JPS5832183A - Calorimeter - Google Patents

Calorimeter

Info

Publication number
JPS5832183A
JPS5832183A JP13071181A JP13071181A JPS5832183A JP S5832183 A JPS5832183 A JP S5832183A JP 13071181 A JP13071181 A JP 13071181A JP 13071181 A JP13071181 A JP 13071181A JP S5832183 A JPS5832183 A JP S5832183A
Authority
JP
Japan
Prior art keywords
layer
electrically conductive
heat
conductive layer
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13071181A
Other languages
Japanese (ja)
Inventor
Susumu Oota
進 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP13071181A priority Critical patent/JPS5832183A/en
Publication of JPS5832183A publication Critical patent/JPS5832183A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/12Calorimetric dosimeters

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To prevent the outflow of heat and to reduce measuring errors by providing a heat insulating and electric conductor layer. CONSTITUTION:The 1st good electric conductor layer 1, an endothermic heating body layer 2, a heat insulating and electric conductor layer 3 and the 2nd good electric conductor layer 4 are laminated from the inflow side for energy. The layer 1 consists of a film-like good electric conductor of about 0.1mum thickness. The layer 2 is a layer of about 100mum thickness consisting of a material which heats up by absorbing the electric charge particles passing through the layer 1. The layer 3 is a layer of about 100mum thickness consisting of a material which shuts off heat and has electric conductivity. The layer 4 consists of the same material as that of the layer 1. An electric current terminal 5 and a voltage terminal 6 are connected to the layer 1, and the layer 4 is grounded.

Description

【発明の詳細な説明】 この発明は半導体基材に対して、荷電粒子により与えら
れるエネルギー流入量を測定するためのカロリー・メー
ターに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a calorimeter for measuring the energy input into a semiconductor substrate by charged particles.

シリコンウェハーなどの半導体基材に対して、イオン・
インブラントまたは電子ビームアニール等のように、真
空下においてパルス状の荷電粒子による処理を′行う場
合、7ξルス的に与えられるエネルギー流入量を測定す
ることが行われている。
For semiconductor substrates such as silicon wafers, ions and
When a process using pulsed charged particles is performed in a vacuum, such as in an implant or electron beam annealing, the amount of energy inflow given in a 7ξ las manner is measured.

従来の測定方法は、流入したエネルギーが温度に変換さ
れて昇温した物質を熱絶縁し、エネルギー流入後の温度
上昇を直i熱電対等の温度計で測定するものであった。
The conventional measurement method is to thermally insulate a material whose temperature has risen by converting the energy that has flowed into the material, and to measure the temperature rise after the energy has flowed in using a thermometer such as a direct-I thermocouple.

ところが、このような従来法においては、エネルギー源
が電子ビームのような荷電粒子であるため、電荷の流出
路を設ける必要があり、これが熱の流出にも影響し、温
度測定上の誤差を生じていた。
However, in such conventional methods, since the energy source is a charged particle such as an electron beam, it is necessary to provide a charge flow path, which also affects heat flow and causes errors in temperature measurement. was.

この発明は、以上のような従来のものの欠点を改善する
ためのもので、熱絶縁兼電気伝導体層を設けることによ
り、熱の流出を防止して測定誤差を少なくすることので
きるカロリー・メーターを提供することを目的としてい
る。
This invention aims to improve the above-mentioned drawbacks of the conventional calorie meter, and provides a calorie meter that can prevent heat leakage and reduce measurement errors by providing a thermally insulating and electrically conductive layer. is intended to provide.

この発明は半導体基材に対して、荷電粒子により与えら
れるエネルギー流入量を測定す・るためのカロリー・メ
ーターにおいて、エネルギー流入側から順次、第1電気
良導体層、吸熱昇温体層、熱絶縁兼電気伝導体層および
第2電気良導体層を有し、第1および第2電気良導体層
間においてエネルギー流入による電気的変化を測定する
ための端子を備えたことを特徴とするカロリー・メータ
ーである。
This invention relates to a calorimeter for measuring the amount of energy inflow given by charged particles to a semiconductor substrate, in which a first electrically conductive layer, a heat-absorbing heating layer, and a heat insulating layer are sequentially formed from the energy inflow side. The calorimeter is characterized in that it has a double electrical conductor layer and a second electrically conductive layer, and is equipped with a terminal for measuring electrical changes due to energy inflow between the first and second electrically conductive layers.

以下、この発明を図面により説明する。第1図および第
2図はそれぞれこの発明の別の実施例を示す垂直断面図
である。
Hereinafter, this invention will be explained with reference to the drawings. FIGS. 1 and 2 are vertical sectional views each showing another embodiment of the invention.

第1図において、エネルギー流入側、すなわち上゛から
、第1電気良導体層1、吸熱昇温体層2、熱絶縁兼電気
伝導体層3および第2電気良導体層4が積層されている
。第1電気良導体層1は約0、1μm程度の厚さの膜状
の電気良導体の層がらなり、荷電粒子による処理対象で
ある半導体試料に近い原子番号の物質がよく、実施例で
はアルミニウムが使用されている。
In FIG. 1, from the energy inflow side, that is, from the top, a first electrically conductive layer 1, a heat-absorbing temperature raising layer 2, a heat insulating and electrically conductive layer 3, and a second electrically conductive layer 4 are laminated. The first electrically conductive layer 1 is made of a film-like electrically conductive layer with a thickness of approximately 0.1 μm, and is preferably made of a material with an atomic number close to that of the semiconductor sample to be treated with charged particles, and in the embodiment, aluminum is used. has been done.

吸熱昇温体層2は第1電気良導体層1を通過する荷電粒
子を吸収して昇温する物質からなる約100μm程度の
厚さの層であり、荷電粒子による処理を行う半導体試料
と同一または類似の物質であることが望ましく、実施例
では半導体試料と同じ材質のシリコンが使用されている
。電気絶縁兼電気伝導体層6は熱を遮断し、かつ電気伝
導性の物質からなる約1’ 00μm程度の厚さの層で
あり、実施例では炭素が使用されている。第2電気良導
体層4は第1電気良導体層1と同一の材質(実施例では
アルミニウム)からなるウェハー状のものが使用されて
いる。
The endothermic heating layer 2 is a layer with a thickness of about 100 μm made of a material that absorbs charged particles passing through the first electrically conductive layer 1 and raises the temperature, and is the same or a layer with a thickness of about 100 μm as the semiconductor sample to be treated with charged particles. It is preferable to use a similar material, and in the embodiment, silicon, which is the same material as the semiconductor sample, is used. The electrically insulating and electrically conductive layer 6 is a layer having a thickness of about 1'00 μm and made of a heat-insulating and electrically conductive material, and carbon is used in the embodiment. The second electrically conductive layer 4 is made of the same material as the first electrically conductive layer 1 (aluminum in the embodiment) and is shaped like a wafer.

第、1電気良導体層1に°は電流端子5および電圧端子
6が接続され、第2電気良導体層4は接地されて、両者
は電極として使用される。
A current terminal 5 and a voltage terminal 6 are connected to the first electrically conductive layer 1, the second electrically conductive layer 4 is grounded, and both are used as electrodes.

以上のように構成され−たカロリー・メーターは、アニ
ール等の真空下に荷電粒子処理を行う装置の半導体試料
を堰付ける位置4たはその近辺に設置し、荷電粒子照射
源からノξルス状に荷電粒子を照射して、エネルギー流
入量を測定する。第1図の装置による測定は抵抗温度法
によるもので、電流端子5−接地間に電流を流し、電圧
端子6−接地間の電圧を測定し、温度変化による電気抵
抗の変化を測定する。
The calorimeter configured as described above is installed at or near position 4 where a semiconductor sample is dammed in a device that performs charged particle processing under vacuum such as annealing, and is irradiated by a charged particle irradiation source in a nozzle shape. is irradiated with charged particles and the amount of energy inflow is measured. Measurement by the apparatus shown in FIG. 1 is based on the resistance temperature method, in which a current is passed between the current terminal 5 and the ground, the voltage between the voltage terminal 6 and the ground is measured, and changes in electrical resistance due to temperature changes are measured.

この場合、第1電気良導体層1を通過した荷電粒子は吸
熱昇温体層2に吸収されて昇温し、吸熱昇温体層2の電
気抵抗を変化させる。吸熱昇温体層2に入った電荷は熱
絶縁兼電気伝導体層6を通って、第2電気良導体層4か
ら流出するが、吸熱昇温体層2で発生した熱は熱絶縁兼
電気伝導体層6によって遮断されるため、発生した熱は
吸熱昇温体層2に蓄積され、このためこの部分の熱量は
エネルギー流入量に等しくなる。
In this case, the charged particles that have passed through the first electrically conductive layer 1 are absorbed by the heat-absorbing temperature-raising body layer 2 to raise its temperature, thereby changing the electrical resistance of the heat-absorbing temperature-raising body layer 2. The electric charge that has entered the heat-absorbing temperature riser layer 2 passes through the thermal insulation/electrical conductor layer 6 and flows out from the second electrically conductive layer 4, but the heat generated in the heat-absorbing temperature riser layer 2 passes through the heat insulation/electrical conductor layer 6. Since the heat is blocked by the body layer 6, the generated heat is accumulated in the endothermic heating body layer 2, and therefore the amount of heat in this portion is equal to the amount of energy inflow.

吸熱昇温体層2の材質として半導体試料と同じものを使
用すると、試料と同様の電気的な変化を示し、また第1
電気良導体層1として半導体試料の材質と原子番号の近
い材質を使用すると、荷電粒子の流入傾向が近似してく
るため、半導体試料の流入エネルギー量とほぼ等しい値
が電気抵抗の変化として測定され、エネルギー流入量を
正確に測定することができる。
If the same material as the semiconductor sample is used for the endothermic heating element layer 2, it will show the same electrical changes as the sample, and the first
When a material with an atomic number similar to that of the semiconductor sample is used as the electrically conductive layer 1, the inflow tendency of charged particles becomes similar, so that a value approximately equal to the amount of inflow energy of the semiconductor sample is measured as a change in electrical resistance. The amount of energy inflow can be measured accurately.

第2図の実施例は熱起電力法によるもので、第1図の吸
熱昇温体層2として、熱起電力素子2as2bが設けら
れ、第1電気良導体層1に起電力測定端子7が接続して
いる。
The embodiment shown in FIG. 2 is based on the thermoelectromotive force method, in which a thermoelectromotive force element 2as2b is provided as the heat-absorbing heating layer 2 shown in FIG. are doing.

以上のように構成されたカロリー・メーターにおいては
、端子7−接地間の起電力を測定し、エネルギー注入量
を測定する。この場合、第1電気良導体層1の原子番号
に基づく反射荷電粒子葉の変化が認められる場合は、第
1電気良導体層1を数μm程度まで厚くする。シリコン
とアルミニウム間の原子番号に基づく反射量の差異は別
途補正する。
In the calorie meter configured as described above, the electromotive force between the terminal 7 and the ground is measured, and the amount of energy input is measured. In this case, if a change in the reflected charged particle leaf based on the atomic number of the first electrically conductive layer 1 is observed, the first electrically conductive layer 1 is thickened to about several μm. The difference in reflection amount between silicon and aluminum based on atomic number is separately corrected.

第1図および第2図のいずれの場合も、抵抗または起電
力と温度との関係は別途恒温槽中で較正しておくものと
する。また熱絶縁兼電気伝導体層6を通して逃げる熱量
についても、減衰特性から較正する。
In either case of FIG. 1 or FIG. 2, the relationship between resistance or electromotive force and temperature shall be calibrated separately in a constant temperature bath. Furthermore, the amount of heat escaping through the thermal insulating and electrically conductive layer 6 is also calibrated from the attenuation characteristics.

なお以上の実施例では、エネルギー注入量を抵抗または
起電力で測定したが、他の電気的な変化の測定によって
もよい。また上記実施例は全体のエネルギー流入量を測
定する例を示したが、その密度分布を測定するようにし
てもよい。この場合、第1電気良導体層1、吸熱昇温体
層2(または熱起電力素子2a、2b)および熱絶縁兼
電気伝導体層6に、例えば1crn間隔で垂直方向に、
短冊状または格子状に切込みを設け、それぞれのセクシ
ョンに測定端子を設けることにより、各セクションごと
のエネルギー流入量を測定し、その分布を知ることがで
きる。また前記実施例における各層の材質は一例を示し
たもので、他の材質を使用できるが、これによる測定結
果の変化は別途補正するものとする。
In the above embodiments, the amount of energy injection was measured using resistance or electromotive force, but other electrical changes may be measured. Furthermore, although the above embodiments show an example in which the total amount of energy inflow is measured, it is also possible to measure its density distribution. In this case, the first electrically conductive layer 1, the heat-absorbing temperature raising layer 2 (or the thermoelectromotive force elements 2a, 2b), and the thermally insulating and electrically conductive layer 6 are vertically spaced at intervals of, for example, 1 crn.
By providing cuts in the shape of strips or grids and providing measurement terminals in each section, it is possible to measure the amount of energy flowing into each section and find out its distribution. Further, the material of each layer in the above embodiments is merely an example, and other materials may be used, but changes in measurement results due to this may be separately corrected.

本発明はシリコンウェハーその他の半導体基材のイオン
・インブラント、電子ビームアニールその他の荷電粒子
処理する場合の半導体基材に対するエネルギー流入量を
測定するためのカロリー・メーターに適用することがで
きる。
The present invention can be applied to a calorimeter for measuring the amount of energy flowing into a semiconductor substrate when silicon wafers or other semiconductor substrates are subjected to ion implantation, electron beam annealing, or other charged particle processing.

以上のとおり、本発明によれば、吸熱昇温体層に接して
熱絶縁兼電気伝導体層を設けたので、電荷の流出に伴う
熱の流出を防止することができ、エネルギー流入量を正
確に測定できる効果がある。
As described above, according to the present invention, since the thermal insulating and electrically conductive layer is provided in contact with the heat-absorbing heating element layer, it is possible to prevent the outflow of heat accompanying the outflow of electric charge, and to accurately control the amount of energy inflow. There is a measurable effect on

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれこの発明の別の実施例を
示す垂直断面図である。 図中、同一符号は同一または相当部分を示し、1は第1
電気良導体層、2は吸熱昇温体層、2a12bは熱起電
力素子、3は熱絶縁兼電気伝導体層、4は第2電気良導
体層である。 代理人 弁理士 柳 原   成
FIGS. 1 and 2 are vertical sectional views each showing another embodiment of the invention. In the figures, the same reference numerals indicate the same or corresponding parts, and 1 indicates the first
A good electrical conductor layer, 2 is a heat-absorbing temperature raising layer, 2a12b is a thermoelectromotive force element, 3 is a thermal insulation/electrical conductor layer, and 4 is a second electrically conductive layer. Agent Patent Attorney Sei Yanagihara

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基材に対して、荷電粒子によシ与えられる
エネルギー流入量を測定するためのカロリー・メーター
において、エネルギー流入側から順次、第1電気良導体
層、吸熱昇温体層、熱絶縁兼電気伝導体層および第2電
気良導体層を有し、第1および第2電気良導体層間にお
いてエネルギー流入による電気的変化を測定するための
端子を備えたことを特徴とするカロリー・メーター
(1) In a calorie meter for measuring the amount of energy inflow given by charged particles to a semiconductor substrate, the first electrically conductive layer, the heat-absorbing heating layer, and the thermal insulation layer are sequentially formed from the energy inflow side. A calorie meter comprising a double electrical conductor layer and a second electrically conductive layer, and a terminal for measuring electrical changes due to energy inflow between the first and second electrically conductive layers.
(2)吸熱昇温体層の温度変化による電気抵抗の変化を
測定するようにした特許請求の範囲第1項記載のカロリ
ー・メーター
(2) The calorie meter according to claim 1, which measures changes in electrical resistance due to temperature changes in the endothermic heating body layer.
(3)吸熱昇温体層として熱起電力素子を備え、温度変
化による起電力の変化を測定するようにした特許請求の
範囲第1項または第2項記載のカロリー・メーター
(3) The calorie meter according to claim 1 or 2, which is equipped with a thermoelectromotive force element as the heat-absorbing heating body layer and measures changes in electromotive force due to temperature changes.
(4)少なくとも第1電気良導体層および吸熱昇温体層
に、短冊状または格子状に設けられた切込を備え、セク
ションごとに測定端子を備えた特許請求の範囲第1項な
いし第3項のいずれかに記載のカロリー・メーター
(4) Claims 1 to 3, wherein at least the first electrically conductive layer and the heat-absorbing heating element layer are provided with notches in the form of strips or grids, and each section is provided with a measurement terminal. Calorie meter listed in any of the above
JP13071181A 1981-08-20 1981-08-20 Calorimeter Pending JPS5832183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13071181A JPS5832183A (en) 1981-08-20 1981-08-20 Calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13071181A JPS5832183A (en) 1981-08-20 1981-08-20 Calorimeter

Publications (1)

Publication Number Publication Date
JPS5832183A true JPS5832183A (en) 1983-02-25

Family

ID=15040788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13071181A Pending JPS5832183A (en) 1981-08-20 1981-08-20 Calorimeter

Country Status (1)

Country Link
JP (1) JPS5832183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351479A (en) * 1986-08-21 1988-03-04 Dainippon Ink & Chem Inc Resin composition for coating compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351479A (en) * 1986-08-21 1988-03-04 Dainippon Ink & Chem Inc Resin composition for coating compound

Similar Documents

Publication Publication Date Title
Goodson et al. Prediction and measurement of the thermal conductivity of amorphous dielectric layers
Osburn et al. Dielectric breakdown in silicon dioxide films on silicon: I. Measurement and interpretation
CN101819074B (en) Diaphragm type heat-flow density sensor and manufacturing method thereof
Briand et al. Thermal optimization of micro-hotplates that have a silicon island
EP0617843A1 (en) Method of fabricating integrated infrared sensitive bolometers
Callard et al. Thermal conductivity of SiO2 films by scanning thermal microscopy
Towner et al. Aluminum electromigration under pulsed dc conditions
EP4102216A1 (en) Multi-dimensional multi-parameter gas sensor and manufacturing method therefor, and gas detection method
US20030037590A1 (en) Method of self-testing a semiconductor chemical gas sensor including an embedded temperature sensor
CN103698357B (en) A kind of thermal conductivity based on MEMS double-heater and thermal diffusion coefficient sensor
JPS5832183A (en) Calorimeter
TWI414031B (en) Evaluation Method of SOI Wafer
Alessandrello et al. Fabrication and low-temperature characterization of Si-implanted thermistors
JPH07119647B2 (en) Light intensity measuring device
JPS5775438A (en) Semiconductor element
KR20140118022A (en) Hydrogen gas sensor and method for manufacturing and controlling the same
EP3253176A1 (en) Thick film element coated with substrate and having high heat-conduction capability
Kleiner et al. Thermal conductivity of thin silicon dioxide films in integrated circuits
Filipovic et al. System-on-chip sensor integration in advanced CMOS technology
Fleetwood et al. Dielectric breakdown of thin oxides during ramped current-temperature stress
Takahashi et al. An improved transient hot‐wire method for studying thermal transport in condensed matter
Comizzoli Nondestructive, Reverse Decoration of Defects in IC Passivation Overcoats
RU2628677C1 (en) Thermoelectric generator manufacturing method
SU1191756A1 (en) Semiconductor temperature-sensitive element
Ashikhmina et al. Investigation of the conductivity of polycrystalline silicon under joule heating