable (and has a practical value) has not yet been found. .

これは主として次の3つの理由によるものである。This is mainly due to the following three reasons.

先づ第1に電気粘性流体の構成物の1である粉体は予め
適量の水分を吸着させる如き方法で処理され、該粉体に
吸着された水分が電気粘性効果に大きく寄与するため電
気粘性効果における再現可能性が悪く、実用上極めて不
具合である。
First of all, the powder, which is one of the components of the electrorheological fluid, is treated in advance by a method that adsorbs an appropriate amount of water, and since the water adsorbed to the powder greatly contributes to the electrorheological effect, the electrorheological The reproducibility of the effect is poor, and it is extremely problematic in practice.

これは粉体における吸着水分量及び粉体−水分間の結合
状態を人為的に制御することが技術的に困難なためであ
る。
This is because it is technically difficult to artificially control the amount of moisture adsorbed in the powder and the bonding state between the powder and moisture.

又電気粘性効果は粉体に吸着された水分に依存するため
極めて大きな粘性効果を呈し得ないことも実用化を妨げ
ている。
Further, since the electrorheological effect depends on the moisture adsorbed to the powder, it cannot exhibit an extremely large viscous effect, which also hinders its practical use.

第2に水分を吸着した粉体な分散させた絶縁油に高電界
(0,5〜3 Kv/mrn )を印加すると極めて絶
縁破壊しやすくなる。
Second, when a high electric field (0.5 to 3 Kv/mrn) is applied to a dispersed insulating oil in the form of powder that has absorbed water, dielectric breakdown is extremely likely to occur.

絶縁破壊は長時間にわたる安定した連続使用を妨げる。Dielectric breakdown prevents stable continuous use over long periods of time.

耐絶縁破壊性を向上させるために該粉体の吸着水分量を
少なくすると電気粘性効果が著しく低下することになる
If the adsorbed water content of the powder is reduced in order to improve the dielectric breakdown resistance, the electrorheological effect will be significantly reduced.

従って水分を吸着せしめた粉体を構成要素の1つとする
電気粘性流体においては電気粘性効果と耐絶縁破壊性を
同時に向上させることは技術的に難かしく、実用上の大
きな障害となっている。
Therefore, it is technically difficult to simultaneously improve the electrorheological effect and dielectric breakdown resistance of an electrorheological fluid whose component is a powder that has absorbed water, and this is a major practical obstacle.

第3に電気粘性流体の構成要素の1つである粉体の比重
が従来は1.5以上であるのに対して、分散媒である絶
縁性油の比重が大体0.8〜1.5の範囲であるため、
均一で且つ安定性のよい分散状態を保持し難(、比重差
により粉体が沈降する。
Thirdly, the specific gravity of powder, which is one of the constituent elements of electrorheological fluid, is conventionally 1.5 or more, whereas the specific gravity of insulating oil, which is a dispersion medium, is approximately 0.8 to 1.5. Since it is in the range of
It is difficult to maintain a uniform and stable dispersion state (the powder settles due to the difference in specific gravity).

該粉体の沈降は電気粘性流体の性能の低下及びポンプ、
配管部における搬送時の不具合の原因となる。
The sedimentation of the powder reduces the performance of the electrorheological fluid and the pump,
This may cause problems during transportation in the piping section.

上記の様に電気粘性流体は流体の粘性が電気的に調整で
きるという注目すべき特性を有しているにも拘らず、従
来高性能で且つ長期間にわたる実用に耐える電気粘性流
体の作成は極めて困難であるとされていた。
As mentioned above, although electrorheological fluids have the remarkable property that the viscosity of the fluid can be adjusted electrically, it has been extremely difficult to create electrorheological fluids that have high performance and can withstand long-term practical use. It was considered difficult.

本発明は上記のような現状に鑑み、電気粘性流体の不備
な点を改良するために、本発明者等が鋭意研究した結果
完成させたもので、電気粘性効果が著しく大きく、耐絶
縁破壊性が良好であり、且つ絶縁性油中に安定に分散す
ることを特徴とする電気粘性流体を提供するものであり
、強誘電性を有する細かい粉体である20〜200μ程
度のチタン酸バリウムと該チタン酸バリウムの粒径の大
きさの数十分の−〜数巨分の−であり、かつ0.5〜3
0重量係程度の水分を吸着した2酸化珪素系微粉体、例
えば2酸化珪素(Si02)又は珪酸アルミン酸マグネ
シウム(A1203・M、?0・2Si02・XH20
)などを強誘電性粉体100部に対して2酸化珪素系微
粉体1〜10部の割合にて添加し、充分攪拌した後に電
気絶縁性の大きい油中に分散せしめてなる電気粘性流体
である。
In view of the above-mentioned current situation, the present invention was completed as a result of intensive research by the present inventors in order to improve the deficiencies of electrorheological fluids. It provides an electrorheological fluid that is characterized by having good ferroelectric properties and being stably dispersed in insulating oil. The particle size is several tenths to several giants of the particle size of barium titanate, and 0.5 to 3
Silicon dioxide-based fine powder adsorbing moisture of about 0 weight coefficient, such as silicon dioxide (Si02) or magnesium aluminate silicate (A1203・M, ?0・2Si02・XH20)
) etc. are added at a ratio of 1 to 10 parts of silicon dioxide-based fine powder to 100 parts of ferroelectric powder, and after thorough stirring, the mixture is dispersed in highly electrically insulating oil. be.

本発明の電気粘性流体の作成時における2酸化珪素系微
粉体の含水方法は該粉体表面の水分量ができるだけ少な
くなるように緩慢な吸湿条件下で長時間をかげて吸着さ
せることが肝要である。
When preparing the electrorheological fluid of the present invention, it is important to adsorb the silicon dioxide fine powder over a long period of time under slow moisture absorption conditions so that the amount of water on the surface of the powder is as small as possible. be.

本発明の電気粘性流体の特徴とするところは次の通りで
ある。
The features of the electrorheological fluid of the present invention are as follows.

先ず第1には電気粘性効果がセルロース、シリカゲルな
どの粉体を使用した従来の電気粘性流体よりも大きいこ
とである。
First, the electrorheological effect is greater than that of conventional electrorheological fluids using powders such as cellulose and silica gel.

一般に電気粘性効果における粘性増加の機構は粉体の持
つ誘電的性質に起因する電界印加時の電極間の粉体によ
る架橋に基くものであり、詳しくは誘電性粉体を絶縁性
油中に分散させ、電界を印加すれば誘電性粉体が誘起分
極を起し、粉体の誘電率が分散媒のそれよりも犬なると
きは電界に垂直で且つ電界強度の犬なる方向へ向ふ力を
受ける。
In general, the mechanism of viscosity increase in the electrorheological effect is based on the bridging of powder between electrodes when an electric field is applied due to the dielectric properties of powder. Specifically, dielectric powder is dispersed in insulating oil. When an electric field is applied, the dielectric powder undergoes induced polarization, and when the dielectric constant of the powder is greater than that of the dispersion medium, a force is applied perpendicular to the electric field and in a direction opposite to the electric field strength. receive.

その結果、電極間の電界強度が大きい場所に粒子が移動
し、その場所が益々電界強度が大になるため幾何級数的
に粒子が集まる。
As a result, the particles move to a location where the electric field strength between the electrodes is high, and since the electric field strength at that location becomes even greater, the particles gather in a geometric progression.

このため粉体相互の静電作用が関係し、電極間に帯状の
架橋が形成される。
Therefore, electrostatic action between the powders is involved, and a band-shaped bridge is formed between the electrodes.

この粉体による架橋は電極面で所謂ヤンソン、ラーベッ
ク効果と称する引力を発生し、電極面に平行な流れに対
しては抵抗となり、又電極面のずれに対しては剪断力と
なる。
This crosslinking by the powder generates an attractive force called the so-called Janson and Rahbek effect on the electrode surface, which acts as resistance to flow parallel to the electrode surface and as a shearing force against displacement of the electrode surface.

本発明の電気粘性流体の電気粘性効果が従来のセルロー
ス、シリカゲル等を使用した電気粘性流体よりも優れて
いる点の1つはセルロース、シリカゲル等では水分を吸
着することにより誘電体としての性質を持つようになる
ため水の誘電的性質よりも大きくなることはないが、本
発明において使用される粉体は強誘電性物質であるため
、その誘電的性質は水分を吸着したセルロース、シリカ
ゲルよりも著しく犬となり、その結果電気粘性効果も大
きくなることである。
One of the advantages of the electrorheological effect of the electrorheological fluid of the present invention than that of conventional electrorheological fluids using cellulose, silica gel, etc. is that cellulose, silica gel, etc. have properties as dielectric materials by adsorbing water. However, since the powder used in the present invention is a ferroelectric substance, its dielectric properties are higher than those of cellulose or silica gel that have absorbed water. This results in a marked increase in the electrorheological effect.

他の1つは本発明による電気粘性流体の構成要素である
粉体は強誘電性粉体と強誘電性粉体の大きさの数十分の
−〜数6分の−の微粉体の混合物であるため、粉体によ
る架橋形成時に比較的大きな粉体(強誘電性粉体に相当
)同志の接触個所の周囲に、より微細な粉体(2酸化珪
素系粉体)が集合し、大きな粉体の接触部の空隙を微細
な粉体が埋めるようになり、極めて密に充填された架橋
構造が形成され、その結果として生ずる電極間の引力が
大きくなり、電気粘性効果が大きくなることである。
The other is the powder that is a component of the electrorheological fluid according to the present invention, which is a mixture of ferroelectric powder and fine powder several tenths of the size of the ferroelectric powder. Therefore, when a crosslink is formed by powder, finer powder (silicon dioxide powder) gathers around the contact point between relatively large powder (corresponding to ferroelectric powder), and a large The fine powder fills the voids in the contact area of the powder, forming an extremely densely packed crosslinked structure, and as a result, the attractive force between the electrodes increases and the electrorheological effect increases. be.

又本発明による電気粘性流体における含水粉体は少量の
水分を吸着した2酸化珪素系微粉体のみであり、該流体
におけるその重量分布が小さいため、2酸化珪素系微粉
体における吸着水量及び含水状態が多少変化しても電気
粘性効果の性能に与える影響は少なく、該流体の性能の
再現可能性が良好なこともその特徴の一つである。
Furthermore, the water-containing powder in the electrorheological fluid according to the present invention is only silicon dioxide-based fine powder that has adsorbed a small amount of water, and its weight distribution in the fluid is small. One of its characteristics is that even if the fluid changes slightly, it has little effect on the performance of the electrorheological effect, and the reproducibility of the performance of the fluid is good.

第2の特徴は従来の電気粘性流体に比較して耐絶縁破壊
性が極めて良好なことである。
The second feature is that it has extremely good dielectric breakdown resistance compared to conventional electrorheological fluids.

これは本発明の電気粘性流体における水分は少量添加す
る2酸化珪素系粉体に0.5〜3重量φ程度吸着された
もののみであるので、従来の電気粘性流体における水分
保持量のほぼ6分の一以下になり、このため電気絶縁性
は著しく向上する。
This is because the water in the electrorheological fluid of the present invention is only absorbed by about 0.5 to 3 weight φ of the silicon dioxide powder added in a small amount, so the amount of water retained in the electrorheological fluid of the present invention is approximately 6 Therefore, the electrical insulation properties are significantly improved.

第3の特徴は絶縁油中に粉体が極めて安定に分散し、粉
体の沈降、凝集などの不具合を解消できることである。
The third feature is that the powder is extremely stably dispersed in the insulating oil, eliminating problems such as settling and agglomeration of the powder.

2酸化珪素系微粉体を絶縁性油に充分攪拌混合すると粘
稠なグリース状構造となり、比重差があるにも拘らず強
誘電性粉体を長期間にわたり安定に分散させることにな
る。
When silicon dioxide-based fine powder is sufficiently stirred and mixed with insulating oil, it becomes a viscous grease-like structure, and the ferroelectric powder is stably dispersed over a long period of time despite the difference in specific gravity.

次に本発明を実施例によって詳細説明する。Next, the present invention will be explained in detail by way of examples.

実施例 1 本発明による強誘電性粉体として強誘電体A及びB、2
酸化珪素系粉体として珪酸アルミン酸マグネシウム、絶
縁性油としてフタル酸ジブチルを配合せしめた電気粘性
流体を次に示す。
Example 1 Ferroelectric materials A and B, 2 as ferroelectric powders according to the present invention
An electrorheological fluid containing magnesium aluminate silicate as a silicon oxide powder and dibutyl phthalate as an insulating oil is shown below.

構成要素である粉体の性状は次の通りである。The properties of the constituent powder are as follows.

強誘電体A 主成分 チタン酸バリウム約90係含有 密 度 5〜69/cri 誘電率1200 平均粒径 はぼ20〜200μ 強誘電体B 主成分 チタン酸バリウム約90係含有 密 度 5〜6 g/ cnl 誘電率2000 平均粒径 はぼ20〜200μ 珪酸アルミン酸マグネシウム 密 度 2.297cri 平均粒径 はぼ2μ 粉体と分散媒との配合比を次に示す、 次に本発明の電気粘性流体と従来の電気粘性流体の性能
の比較を第1表に示す。
Ferroelectric A Main component Barium titanate content density of about 90 coefficients 5 to 69/cri Dielectric constant 1200 Average particle size 20 to 200μ Ferroelectric B Main component Barium titanate content density of about 90 coefficients 5 to 6 g /cnl Dielectric constant 2000 Average particle size 20-200μ Magnesium silicate aluminate density 2.297cri Average particle size 2μ The blending ratio of the powder and dispersion medium is shown below.Next, the electrorheological fluid of the present invention Table 1 shows a comparison of the performance of the conventional electrorheological fluid and the conventional electrorheological fluid.

従来の電気粘性流体としては既に公知の適量の水分を吸
着させたセルロース粉体をセバシン酸ジブチルに分散さ
せ作成した。
A conventional electrorheological fluid was prepared by dispersing cellulose powder adsorbed with an appropriate amount of water in dibutyl sebacate.

配合比は次の通りである。The blending ratio is as follows.

従来の電気粘性流体 セルロース 50部(含水
率5.0重量%) セバシン酸ジブチルioo部 電気粘性効果の測定は共軸二重円筒型回転粘度計を使用
し、内外円筒間に電界を印加したときの同一剪断速度(
160sec 1)における剪断応力(gW/cr?t
)の増加量にて示した。
Conventional electrorheological fluid Cellulose 50 parts (water content 5.0% by weight) Dibutyl sebacate ioo part The electrorheological effect was measured using a coaxial double cylinder rotational viscometer and applying an electric field between the inner and outer cylinders. The same shear rate of (
Shear stress at 160 sec 1) (gW/cr?t
).

第1表より明かな様に本発明の電気粘性流体は従来の電
気粘性流体よりも優秀であることが分る。
As is clear from Table 1, the electrorheological fluid of the present invention is superior to the conventional electrorheological fluid.

実施例 2 実施例1と同様にして2酸化珪素系微粉体として5i0
2を使用した場合を次に示す。
Example 2 5i0 was prepared as silicon dioxide-based fine powder in the same manner as in Example 1.
The case where 2 is used is shown below.

配合例 3 強誘電体(B) 15部強誘
電体(C) 35部 2酸化珪素 4部 (含水率的1.0重量係) セバシン酸ジブチル 50部 粉体の性状は次の通りである。
Formulation Example 3 Ferroelectric (B) 15 parts Ferroelectric (C) 35 parts Silicon dioxide 4 parts (moisture content 1.0 parts by weight) Dibutyl sebacate 50 parts The properties of the powder are as follows.

強誘電体C主成分 チタン酸バリウム (約90係含有) 密 度 5〜6 g/cni 誘電率soo。Ferroelectric C main component barium titanate (Contains about 90 sections) Density 5-6 g/cni Dielectric constant soo.

平均粒径 20〜200μ 2酸化珪素 密度的 2.2jilcrd平均粒径 1
.5μ 本流体の電気粘性効果〔剪断応力の増加量gW/CTL
)〕を第2表に示す。
Average particle size 20-200μ Silicon dioxide density 2.2jilcrd average particle size 1
.. 5μ Electrorheological effect of the fluid [increase in shear stress gW/CTL
)] are shown in Table 2.

Claims (1)

【特許請求の範囲】 1 粒径20〜200μ程度のチタン酸バリウムと該チ
タン酸バリウムの粒径の数工O分の−〜数百分の−であ
り、かつ0.5〜3゜0重量係程度の水分を吸着した2
酸化珪素系微粉体を絶縁油中に分散せしめてなる電気粘
性流体。 2 チタン散バリウム粉体100部に対して2酸化珪素
系微粉体1〜10部の割合で使用する特許請求の範囲第
1項記載の電気粘性流体。 32酸化珪素系微粉体として2酸化珪素(SiOz)又
は珪酸アルミン酸マグネシウム(A1203・犯0・2
Si02・XH20)を使用する特許請求の範囲第1項
又は第2項記載の電気粘性流体。
[Scope of Claims] 1. Barium titanate with a particle size of about 20 to 200 μm, several milliseconds to several hundredths of the particle size of the barium titanate, and a weight of 0.5 to 3.0 μm. Adsorbed moisture to the extent of 2
An electrorheological fluid made by dispersing silicon oxide fine powder in insulating oil. 2. The electrorheological fluid according to claim 1, which is used in a ratio of 1 to 10 parts of silicon dioxide-based fine powder to 100 parts of titanium-dispersed barium powder. Silicon dioxide (SiOz) or magnesium silicate aluminate (A1203, 0.2
The electrorheological fluid according to claim 1 or 2, which uses Si02.XH20).
JP51091566A 1976-07-31 1976-07-31 electrorheological fluid Expired JPS5832197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51091566A JPS5832197B2 (en) 1976-07-31 1976-07-31 electrorheological fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51091566A JPS5832197B2 (en) 1976-07-31 1976-07-31 electrorheological fluid

Publications (2)

Publication Number Publication Date
JPS5317585A JPS5317585A (en) 1978-02-17
JPS5832197B2 true JPS5832197B2 (en) 1983-07-11

Family

ID=14030054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51091566A Expired JPS5832197B2 (en) 1976-07-31 1976-07-31 electrorheological fluid

Country Status (1)

Country Link
JP (1) JPS5832197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181599A (en) * 1984-09-28 1986-04-25 Mitsubishi Heavy Ind Ltd Variable moving blade type axial flow fan

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930332A (en) * 1972-07-12 1974-03-18
JPS4924931A (en) * 1972-06-27 1974-03-05
JPS4936641A (en) * 1972-08-10 1974-04-05
DE3536934A1 (en) * 1985-10-17 1987-04-23 Bayer Ag ELECTROVISCOSE LIQUIDS
US4744914A (en) * 1986-10-22 1988-05-17 Board Of Regents Of The University Of Michigan Electric field dependent fluids
JP2631717B2 (en) * 1988-09-28 1997-07-16 東燃株式会社 Non-aqueous electrorheological fluid
JPH05168908A (en) * 1991-12-17 1993-07-02 Mitsubishi Kasei Corp Electric viscous fluid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936704A (en) * 1972-08-10 1974-04-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936704A (en) * 1972-08-10 1974-04-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181599A (en) * 1984-09-28 1986-04-25 Mitsubishi Heavy Ind Ltd Variable moving blade type axial flow fan

Also Published As

Publication number Publication date
JPS5317585A (en) 1978-02-17

Similar Documents

Publication Publication Date Title
JPS5832197B2 (en) electrorheological fluid
US3875323A (en) Waterproof telephone cables with pliable non-flowing filling compound
JPH02164438A (en) Electroviscous liquid
US6645403B1 (en) Multiphase electrorheological fluid
JP2004131724A (en) Electrorheological fluid
US5496484A (en) Electroviscous fluids containing semiconducting particles and dielectric particles
JPH02240197A (en) Electroviscous fluid
JPH04348192A (en) Electro-viscous fluid
US20050285085A1 (en) Fluid suspensions with electrorheological effect
JPH03119098A (en) Electroviscous fluid
US5149454A (en) Electrorheological compositions including am5-11 O8-17
JPH0335095A (en) Electroviscous fluid
US5139692A (en) Electrorheological compositions including an amine-terminated polyester steric stabilizer
JP2699404B2 (en) Electrorheological fluid
KR20060015843A (en) An electrorheological fluid consisting of polyaniline/titanium dioxide composites as conducting particles and its preparation
JPH02169695A (en) Electroviscous fluid
JPH01164823A (en) Electric viscous fluid
US20010015421A1 (en) Electro-rheological fluid comprising dried water-soluble starch as a conductive particle
US5252240A (en) Electrorheological fluids including alkyl benzoates
US20040021134A1 (en) Electro-rheological fluid comprising dried water-soluble starch and additive
JPH01284594A (en) Electroviscous fluid excellent in stability and response
JP2573994B2 (en) Electrorheological fluid
JPH0234691A (en) Electroviscous liquid
JPH07173485A (en) Electroviscouc fluid
JPH06243718A (en) Composite dielectric fine grain and electric viscous fluid using same