JPH06243718A - Composite dielectric fine grain and electric viscous fluid using same - Google Patents

Composite dielectric fine grain and electric viscous fluid using same

Info

Publication number
JPH06243718A
JPH06243718A JP2520393A JP2520393A JPH06243718A JP H06243718 A JPH06243718 A JP H06243718A JP 2520393 A JP2520393 A JP 2520393A JP 2520393 A JP2520393 A JP 2520393A JP H06243718 A JPH06243718 A JP H06243718A
Authority
JP
Japan
Prior art keywords
fine particles
particles
insulating
fine grains
composite dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2520393A
Other languages
Japanese (ja)
Inventor
Koji Shima
耕司 島
Yukio Senda
幸雄 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP2520393A priority Critical patent/JPH06243718A/en
Publication of JPH06243718A publication Critical patent/JPH06243718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain the fluid showing a high electroviscous effect stably by coating the surface of a fine grain, which is changed to the carbonaceous material by burning, with the insulating fine grains, and burning it to obtain the composite dielectric fine grains, and dispersing these composite fine grains in the insulating liquid. CONSTITUTION:The surface of fine grains of the organic high polymer material such as phenol resin, which is changed to the carbonaceous material by burning, is coated with the insulating fine grains such as SiO2, Si3N4 to obtain the composite dielectric fine grains. These obtained compound dielectric fine grains are dispersed in the electrically insulating liquid such as silicone oil and ester group oil at 5-50 capacity %. High electroviscous effect is thereby obtained stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複合誘電体微粒子及びそ
れを用いた電気粘性流体に関するものであり、詳しくは
高い電気粘性効果を安定して得る事が可能な電気粘性流
体に関するものである。このような電気粘性流体は電気
的に制御可能な防振装置や動力伝達装置等に有用であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to composite dielectric fine particles and an electrorheological fluid using the same, and more particularly to an electrorheological fluid capable of stably obtaining a high electrorheological effect. Such an electrorheological fluid is useful for an electrically controllable vibration damping device, power transmission device, or the like.

【0002】電気粘性流体とは、印加電界の作用(OF
F,ON(電界変化))によってそのせん断応力(見掛
けの粘度)が迅速かつ可逆的に変化する、いわゆる電気
粘性効果を示す流体である。
An electrorheological fluid is an action (OF) of an applied electric field.
It is a fluid that exhibits a so-called electrorheological effect in which its shear stress (apparent viscosity) changes rapidly and reversibly by F, ON (change of electric field).

【0003】[0003]

【従来技術】電気粘性流体は、一般に、分極可能な微粒
子を電気絶縁性液体中に分散してなるものであり、その
電気粘性効果発現のメカニズムは次のように考えられて
いる。すなわち、電気粘性流体に電界を印加した際、分
散微粒子は分極し、更に、該分極に基づく静電引力によ
り鎖状の凝集構造を形成しその結果として、電気粘性効
果が発現される。
2. Description of the Related Art Generally, an electrorheological fluid is made by dispersing polarizable fine particles in an electrically insulating liquid, and the mechanism of manifesting the electrorheological effect is considered as follows. That is, when an electric field is applied to the electrorheological fluid, the dispersed fine particles are polarized, and further an electrostatic attractive force based on the polarization forms a chain-like aggregate structure, and as a result, the electrorheological effect is exhibited.

【0004】従来、このような原理に基づく電気粘性流
体としては、分散粒子として、水や水以外の極性溶媒を
吸着させた粒子を用いた流体が多く知られている。ま
た、分散粒子として吸着成分を含まない粒子を用いた流
体の1つとして導電性微粒子表面を絶縁層で被覆した複
合誘電体微粒子を用いたもの(T.Sasada e
t.al:Proc.17th Japan Con
g.Mater.Res.,288(1974)、特開
昭63−97694号公報、特開平3−137196号
公報)が知られている。
Conventionally, as an electrorheological fluid based on such a principle, many fluids using dispersed particles such as water or particles adsorbing a polar solvent other than water are known. Further, as one of fluids using particles containing no adsorbing component as dispersed particles, one using composite dielectric fine particles in which conductive fine particle surfaces are coated with an insulating layer (T. Sasada e
t. al: Proc. 17th Japan Con
g. Mater. Res. , 288 (1974), JP-A-63-97694, and JP-A-3-137196).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、水や水
以外の溶媒を吸着させた粒子を用いた流体では、高温に
なると消費電力が増大する、またさらに長時間高温にさ
らされると吸着成分が揮発し電気粘性効果が低下すると
うい問題点が存在する。また、従来の複合誘電体粒子を
用いた流体では、導電性粒子表面における化学反応によ
り絶縁層を形成するが、この方法では複合誘電体粒子の
間の凝集や絶縁層膜厚の不均一性のため、生成する絶縁
層膜厚を任意に制御することが困難である。また、使用
可能な粒子の粒径の点で制限があり、電気粘性効果、分
散安定性の点で問題がある。本発明は上記の課題を解決
すべくなされたものであり、高い電気粘性効果を安定し
て得ることが可能な電気粘性流体を製造することを目的
とする。
However, in a fluid using particles in which water or a solvent other than water is adsorbed, power consumption increases at high temperatures, and the adsorbed components volatilize when exposed to high temperatures for a long time. However, there is a problem that the electrorheological effect is reduced. Further, in the case of the fluid using the conventional composite dielectric particles, the insulating layer is formed by the chemical reaction on the surface of the conductive particles, but with this method, the aggregation between the composite dielectric particles and the nonuniformity of the insulating layer film thickness are caused. Therefore, it is difficult to arbitrarily control the thickness of the insulating layer to be generated. In addition, there is a limit in terms of the particle size of usable particles, and there are problems in terms of electrorheological effect and dispersion stability. The present invention has been made to solve the above problems, and an object of the present invention is to produce an electrorheological fluid capable of stably obtaining a high electrorheological effect.

【0006】[0006]

【課題を解決するための手段】しかして、かかる本発明
の目的は、焼成することにより炭素質となる微粒子表面
を絶縁性微粒子で被覆した複合微粒子を不活性雰囲気中
で焼成してなる複合誘電体微粒子及びこの複合誘電体粒
子を電気絶縁性液体中に分散させてなる電気粘性流体、
により容易に達成される。
SUMMARY OF THE INVENTION The object of the present invention, however, is to provide a composite dielectric prepared by baking composite particles in which the surfaces of the carbonaceous particles are covered with insulating particles in an inert atmosphere. Body particles and an electrorheological fluid obtained by dispersing the composite dielectric particles in an electrically insulating liquid,
More easily achieved.

【0007】以下、本発明について詳細に説明する。本
願で用いる複合微粒子は、焼成することにより炭素質と
なる微粒子表面を絶縁性微粒子で被覆することにより得
られる。焼成することにより炭素質となる微粒子(以下
「微粒子」と称する)としては、有機高分子材料が使用
できるが、具体的にはフェノール系樹脂、ポリアセター
ル、ポリエチレンオキシド、ポリカーボネート、ポリエ
ステル、エポキシ樹脂、ポリエチレン、ポリ酢酸ビニ
ル、ポリメチルメタクリレート、ポリアクリロニトリ
ル、ポリブタジエン、ポリイソブチレン等があげられ
る。これらの微粒子は不活性雰囲気中で焼成することに
より炭素質となる。不活性雰囲気とは真空または希ガス
及び反応性に乏しい気体からなる雰囲気であり、用いら
れる気体としては、アルゴン、窒素等があげられる。
The present invention will be described in detail below. The composite fine particles used in the present application can be obtained by coating the surface of the fine particles that become carbonaceous by firing with insulating fine particles. As the fine particles that become carbonaceous by firing (hereinafter referred to as “fine particles”), organic polymer materials can be used, and specifically, phenolic resins, polyacetals, polyethylene oxides, polycarbonates, polyesters, epoxy resins, polyethylenes. , Polyvinyl acetate, polymethylmethacrylate, polyacrylonitrile, polybutadiene, polyisobutylene and the like. These fine particles become carbonaceous when fired in an inert atmosphere. The inert atmosphere is an atmosphere composed of vacuum or a rare gas and a gas having poor reactivity, and examples of the gas used include argon and nitrogen.

【0008】「微粒子」の粒径としては、0.1〜10
0μmの粒子を用いることができる。平均粒径0.1μ
m以下の粒子では粒子の比表面積増加による無電界時の
粘度が大きく、電界印加時と無電界時の粘度の比が小さ
くなってしまう。また、平均粒径100μmより大きな
粒子では粒子の沈降を生じやすくなる。「微粒子」を被
覆するのに用いる絶縁性微粒子は、抵抗率109 Ωcm
以上、より好ましくは抵抗率1010Ωcm以上の物質で
絶縁破壊に対する強さの大きい物質からなる。また、上
記絶縁性微粒子は不活性雰囲気中で焼成しても絶縁性が
失われないものを用いる必要があり、無機質の絶縁材料
が好適に用いられるが、具体的には、SiO2 、Si3
4 、Al2 3 、Ta2 5 などがあげられる。
The particle size of "fine particles" is 0.1-10.
Particles of 0 μm can be used. Average particle size 0.1μ
Particles of m or less have a large viscosity due to an increase in the specific surface area of the particles when no electric field is applied, and the ratio of the viscosity when an electric field is applied and when there is no electric field becomes small. Further, particles larger than the average particle diameter of 100 μm are likely to cause particle sedimentation. The insulating fine particles used for coating the “fine particles” have a resistivity of 10 9 Ωcm.
As described above, it is more preferable to use a substance having a resistivity of 10 10 Ωcm or more and having a high strength against dielectric breakdown. In addition, it is necessary to use the above-mentioned insulating fine particles that do not lose the insulating property even if fired in an inert atmosphere, and an inorganic insulating material is preferably used. Specifically, specifically, SiO 2 , Si 3
Examples thereof include N 4 , Al 2 O 3 , Ta 2 O 5 and the like.

【0009】本発明の複合微粒子に於いては、使用する
絶縁性微粒子の粒径を変えることにより絶縁8層の厚み
を制御することが可能であるが、絶縁性微粒子の平均粒
径(di )は「微粒子」の平均粒径(dc )、絶縁性微
粒子の絶縁破壊に対する強さ(Efrac)、印加する電界
(E)から次の(1)式を目安に決定される。
[0009] In the composite fine particles of the present invention, it is possible to control the thickness of the insulating eight layers by changing the particle diameter of the insulating fine particles used, the average particle diameter of the insulating particles (d i ) Is determined from the average particle diameter (d c ) of the “fine particles”, the strength of the insulating fine particles against dielectric breakdown (E frac ), and the applied electric field (E) using the following equation (1) as a guide.

【0010】[0010]

【数1】 [Equation 1]

【0011】絶縁性微粒子の平均粒径がdi より小さい
と電界を印加した際に絶縁破壊を起こしてしまう。ま
た、絶縁性微粒子の平均粒径がdi よりも非常に大きい
場合、充分な電気粘性効果が得られない。従って絶縁性
微粒子の平均粒径はdi と等しいかやや大きいものとす
ることが好ましい。絶縁性微粒子の粒径分布は均一な被
覆を行うために揃っていた方が好ましい。
If the average particle size of the insulating fine particles is smaller than d i , dielectric breakdown occurs when an electric field is applied. Moreover, when the average particle diameter of the insulating fine particles is much larger than d i , a sufficient electrorheological effect cannot be obtained. Therefore, the average particle size of the insulating fine particles is preferably equal to or slightly larger than d i . The particle size distribution of the insulating fine particles is preferably uniform in order to achieve uniform coating.

【0012】また、「微粒子」1kgを絶縁性微粒子で
被覆するために必要な絶縁性微粒子の量Mi は、各々の
粒子の粒径dc ,di ,比重ρc ,ρi から次の(2)
式により計算される。
The amount M i of insulating fine particles required to coat 1 kg of “fine particles” with insulating fine particles is calculated from the particle diameters d c and d i of each particle and the specific gravities ρ c and ρ i as follows. (2)
Calculated by the formula.

【0013】[0013]

【数2】 [Equation 2]

【0014】絶縁性微粒子がこれより少ないと絶縁が不
完全となり、絶縁破壊を起こす場合がある。また、これ
より多いと、被覆微粒子同士の凝集が起こり、無電界時
の粘度が増加し好ましくない。
If the amount of the insulating fine particles is less than this, the insulation may be incomplete and may cause dielectric breakdown. On the other hand, if it is more than this, the coated fine particles agglomerate with each other, and the viscosity in the absence of an electric field increases, which is not preferable.

【0015】「微粒子」を絶縁性微粒子で被覆する方法
は均一に被覆される限り特に限定されないが、例えば、
ヘテロ凝集法(高分子加工,38(7),pp.322
−328(1989))や、メカノフュージョン法(粉
砕,No.33,pp.66−71(1989))等の
公知の方法を用いる事が出来る。また、絶縁性微粒子を
「微粒子」表面により強固に結合させるために、「微粒
子」表面で化学反応により絶縁層を形成する化合物を少
量添加することも可能である。
The method of coating the "fine particles" with insulating fine particles is not particularly limited as long as they are uniformly coated.
Heteroaggregation method (Polymer processing, 38 (7), pp.322
-328 (1989)) and the mechanofusion method (crushing, No. 33, pp. 66-71 (1989)) and the like can be used. Further, in order to bond the insulating fine particles more firmly to the surface of the “fine particles”, it is possible to add a small amount of a compound that forms an insulating layer by a chemical reaction on the surface of the “fine particles”.

【0016】上記の方法により得られた複合微粒子を焼
成することにより、「微粒子」表面を被覆している絶縁
性微粒子と「微粒子」を強固に結合させると共に「微粒
子」を炭素質に変え導電性を与え、複合誘電体微粒子と
する。焼成温度は使用する「微粒子」及び絶縁性微粒子
の種類により異なるが、一般的には300℃〜1000
℃が好ましい。焼成温度が低いと「微粒子」が炭素化せ
ず、導電性が低いため充分な電気粘性効果が得られな
い。また、絶縁性微粒子が強固に結合しないため耐久性
に問題がある。焼成温度が高すぎると複合誘電体微粒子
同士で焼結を起こし、無電界時の粘度が上昇し好ましく
ない。
By firing the composite fine particles obtained by the above method, the insulating fine particles coating the surface of the "fine particles" and the "fine particles" are firmly bonded and the "fine particles" are changed to carbonaceous material so as to have conductivity. To give composite dielectric fine particles. The firing temperature varies depending on the type of “fine particles” and insulating fine particles used, but is generally 300 ° C. to 1000 ° C.
C is preferred. When the firing temperature is low, the "fine particles" are not carbonized and the conductivity is low, so that a sufficient electrorheological effect cannot be obtained. Further, since the insulating fine particles do not bond firmly, there is a problem in durability. If the firing temperature is too high, the composite dielectric fine particles will sinter with each other and the viscosity will increase when no electric field is applied, which is not preferable.

【0017】このようにして得られた複合誘電体微粒子
を、電気絶縁性液体中に5〜50vol%の含有量とな
るように分散させる。電気絶縁性液体は抵抗率109 Ω
cm以上、より好ましくは抵抗率1010Ωcm以上の絶
縁性を有する液体であり、例えば、シリコーンオイルや
エステル系オイル、鉱油があり、具体的にはジメチルポ
リシロキサン、フタル酸ジオクチル、フタル酸ジブチ
ル、フタル酸ジイソノニル、トリメリット酸トリオクチ
ル、トリメリット酸トリイソデシル、アジピン酸ジブチ
ル、ステアリン酸ブチル、パラフィン系鉱油、ナフテン
系鉱油などがあげられる。
The composite dielectric fine particles thus obtained are dispersed in the electrically insulating liquid so as to have a content of 5 to 50 vol%. Electrically insulating liquid has a resistivity of 10 9 Ω
cm or more, more preferably a liquid having an insulating property of 10 10 Ωcm or more, and examples thereof include silicone oil, ester oil, and mineral oil. Specifically, dimethylpolysiloxane, dioctyl phthalate, dibutyl phthalate, Examples thereof include diisononyl phthalate, trioctyl trimellitate, triisodecyl trimellitate, dibutyl adipate, butyl stearate, paraffinic mineral oil, and naphthenic mineral oil.

【0018】上記複合誘電体微粒子を上記電気絶縁性液
体に分散させる際は、含有量が5〜50vol%となる
ようにすることが好ましい。上記複合誘電体微粒子が5
vol%より少ないと充分な電気粘性効果が得られな
い。また、50vol%より多くなると無電界時の粘度
が増加し、電界印加時の粘度と無電界時の粘度の比が小
さくなり好ましくない。
When the composite dielectric fine particles are dispersed in the electrically insulating liquid, the content is preferably 5 to 50% by volume. The composite dielectric fine particles are 5
If it is less than vol%, a sufficient electrorheological effect cannot be obtained. On the other hand, if it is more than 50 vol%, the viscosity in the absence of an electric field increases, and the ratio of the viscosity when an electric field is applied to the viscosity in an electric field becomes small, such being undesirable.

【0019】上記複合誘電体微粒子を上記電気絶縁性液
体に分散させる方法としては、ボールミルやペイントシ
ェーカー等の方法を用いることができる。また、必要に
応じ分散剤等の添加剤を使用する事も可能である。以
下、実施例により本発明を具体的に説明するが、本発明
はその要旨を越えないかぎり、以下の実施例に限定され
るものではない。
A method such as a ball mill or a paint shaker can be used as a method for dispersing the composite dielectric fine particles in the electrically insulating liquid. In addition, additives such as a dispersant can be used if necessary. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

【0020】[0020]

【実施例】【Example】

〔実施例1〕平均粒径10μm、比重1.27のフェノ
ール系樹脂粒子(ユニチカ(株)“ユニベックスC1
0”)100gを5Lの水に分散させ、塩酸によりpH
4に調整した。この分散液に平均粒径45nm、SiO
2 濃度40wt%のシリカゾル(触媒化成工業(株)カ
タロイドSI−45P)6.43gを加え、pH4に再
調整し30分間攪拌した。その結果フェノール系樹脂粒
子とシリカゾル粒子がヘテロ凝集をおこし、フェノール
系樹脂粒子表面はシリカゾルの単粒子層で均一に被覆さ
れた。
[Example 1] Phenolic resin particles having an average particle size of 10 µm and a specific gravity of 1.27 ("UNIVEX C1" manufactured by Unitika Ltd.)
0 ") 100 g is dispersed in 5 L of water, and pH is adjusted with hydrochloric acid.
Adjusted to 4. This dispersion has an average particle size of 45 nm and SiO 2.
2 6.34 g of silica sol (Cataloid SI-45P, manufactured by Catalysts & Chemicals Industry Co., Ltd.) having a concentration of 40 wt% was added, and the pH was readjusted to 4 and stirred for 30 minutes. As a result, the phenolic resin particles and the silica sol particles caused heterocoagulation, and the surface of the phenolic resin particles was uniformly covered with a single particle layer of silica sol.

【0021】この分散液を12時間静置し、粒子を沈降
させた後、上澄みを捨て、充分に乾燥させた後、窒素中
700℃で焼成する事によりフェノール系樹脂粒子を炭
化させた。このようにして粒子の内部は導電性の炭素質
粒子であり、その表面は絶縁性のシリカゾル粒子で均一
に被覆された粒子を得た。
The dispersion was allowed to stand for 12 hours to allow the particles to settle, the supernatant was discarded, the residue was sufficiently dried, and the phenol resin particles were carbonized by firing at 700 ° C. in nitrogen. In this way, particles were obtained in which the inside of the particles was conductive carbonaceous particles and the surface of which was uniformly coated with insulating silica sol particles.

【0022】得られた粒子の比重は1.63であった。
これを粒子が40vol%になるようにシリコーンオイ
ル(東レダウコーニングシリコーン(株)“SH200
10cs”比重0.934)にボールミル分散させ、
電気粘性効果測定用サンプルとした。サンプルの電界印
加時の特性は、共軸二重円筒型回転粘度計を使用し、内
外円筒間に電圧を印加したときのせん断速度365s-1
におけるせん断応力を測定(電極間距離1mm、温度2
5℃)した。その結果を図1に示す。図1から明らかな
様に印加電界の増大によりせん断力が大きく増加する。
The specific gravity of the obtained particles was 1.63.
Silicone oil (Toray Dow Corning Silicone Co., Ltd. “SH200”)
Ball mill dispersed in 10 cs "specific gravity 0.934),
The sample was used for measuring the electrorheological effect. The characteristics of the sample when an electric field is applied are the shear rate of 365 s -1 when a voltage is applied between the inner and outer cylinders using a coaxial double cylinder type rotational viscometer.
Measurement of shear stress (distance between electrodes 1mm, temperature 2
5 ° C). The result is shown in FIG. As is clear from FIG. 1, the shearing force greatly increases due to the increase of the applied electric field.

【0023】〔比較例1〕平均粒径2.8μmのアルミ
ニウム粒子(東洋アルミニウム(株)“AC−500
5”)100gを500mlの水中に分散させ、攪拌し
ながら加熱し70℃4時間処理した。このようにしてア
ルミニウム粒子表面がベーマイトの絶縁層で被覆された
粒子を得た。
Comparative Example 1 Aluminum particles having an average particle size of 2.8 μm (“AC-500”, manufactured by Toyo Aluminum Co., Ltd.)
5 ″) was dispersed in 500 ml of water, heated with stirring and treated at 70 ° C. for 4 hours. In this way, particles whose surface was covered with an insulating layer of boehmite were obtained.

【0024】得られた粒子の比重は2.93であった。
これを粒子が30vol%になるように実施例1で用い
たものと同じシリコーンオイルに分散させ、電気粘性効
果測定用サンプルとし、実施例1と同様の方法で測定し
た。その測定結果を実施例1のサンプルと合わせて図1
に示す。
The specific gravity of the obtained particles was 2.93.
The particles were dispersed in the same silicone oil as that used in Example 1 so that the amount of particles was 30 vol%, and used as a sample for measuring an electrorheological effect, and the measurement was performed in the same manner as in Example 1. The measurement result is shown in FIG.
Shown in.

【0025】[0025]

【発明の効果】本発明により、高い電気粘性効果を安定
して示す電気粘性流体が得られる。
According to the present invention, an electrorheological fluid that stably exhibits a high electrorheological effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例および比較例の電気粘性流体の
印加電界に対する電気粘性効果を示すグラフである。横
軸は印加電界(KV・mm-1),縦軸はせん断応力(P
a)である。
FIG. 1 is a graph showing an electrorheological effect on an applied electric field of electrorheological fluids of Examples and Comparative Examples of the present invention. The horizontal axis represents the applied electric field (KV · mm −1 ), and the vertical axis represents the shear stress (P
a).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼成することにより炭素質となる微粒子
表面を絶縁性微粒子で被覆した複合微粒子を不活性雰囲
気中で焼成してなる複合誘電体微粒子。
1. Composite dielectric fine particles obtained by firing composite fine particles in which the surface of fine particles that become carbonaceous by firing is coated with insulating fine particles in an inert atmosphere.
【請求項2】 請求項1の複合誘電体粒子を電気絶縁性
液体中に分散させてなる電気粘性流体。
2. An electrorheological fluid obtained by dispersing the composite dielectric particles according to claim 1 in an electrically insulating liquid.
JP2520393A 1993-02-15 1993-02-15 Composite dielectric fine grain and electric viscous fluid using same Pending JPH06243718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2520393A JPH06243718A (en) 1993-02-15 1993-02-15 Composite dielectric fine grain and electric viscous fluid using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2520393A JPH06243718A (en) 1993-02-15 1993-02-15 Composite dielectric fine grain and electric viscous fluid using same

Publications (1)

Publication Number Publication Date
JPH06243718A true JPH06243718A (en) 1994-09-02

Family

ID=12159398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2520393A Pending JPH06243718A (en) 1993-02-15 1993-02-15 Composite dielectric fine grain and electric viscous fluid using same

Country Status (1)

Country Link
JP (1) JPH06243718A (en)

Similar Documents

Publication Publication Date Title
Otsubo et al. Electrorheological properties of suspensions of inorganic shell/organic core composite particles
EP0361106A1 (en) Electroviscous fluid
JP2631717B2 (en) Non-aqueous electrorheological fluid
US5496484A (en) Electroviscous fluids containing semiconducting particles and dielectric particles
EP0394049A1 (en) Electrorheological fluids and preparation of particles useful therein
US5849212A (en) Electroviscous fluid containing β-alumina
JPH06243718A (en) Composite dielectric fine grain and electric viscous fluid using same
US5445759A (en) Preparation of electrorheological fluids using fullerenes and other crystals having fullerene-like anisotropic electrical properties
US5149454A (en) Electrorheological compositions including am5-11 O8-17
Ishino et al. Anhydrous electrorheological fluid using carbonaceous particulate as dispersed phase
Vinothini et al. Optimization of barium titanate nanopowder slip for tape casting
KR100477325B1 (en) A electro-rheological fluid comprising dried water-soluble starch and additives
US5139691A (en) Anhydrous electrorheological compositions including Na3 PO4
US5130039A (en) Anhydrous electrorheological compositions including Liy Si1-x Ax O4
JPH0742473B2 (en) Electrorheological liquid
US5130038A (en) Anhydrous electrorheological compositions including A5 MSi4 O.sub.
EP0424840B1 (en) An electrorheological fluid
JPH08333595A (en) Electrically viscous fluid
JP2911947B2 (en) Carbon powder for electrorheological fluid
JP2867343B2 (en) Electrorheological fluid
JPH08253788A (en) Electroviscous liquid
JPH0445196A (en) Electric viscous fluid
US5139690A (en) Electrorheological compositions including Ax (Lx/2 Sn1-(x/2))O2
JPH11349978A (en) Electroviscous fluid
JPH08259702A (en) Production of powder for electroviscous fluid