JPS5832009A - Preparation of photosensitive material for electrophotography - Google Patents

Preparation of photosensitive material for electrophotography

Info

Publication number
JPS5832009A
JPS5832009A JP9804482A JP9804482A JPS5832009A JP S5832009 A JPS5832009 A JP S5832009A JP 9804482 A JP9804482 A JP 9804482A JP 9804482 A JP9804482 A JP 9804482A JP S5832009 A JPS5832009 A JP S5832009A
Authority
JP
Japan
Prior art keywords
layer
gas
substrate
image
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9804482A
Other languages
Japanese (ja)
Inventor
Yutaka Hirai
裕 平井
Toshiyuki Komatsu
利行 小松
Katsumi Nakagawa
中川 克巳
Teruo Misumi
三角 輝男
Tadaharu Fukuda
福田 忠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9804482A priority Critical patent/JPS5832009A/en
Publication of JPS5832009A publication Critical patent/JPS5832009A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Abstract

PURPOSE:To manufacture a photosensitive material for electrophotography, having an amorphous silicon photoconductive layer having high photosensitivity and durability, by forming a silicon layer on the surface of a substrate cleaned with glow discharge treatment. CONSTITUTION:The substrate 11 cleaned to a certain degree by chemical treatment is fixed with a fixing member 12 in the glow discharge evaporation chamber 10, which is evacuated as shown by the arrow A by opening the main valve 29. The surface of the substrate 11 is cleaned sufficiently by the glow discharge between the capacitance-type electrodes 15, 15' with the high frequency electrical source 14. Then proper amounts of Ar, SiH4 as raw material, and if necessary PH3 gas, etc. as impurities are fed to the chamber from the gas bombs 16, 17, 18 through the flow meters 19, 20, 21 to maintain the vacuum degree in the evaporation chamber to about 10<-2>-3Torr expressing in terms of the raw material gas pressure. The substrate 11 is heated at about 50-350 deg.C with the heater 13, and exposed to the glow discharge. By this procedure, the SiH4 is decomposed and Si is evaporated and deposited on the substrate 11 forming an amorphous silicon layer.

Description

【発明の詳細な説明】 本発明は、電子写真感光体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing an electrophotographic photoreceptor.

従来、電子写真感光体の光導電層を構成する光導電制別
としては、8e 、 CtlR、ZnO等の無機光導電
材料やポリーN−ビニルカルノζゾール(PVK)、)
リニトロフルオレノン(TNF)等の有機光導電材料(
opc)が一般的に使用されている。
Conventionally, photoconductive materials constituting the photoconductive layer of an electrophotographic photoreceptor include inorganic photoconductive materials such as 8e, CtlR, and ZnO, and poly-N-vinyl carno ζ sol (PVK).
Organic photoconductive materials such as linitrofluorenone (TNF) (
opc) is commonly used.

百年ら、これ等f)′yt、導へす、材料を(=lj月
1する電子写真感光体に於いては、未だ^n々の解決さ
れ得る可き点があって、ある程度の条件綴和をして、個
々の状況に応じて各々適当な電子写真感光体が使用され
ているのが実状である。
In electrophotographic photoreceptors that use materials such as Hyakunen, etc., there are still a number of points that can be solved, and certain conditions must be met. In reality, an appropriate electrophotographic photoreceptor is used depending on each individual situation.

例えば、  Seを光導電層形成材料とする電子写真感
光体は、Se単独では、その分光感度領域が狭いのでT
eやAsを添加して分光感度領域を拡げることが計られ
ている。
For example, in an electrophotographic photoreceptor using Se as a material for forming a photoconductive layer, Se alone has a narrow spectral sensitivity range, so T
Efforts have been made to widen the spectral sensitivity range by adding e or As.

百年ら、この様な、TeやAsを含むSe糸先光導電層
有する電子写真感光体は、確かに分光感度領域は改良さ
れるが、光疲労が大きくなる為に、同一原稿を連続的に
繰返しコピーすると複写画像の画像濃度の低下やバック
グランドの汚れ(カプリ)を生じたり、又、引続き他の
原稿をコピーすると前の原稿の画像が残像として複写さ
れる(ゴースト現像)等の欠点を有している。
Hyakunen et al., such an electrophotographic photoreceptor having a photoconductive layer at the tip of a Se thread containing Te and As certainly improves the spectral sensitivity range, but because the optical fatigue increases, the same original cannot be processed continuously. Repeated copying may cause a decrease in the image density of the copied image and background stains (capri), and if you continue copying other originals, the image of the previous original may be copied as an afterimage (ghost development). have.

而も、Ss、殊にAs 、 Teは人体に対して極めて
有害な物質であるので、製造時に於いて、人体への接触
が寿い様な製造装置を使用する工夫が必要であって、装
置への資本投下が著しく大きい。更には、製造後に於い
ても、光導電層が露呈していると、クリーニング等の処
理を受ける際、光導電層表面は直に摺擦される為に、そ
の一部が削り取られて、現像剤中に混入したり、複写機
内に飛散したり、複写画像中に混入したシして5人体に
接触する原因を与える結果を生む・・ 又、  Se系光導ttmは、その表面がコロナ放電に
、連続的に多数回繰返し晒されると、層の表面付近が結
晶化又は酸化を起して光導電層の電気的特性の劣化を招
く場合が少なくない。或いは又、光導電層表面が露呈し
ていると、静電潜像の可視化(現像)に際し、液体現像
剤を使用する場合、その溶剤と接触する為に耐溶剤性(
耐液現性)に優れていることが要求されるが、この点に
於いて、  Se系光導電層は必ずしも満足していると
は断言し離い。
However, since Ss, especially As and Te, are extremely harmful substances to the human body, it is necessary to devise ways to use manufacturing equipment that does not come into contact with the human body during manufacturing. The investment in capital is significantly large. Furthermore, if the photoconductive layer is exposed even after manufacturing, the surface of the photoconductive layer will be directly rubbed during cleaning and other treatments, and a portion of it will be scraped off, preventing development. If it gets mixed in with the agent, scatters in the copying machine, or gets mixed in with the copied image, it can cause contact with the human body.In addition, the surface of the Se-based photoguide TTM is susceptible to corona discharge. If the photoconductive layer is repeatedly exposed many times, crystallization or oxidation occurs near the surface of the layer, often resulting in deterioration of the electrical properties of the photoconductive layer. Alternatively, if the surface of the photoconductive layer is exposed, when a liquid developer is used to visualize (develop) an electrostatic latent image, it may come into contact with the solvent, resulting in poor solvent resistance (
However, it cannot be said that the Se-based photoconductive layer necessarily satisfies this requirement.

これ等の点を改良する為に、Se系光導電層の表面を、
所謂保護層や電気絶@層等と称される表面被覆層で覆う
ことが提案されている。
In order to improve these points, the surface of the Se-based photoconductive layer was
It has been proposed to cover the surface with a surface coating layer called a so-called protective layer or an electrically insulating layer.

百年ら、これ等の改良に関しても、先導thy*面被覆
層に要求されるML電気的特性表面性の点に於いて充分
力る解決が成されるとは云い難いのが現状である。
Even with these improvements made by Hyakuten et al., the current situation is that it is difficult to say that a sufficient solution has been achieved in terms of the ML electrical characteristics and surface properties required for the leading thy* surface coating layer.

父、別には、Fie系光導光導電層通常の場合真空蒸着
によって形成されるので、その為の装置への著しい資本
投下を必要とし且つ所望の光導電的特性を有する光導電
層を再現性曳く得る為には、蒸着温度、蒸着基板温度、
真空度、蒸着速度、冷却速度等の各種の制令パラメータ
ーを厳密に調整する必要がある。更に、表面被覆層は、
光導電層表面に、フィルム状のものを接着剤を介して貼
合するか、又は表面被覆層形成材料を塗布17て形成さ
れる為に、光導電層を形成する装置とけ別の装置を設置
する必要がある為、設備投資の著しい増大があって、昨
今の様な減速経済成長期に於いては甚だ芳しくない〇又
、Se系光導電層は、電子写真感光体の光導′t1cl
’、iとしての高暗抵抗を保有する為に、アモルファス
状態に形成されるが、Seの結晶化が約65℃と極めて
低い温度で起る為に、製造後の取扱い中に又は使用中罠
於ける周囲温度や画像形成プロセス中の他の部材との摺
擦による摩擦熱の影響を多分に受けて結晶化現像を起し
、暗抵抗の低下を招き易いという耐熱性上にも欠点があ
る。
Furthermore, FIE-based light-guiding photoconductive layers are usually formed by vacuum evaporation, which requires significant capital investment in equipment and does not reproducibly produce photoconductive layers with desired photoconductive properties. In order to obtain
It is necessary to strictly adjust various control parameters such as degree of vacuum, deposition rate, and cooling rate. Furthermore, the surface coating layer is
A separate device from the device for forming the photoconductive layer is installed because the photoconductive layer is formed by pasting a film-like material on the surface of the photoconductive layer with an adhesive or by applying a surface coating layer forming material 17. Because of the need to conduct
It is formed in an amorphous state in order to have a high dark resistance as ', i, but since Se crystallization occurs at an extremely low temperature of about 65°C, it cannot be trapped during handling after manufacture or during use. It also has a drawback in terms of heat resistance, in that it is highly affected by the ambient temperature and frictional heat caused by rubbing with other members during the image forming process, causing crystallization and development, which tends to lead to a decrease in dark resistance. .

一方、ZnO、CdS等を光導電層構成材料として使用
する電子写真感光体は、その光導電層がZnOやCdS
等の光導電材料粒子を適当な樹脂結着剤中に均一に分散
して形成されている。この所謂バインダー系光導電層を
有する電子写真感光体は、Se系光導電層を有する電子
写真感光体に較べて製造上に於いて有利であって、比較
的へ造コストの低下を計ることが出来る。即ち。
On the other hand, in electrophotographic photoreceptors that use ZnO, CdS, etc. as photoconductive layer constituent materials, the photoconductive layer is made of ZnO or CdS.
It is formed by uniformly dispersing photoconductive material particles such as in a suitable resin binder. An electrophotographic photoreceptor having this so-called binder-based photoconductive layer has advantages in manufacturing compared to an electrophotographic photoreceptor having an Se-based photoconductive layer, and can relatively reduce manufacturing costs. I can do it. That is.

バインダー系光導電層は、ZnOや(7d9の粒子と適
当力樹脂結着剤どを1渦な溶剤を用いて混練して調合し
た塗布液を適当な基板上に、ドクターブレード法、ディ
ッピング法等の塗布方法で塗布した後固化させるだけで
形成することが出来るので、Se系″/を導電層を有す
る電子写真感光体に較べ製造装置にそれ程の資本投下を
する。必要がないばかりか、製造法自体も簡便且つ容易
である。。
The binder-based photoconductive layer is prepared by applying a coating solution prepared by kneading ZnO or (7d9) particles and a suitable resin binder using a single vortex solvent onto an appropriate substrate, using a doctor blade method, dipping method, etc. Since it can be formed by simply applying it using the coating method described above and then solidifying it, a considerable amount of capital is invested in manufacturing equipment compared to an electrophotographic photoreceptor having a conductive layer made of Se-based materials. The method itself is simple and easy.

百年ら、バインダー系光導電層は、基本的に構成材料が
光導電材料と樹脂結着剤の二成分系であるし、且つ光導
電材料粒子が樹脂結着剤中に均一に分散されて形成され
ている特殊性の為に、光導電層の電気的及び光導電的特
性や物理的化学的特性を決定するパラメーターが多く、
斯かるパラメーターを厳密に調整しなければ所望の特性
を有する光導電層を再現性良く形成することが出来ずに
歩留シの低下を招き量産性に欠けるという欠点がある。
Hyakunen et al., a binder-based photoconductive layer is basically a two-component system consisting of a photoconductive material and a resin binder, and is formed by uniformly dispersing photoconductive material particles in the resin binder. Due to the specificity of the photoconductive layer, there are many parameters that determine its electrical and photoconductive properties as well as its physical and chemical properties.
Unless these parameters are precisely adjusted, a photoconductive layer having desired characteristics cannot be formed with good reproducibility, leading to a decrease in yield and a lack of mass productivity.

又、バインダー系光導電層は分散系という特殊性故に、
層全体がポーラスになっておシ、その為に湿度依存性が
著しく、多湿雰囲気中で使用すると電気的特性の劣化を
来たし、高品質の複写画像が得られなく々る場合が少な
くない。
In addition, because the binder-based photoconductive layer is a dispersion system,
The entire layer is porous and therefore highly dependent on humidity, resulting in deterioration of electrical characteristics when used in a humid atmosphere, often making it impossible to obtain high-quality copied images.

更には、光導電層のポーラス性は、現像の際の現像剤の
層中への侵入を招来し、離型性、クリ−ニング性が低下
するばかりか使用不能を招く原因ともなり、殊に、液体
現像剤を使用すると毛細管現象による促進をうけてその
キャリアー溶剤と共に現像剤が層中に侵透するので上記
の点は著しいものとなるのでS  Re系光導’flf
、層の場合と同様に光導電層表面を$4 in被覆層で
覆うことが必要となる。
Furthermore, the porous nature of the photoconductive layer causes developer to enter the layer during development, which not only reduces mold releasability and cleaning properties, but also causes unusability. When a liquid developer is used, the developer penetrates into the layer together with its carrier solvent due to the promotion of capillary action, and the above point becomes significant.
, it is necessary to cover the photoconductive layer surface with a $4 in coating layer as in the case of the photoconductive layer.

百年ら、との表面被櫟層を設置#)る改良も、光導電層
のポーラス性に起因する光導電層表面の凹凸性故に、そ
の界面が均一にならず、光導電層と表面被穆層との接着
性及び電気的接触性の良好な状態を得る事が仲々困難で
あるという欠点が存する。
The improvement by installing a surface coating layer with Hyakunen et al. also resulted in an uneven interface between the photoconductive layer and the surface coating due to the unevenness of the surface of the photoconductive layer caused by the porous nature of the photoconductive layer. The disadvantage is that it is difficult to obtain good adhesion and electrical contact with the layer.

又、CdSを使用する場合には、 CdS自体の人体へ
の影響がある為に、製造時及び使用時に於いて、人体に
接触したり、或いは周囲fj7境下に飛散したりするこ
とのない様にする必要がある。
In addition, when using CdS, since CdS itself has an effect on the human body, care must be taken to prevent it from coming into contact with the human body or scattering into the surrounding area during manufacturing and use. It is necessary to

ZnOを使用する場合には、人体に対する影響は殆んど
ないが、 ZnOバインダー系光導電層tま光感度が低
く、分光感度領域が狭い、光疲労が著又、最近注目され
ているPVKやTNF等の有機光導電材料を使用する電
子写真感光体に於いては、表面が導電処理されたポリエ
チレンテレフタレー)・等の適当な支持体上にPVKや
TNF等の有機光導電材料の塗膜を形成するだけで光導
電層を形成出来るという製造上に於ける利点及び可撓性
に長けた電子写真感光体が製造出来るという利点を有す
るものであるが、他方に於いて、耐湿性、閉コロナイオ
ン性、クリーニング性ニ欠け、又、光感度が低い、分光
感度領域が狭くl土つ短波長側に片寄っている等の欠点
を有し、極限定された範囲でしか使途に供されてい力い
When using ZnO, there is almost no effect on the human body, but ZnO binder-based photoconductive layers have low photosensitivity, a narrow spectral sensitivity range, significant optical fatigue, and PVK and other materials that have recently been attracting attention. In an electrophotographic photoreceptor using an organic photoconductive material such as TNF, a coating film of the organic photoconductive material such as PVK or TNF is coated on a suitable support such as polyethylene terephthalate whose surface is conductively treated. This method has the advantage in production that a photoconductive layer can be formed by simply forming a photoconductive layer, and that an electrophotographic photoreceptor with excellent flexibility can be manufactured. It has drawbacks such as corona ionicity, lack of cleaning properties, low photosensitivity, and a narrow spectral sensitivity range biased towards short wavelengths, so it can only be used in a very limited range. Powerful.

然も、これ等の有機光導電材料の中には発癌性物質の疑
いがあるものもある等、人体に対して全く無害であると
いう保証がなされていない。
However, some of these organic photoconductive materials are suspected of being carcinogenic, and there is no guarantee that they are completely harmless to the human body.

この様に、笥1子写真感光体の光導電層形成材料として
従来から指摘されている光導電材料を使用した電子写真
感光体は、利点と欠点を併せ持つ為に、ある程度、製造
条件及び使用条件を緩和して、各々の使途に合う適当な
11¥、子写真感光体を各々に選択して実用に供してい
るのが現状である。
As described above, electrophotographic photoreceptors using photoconductive materials, which have been pointed out as photoconductive layer forming materials for photoreceptors, have both advantages and disadvantages, and therefore have certain manufacturing and usage conditions. The current situation is to relax the standards and select an appropriate 11 yen secondary photoreceptor suitable for each purpose for practical use.

本発明は、上記の諸点に鑑み成されたもので製造時に於
いては、装置のクローズドシステム化が容易に出来るの
で、人体に対する悪影響を避は得ることが出来、父、一
端製造されたものは使用上に際し、人体ばかりかその(
10の生物、更には自然環境に対して影響がなく無公害
であって、耐熱性、耐湿性に潰れ、電子′lJ爽特44
1が常時安定していて、殆んど使用埴境に限定を受けな
い全環境型であり、耐光疲労、耐コロナイオン性に著し
く長け、繰返し使用に際しても劣化現象を起さない電子
写真感光体の製造法を提供することを主たる目的とする
The present invention has been made in view of the above points, and since the device can be easily made into a closed system during manufacturing, it is possible to avoid harmful effects on the human body. When using it, not only the human body but also its (
It is non-polluting and has no impact on 10 living things or the natural environment, is heat resistant and moisture resistant, and is an electronic 'lJ refreshing special 44.
1 is an electrophotographic photoreceptor that is stable at all times, can be used in all environments with almost no restrictions on usage conditions, has excellent light fatigue resistance and corona ion resistance, and does not cause deterioration even after repeated use. The main purpose is to provide a manufacturing method for.

本発明の他の目的は、濃度が高く、)・−7トーンが鮮
明に出て且つ解像度の高い、高品質画像を得る手が容易
に出来るTit子写真感光体の製造法を提供することで
ある。
Another object of the present invention is to provide a method for manufacturing a photoreceptor that can easily produce high-quality images with high density, clear -7 tones, and high resolution. be.

本発明のもう一つの目的は、光感度が高く且つ分光感度
領域が略々全可視光域を穏っでいて広範囲であって光応
答性も速く、且つ耐摩耗性。
Another object of the present invention is to have high photosensitivity, a wide range of spectral sensitivity that covers almost the entire visible light range, fast photoresponsiveness, and wear resistance.

クリーニング性、耐溶剤性に優れた電子写真感光体の製
造法を提供することでもある。
Another object of the present invention is to provide a method for producing an electrophotographic photoreceptor having excellent cleaning properties and solvent resistance.

本発明の所期の目的は光導電層を主にアモルファスシリ
コン(以後a −Siと略記する)で形成する際に、予
め光導電層を設ける支持体表面をグロー放′「Lに晒す
ことによって達成される。
The intended purpose of the present invention is to form a photoconductive layer mainly of amorphous silicon (hereinafter abbreviated as a-Si) by exposing the surface of the support on which the photoconductive layer is to be provided to glow radiation 'L' in advance. achieved.

a −Si膜は、開発初期のころは、その製造法や製造
条件によって、その構造が左右される為に種々の17i
t気的特性・光学的特性を示し、再現性の、Qに大きな
問題を抱えていた。例えば、初jυ1に於いて、真空蒸
着法やスパッタリング法で形成されたa −Si l換
は、ボイド等の欠陥を多量に菖−んでいて、その為に電
気的性質も光学的性質も大きく影響を受け、基礎物性の
研究材料と17でもそれ程注目されてはいす、応用の為
の研究開発もなされなかった。百年ら、アモルファスで
はp、n制御が不=T能とされていたのが、3−81に
於いて、1976年初頭にアモルファスとしては初めて
p −n接合が実現しイひるという報告(App71i
d Physic++ T、etter i Vog 
28゜A;2 、15 January 1.976 
)が成されて以来。
In the early stages of development, the structure of a-Si film was influenced by its manufacturing method and manufacturing conditions, so various types of 17i were used.
It exhibited t-temperature characteristics and optical characteristics, and had a major problem in reproducibility and Q. For example, in the first jυ1, the a-Si I formed by vacuum evaporation or sputtering has a large amount of defects such as voids, which greatly affects its electrical and optical properties. Although it received much attention as a research material for basic physical properties, no research and development was conducted for its application. It was reported in 3-81 that p-n junction was realized for the first time in amorphous material in early 1976 (App71i).
d Physics++ T, etter i Vog
28゜A; 2, 15 January 1.976
) since it was completed.

大きな関心が集められ、以後上記の不純物のドーピング
によってp −n接合が得られることに加えて結晶性シ
リコン(c  Siと略記する)では非常に弱いルミネ
センスがa −8iでは高効率で観測されるという点か
ら、主として太陽電池への応用に研究開発力がtF、か
れて米ている。
A great deal of interest was gathered, and since then, in addition to the fact that a p-n junction can be obtained by doping with the impurities mentioned above, very weak luminescence has been observed in crystalline silicon (abbreviated as cSi) with high efficiency in a-8i. From the point of view of tF, research and development capabilities are mainly focused on applications to solar cells.

この様に、これ迄に報告されているn −3i 11t
Aは、太陽電池用として開発されたものであるので、そ
の電気的特性・光学的特性の点に於いて、電子写真感光
体の光導電層としては使用し得えないのが実状である。
In this way, the n −3i 11t reported so far
Since A was developed for use in solar cells, the reality is that it cannot be used as a photoconductive layer of an electrophotographic photoreceptor due to its electrical and optical properties.

即ち、太lvJ′f1″L池は、太陽エネルギーを電流
の形に変換[7て取り出すので8N比が良くて、効率良
く電流を取り出すには、a −Si pの抵抗は小さく
なければならないが。
In other words, the thick lvJ'f1''L pond converts solar energy into the form of current [7], so it has a good 8N ratio, and in order to extract current efficiently, the resistance of a-Si p must be small. .

余り抵抗が少さ過ぎると光感度が低下し、SN比が悪く
なるので、その特性の一つとしての抵抗は10’〜10
8Ω・m程度が要求される。
If the resistance is too small, the photosensitivity will decrease and the S/N ratio will deteriorate, so one of the characteristics is that the resistance should be between 10' and 10'.
A resistance of about 8Ω·m is required.

百年ら、この程度の抵抗(暗抵抗:暗所での抵抗)を有
するa−8+膜は、電子写真感光体の光導電層としては
、余シにも抵抗(暗抵抗)が低(過ぎて、現在、知られ
ている電子写真法を適用するのでは全く使用し得ない。
Hyakunen et al. have found that the a-8+ film, which has this level of resistance (dark resistance: resistance in the dark), has an even lower (too low) resistance (dark resistance) as a photoconductive layer of an electrophotographic photoreceptor. , it cannot be used at all by applying currently known electrophotographic methods.

又、電子写真感光体の光導電層形成材料として←j:、
明抵抗(光照射時の抵抗)が暗抵抗に較べて2〜4桁程
度小さいことが要求されるが、従来、報告されているa
 −Si膜では精々2桁程度であるので、この点に於い
ても従来のa−8+膜では、その特性を充分満足し得る
光導電層とけ成り得なかった。
Also, as a photoconductive layer forming material for electrophotographic photoreceptors ←j:,
The bright resistance (resistance when irradiated with light) is required to be about 2 to 4 orders of magnitude smaller than the dark resistance, but conventionally reported a
Since the -Si film has a photoconductive layer of about two digits at most, the conventional a-8+ film could not provide a photoconductive layer that satisfactorily satisfies this characteristic.

又、別には、とれ迄のaS+膜に関する報告では、暗抵
抗を増大させると光感度が低下し、例えば、暗抵抗が=
 1o10Ω・mでの@ −Si膜では、光抵抗も同程
度の値を示すことが示されているが、この点に於いても
、従来のa  S1膜は電子写真感光体の光導電層とは
成り得々かった。
In addition, in other reports on aS+ films by Tore, increasing the dark resistance decreases the photosensitivity; for example, when the dark resistance =
It has been shown that the photoresistance of the @-Si film at 10Ω・m is about the same, but in this respect as well, the conventional aS1 film is inferior to the photoconductive layer of an electrophotographic photoreceptor. could have happened.

更1c b電子写真感光体の光導電層として要求される
上記以外の他の要件、例えば、静電的特性。
Furthermore, other requirements other than the above required for the photoconductive layer of the electrophotographic photoreceptor, such as electrostatic properties.

耐コロナイオン性、耐溶剤性、面j光疲労性、面1湿性
、耐熱性、l1li4塵耗性、クリーニング性等の点に
於いては、従来全く未知数であった。。
Conventionally, the properties such as corona ion resistance, solvent resistance, photofatigue resistance on surface J, humidity on surface 1, heat resistance, abrasion resistance on l1li4, and cleaning properties were completely unknown. .

本発明は、a−8iに就て1b;子′υ真真先光体光導
電層への応用という観点から総括的に鋭意研究検討を続
けた結果B−8tでもある特定の3−8】であれば、電
子写真感光体の光導市1層形成材料として充分使用し得
るばかりでなく、従来の電子写真感光体の光導電層形成
材料と較べてみても殆んどの点に於いて極めてRM4し
ていることを見出した点に基いている。
The present invention is based on a specific 3-8, which is also B-8t, as a result of comprehensive and intensive research and study on a-8i from the viewpoint of its application to a photoconductive layer of a photoconductive layer. If so, it can not only be used satisfactorily as a material for forming the photoconductive layer of electrophotographic photoreceptors, but also has an extremely low RM4 in most respects when compared with materials for forming the photoconductive layer of conventional electrophotographic photoreceptors. It is based on what we have discovered.

//′ 7/′ i 、’−”” 、7′ 7、■ %−、、7−L、゛ /″ // 、/ 7、/ 本発明の電子写真感光体の最も代表的な構成例が第1図
及び第2図に示される。第1図に示される電子写真感光
体1は、支持体2.主にa−8t  から成る光導電層
3から構成され、光導電層3け像形成面となる自由表面
4を有している。
//'7/'i,'-'''',7'7,■ %-,,7-L,゛/''//,/7,/ Most typical structural example of the electrophotographic photoreceptor of the present invention is shown in FIGS. 1 and 2. The electrophotographic photoreceptor 1 shown in FIG. It has a free surface 4 that serves as a forming surface.

支持体2としては、導電性でも電気絶縁性であっても良
い。導電性支持体としては、例えば、ステンレス+ A
tt Cr+ Mo 、Au、 Ir、Nb、 Ta、
、 y 。
The support 2 may be electrically conductive or electrically insulating. As the conductive support, for example, stainless steel + A
tt Cr+ Mo, Au, Ir, Nb, Ta,
, y.

Ti l Pt、 Pd  等の金属又はこれ等の合金
が挙げられろ。電気絶縁性支持体としては、ポリエステ
ル、ボリエ、チレン、ポリカーボネート、セルローズト
リアセテート、ポリプロピレン、ポリ塩化ビニル、ポリ
塩化ビニリデン、ポリスチレン、ポリアミド等の合成樹
脂のフィルム又はシート、ガラス、セラミック、紙等が
通常使用される。これ等の電気絶縁性支持体は、好適に
は少なくともその一方の表面を導電処理されるのが望)
しい。
Examples include metals such as TiIPt and Pd, or alloys thereof. As the electrically insulating support, films or sheets of synthetic resins such as polyester, bolier, tyrene, polycarbonate, cellulose triacetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramic, paper, etc. are usually used. be done. It is desirable that at least one surface of these electrically insulating supports is conductively treated.)
Yes.

例えば、ガラスであればInt Os +  Snow
等でその表面が導電処理さ力、或いはポリエステルフィ
ルム等の合成樹脂ライlレムであれば、At。
For example, if it is glass, Int Os + Snow
If the surface is conductive treated or made of synthetic resin film such as polyester film, At.

Ag + Pb 、Zn HN+ 、Au等の金属で1
〔空蒸メ゛1処1’jlし、又は前記金属でラミネート
処理し7て、その表面が導電処理される。支持1本の形
状としては、円筒伏、ベルト状、板状等、任;背の11
4状と12得、所望によって、その形状←l決定さl′
15るが、連続高速複写の場合には、無端ベルト伏又は
円筒状とするのが“イ!ましい。支持体の厚さVl、所
望通りの電子写真感光体が形成される様に適宜決定され
るが、電子写真感光体として可ffp性が要求される場
合には、支持体とし、ての機(ilF’、が充分発揮さ
れる範囲内であれば、可能な限り薄くされる。百年ら、
この様な場合、支持体の製費上及び取1及い上、機械的
強1イ(・等の点かC)、通常は、10μ以上とされる
1 with metals such as Ag + Pb, Zn HN +, Au, etc.
[The surface is subjected to conductive treatment by air steaming or laminating with the metal. The shape of one support can be cylindrical, belt-shaped, plate-shaped, etc.;
4-shaped and 12-shaped, the shape ←l is determined by the request l'
However, in the case of continuous high-speed copying, it is preferable to use an endless belt or a cylindrical shape.The thickness Vl of the support is determined as appropriate so that the desired electrophotographic photoreceptor is formed. However, when flexible ffp properties are required as an electrophotographic photoreceptor, the support is made as thin as possible within the range where the ilF' is sufficiently exhibited. and others,
In such a case, the mechanical strength of the support is usually 10μ or more for reasons of production costs and considerations.

a−8i系光導’ttt層3け、支持体21−に、グロ
ー放電法、スパッタリング法、イオンインプランテーシ
ョン法等によって形成される。これ等の製造法は、製造
東件、設備資本投下の負荷稈望される電子写真特性等の
要因によって適宜選択されて採用されるが、所望する電
子写真特性を有する電子写真感光体を製造する為の制御
が1)、岐的゛谷易である、特性を制御する為にa−3
i層中に不純物を導入するのに、置換型で■族又けV族
の不純物を導入することが出来る等の利点からグロー放
電法が好適に採用される。更に、本発明に於いては、グ
ロー放電法とスパッタリング法とを同一系内で併用して
a−8i層を形成すAのけ極めて有効な方法であって効
果的であるO 8 81系光導電層3は、その暗抵抗が、電子写真感光
体の光導電層に要求される値を満足す可く、例えば、■
■をドーピングして制御させる。
Three a-8i light guide 'ttt layers are formed on the support 21 by a glow discharge method, a sputtering method, an ion implantation method, or the like. These manufacturing methods are selected and adopted as appropriate depending on factors such as manufacturing requirements, equipment capital investment load, desired electrophotographic characteristics, etc., but they are suitable for manufacturing electrophotographic photoreceptors having desired electrophotographic characteristics. A-3 to control the characteristics is 1)
In order to introduce impurities into the i-layer, the glow discharge method is preferably employed because of its advantages such as being able to introduce impurities of group (I) or group V by substitution. Furthermore, in the present invention, O 8 81-based light is an extremely effective method of forming an a-8i layer by using a glow discharge method and a sputtering method in the same system. The conductive layer 3 has a dark resistance that satisfies the value required for a photoconductive layer of an electrophotographic photoreceptor, for example,
■ Control by doping.

a  S+系先光導電層3のHのドーピングは、光導電
層3を形成する際、装置系内に5iT(< 、5itH
a等の化合物又はT(、の形で導入した後熱分解、グロ
ー放電分M等の方法によって、それ等の化合物又け1[
、を分Wr して、a−St層中に、層の成長に併せて
ドーピングしてイ)](いし、又は、イオンインプラン
テーション法でドーピングしても良い。
a The H doping of the S+-based photoconductive layer 3 is such that when forming the photoconductive layer 3, 5iT (< , 5itH
After introducing compounds such as a or T(,), such compounds can be added to 1 [
, and doped into the a-St layer as the layer grows. Alternatively, doping may be performed by ion implantation.

本発明者等の知見によねげ% a  Fl!糸尤糸車導
電層3中Hのドーピング)it“け、ハク成されたa−
8i層が電子写真感光体の光導電層として適用され得る
か否かを左右する大へな要因の一つであって極M)で重
要であることが判明している。
According to the knowledge of the present inventors, % a Fl! (H doping in the spinning wheel conductive layer 3)
It has been found that the 8i layer is one of the major factors that determines whether or not it can be applied as a photoconductive layer of an electrophotographic photoreceptor, and is extremely important.

本発明に於いて、形成さり、るaS+層が電子写真感光
体の光導電層として充分適用させ得る為には、a  8
1層中にドーピングされろHのNlは通常の場合10〜
40atomicチ、好適に0.15〜30 atom
ic%とされるのが1m−+しい□ a−81層中への
Hのドーピング骨が一ヒ妃の数値範囲に限定される理由
の理論的裏付1今の処、明確にされておらず推論の域を
出ない。百年ら、数多くの実験結果から、」−記数値範
囲外のHのドーピング量では、例えば、電子写真感光体
の光導電層としては暗抵抗が低I過ぎる、光感度が極め
て低い又は場合によって幻、光感度が殆んど認められな
い、光照射によるキャリアーの増加が小さい等が認めら
れ、Hのドーピング量が上記の数値範囲内にあるのが必
要条件であることが裏付けられている。a−3i層中に
■(をドーピングするには、例えば、グロー放電法によ
って、nF)1層を形成する場合には、a−8iを形成
する出発物質が5iTT、 、 5itHe等の水素化
物を使用すZ、ので、5iTT、 、 5iJTs等の
水素化物が分解してB、  Si層が形成される際、■
は自動的に層中にドーピングされるが、Hの層中へのド
ーピングを一層効率良く行なうには、a−8i層を形成
する際に、グロー放電を行なう系内にH,ガスを導入し
てやれば良い。
In the present invention, in order for the aS+ layer to be formed to be sufficiently applicable as a photoconductive layer of an electrophotographic photoreceptor, a8
Normally, Nl of H doped into one layer is 10~
40 atoms, preferably 0.15 to 30 atoms
ic% is 1m-+ □ A-81 Theoretical support for the reason why the H doping bone in the layer is limited to the numerical range of Ichihihi 1 At present, it has not been clarified. It is beyond the realm of speculation. Hyakunen et al. have found from numerous experimental results that if the amount of H doped is outside the numerical range, for example, the dark resistance will be too low for the photoconductive layer of an electrophotographic photoreceptor, the photosensitivity will be extremely low, or in some cases it will be phantom. , almost no photosensitivity was observed, and a small increase in carriers due to light irradiation was observed, supporting that it is a necessary condition that the amount of H doping be within the above numerical range. In order to dope the a-3i layer with nF, for example, by a glow discharge method, when one layer is formed, the starting material for forming the a-8i is a hydride such as 5iTT, , 5itHe, etc. Since hydrides such as 5iTT, , and 5iJTs are decomposed to form B and Si layers, ■
is automatically doped into the layer, but in order to dope H into the layer more efficiently, H gas should be introduced into the glow discharge system when forming the a-8i layer. Good.

スパッタリング法による場合にはAr等の不活性ガス又
はこれ等のガスをベースとした混合ガス雰囲気中でSi
をターゲットとしてスパッタリングを行々う際にH,ガ
スを導入してやるか又はSl ’H4+ S 1 di
n等の水素化硅素ガス、或いは、不純物のドーピングも
兼ねて13tH6,PHs等のガス□を導入してやれば
良い。
When using the sputtering method, Si is deposited in an atmosphere of an inert gas such as Ar or a mixed gas based on these gases.
When performing sputtering using the target as a target, H gas is introduced or Sl 'H4+ S 1 di
It is sufficient to introduce a silicon hydride gas such as n, or a gas □ such as 13tH6, PHs which also serves as impurity doping.

a−8+層中にドーピングする】[の叶をa制御するに
は、蒸着基板温度又は/及O:’ T(をドーピングす
る為に使用される出光!If/〕17↓の賃置糸内−1
導入する量分−市1]旬11シでやれば1″、しい。四
に1.J:、a−8ij・hを形成した後に、該層を活
()1化1〜プ(4水つ)4゛昏凹気中に晒しても良い
。又、この時R−81層を結晶化温度以下で加熱するの
も一つのJl法である。
doping into the a-8+ layer】[to control the deposition substrate temperature or/and O:' -1
Amount to be introduced - City 1] If you do it with 11 sheets, it will be 1". After forming 1.J:, a-8ij/h, activate the layer () 4) It is also possible to expose the R-81 layer to a concave atmosphere. Also, one Jl method is to heat the R-81 layer at a temperature below the crystallization temperature.

a  S+層d−1先(ICも/II1.l!J]た2
1.kに、製造時の不純物のドーピングによってit:
 (llにしイ:1、又そ”の伝導型を制(1+、ll
することが出・46ろので、作成した電子写其感光(J
−に静電像を形成する除の帯Ttffの極性を■O任意
に選択し得るという利点4・有する。
a S+ layer d-1 (IC also/II1.l!J) 2
1. k by doping with impurities during manufacturing:
(ll ni ii: 1, also controls the conduction type (1+, ll
Since there was nothing to do, I created an electrophotographic photosensitive (J
Advantage 4: The polarity of the stripping band Ttff that forms an electrostatic image on - can be arbitrarily selected.

この利点v;1、従来の、例えば、88糸’/(、、’
jノ、’t’s、層であると、層を形成する際の、例え
61゛、基板温度、不純物の種類やそのドーピング方法
1等の製造条件の如Tij’によってもP型か又ケ、1
梢ky(外型(i型)が出来る程度であり、而も■)型
を形成するにも基板温度の制御を厳密に行なう必費があ
るというのに較べて遥かにFI8”゛ており好都合でa
SZ層中にドーピングされる不純物としてはm FI 
 S1層をP型にするには、周期律表第■族Aの元素、
例えば、B + A−1r Ga +  In、Tt等
がij(適かものとして必げられ、nバlIKする場合
には、周期律表第■族Aの元素、例えば、N。
This advantage v; 1, conventional, for example, 88 yarn'/(,,'
If it is a layer, it may be P type or case depending on the manufacturing conditions such as 61゛, substrate temperature, type of impurity, doping method 1, etc. ,1
Compared to the fact that it is necessary to strictly control the substrate temperature in order to form a treetop ky (outer mold (i-type), and also ■) mold, the FI8 is much more convenient. Dea
The impurity doped into the SZ layer is m FI
In order to make the S1 layer P-type, an element of group A of the periodic table,
For example, B + A-1r Ga + In, Tt, etc. are required as appropriate, and when n is used, an element of group Ⅰ A of the periodic table, such as N.

P HAs l Sb HBl # カ好適−trもの
とし−c挙げらλ]る。とれ等の不純物はS FL  
S1層中に含有さJlろ−111がT)I)mオーダー
であるので、光導電層を構成する主物質程その公害性に
注意を払う必要V1ないが、出来る限り公害性のないも
のを使用するのが好t t、い。この様な観点からすれ
ば、形成されるa−8i系先光導電の電気的・光学的特
に1を加味して、例えば、B、As、P、Sb等が11
y滴である。
P HAs l Sb HBl # Preferred-tr-c enumerated λ]. Impurities such as cracks are S FL
Since the Jlro-111 contained in the S1 layer is on the order of T)I)m, it is not necessary to pay as much attention to its pollution potential as the main material constituting the photoconductive layer, but it is necessary to use a material that is as non-pollutant as possible. I like to use it. From this point of view, considering the electrical and optical properties of the a-8i-based photoconductor to be formed, for example, B, As, P, Sb, etc.
It is y drops.

asjll’j中にドーピングされる不純物の量は、所
望さJl、る電気的・光学的特性に応じて適宜決定され
るが、周期律表第1II族Aの不純物の場合にけ、11
f1常10 ’ 〜] O−30−3ato% +好適
には10−5〜10−40−4atn係9周期律表第■
族Aの不純物の場合には、i+II常1 (1−8〜1
 (1−5atomic%+りf適に610 〜1 (
l  atomic’%  どされるのが11]=まし
い。
The amount of impurity doped into asjll'j is appropriately determined depending on the desired electrical and optical properties.
f1 always 10' ~] O-30-3ato% + preferably 10-5 to 10-40-4atn 9th periodic table ■
In the case of group A impurities, i+II usually 1 (1-8 to 1
(1-5 atomic% + 610 ~ 1 (
l atomic'% 11]=preferably.

これ等不純物のaS+層中へのドーピング方法は、a 
 Si層を形成する際にli′、川;ff J)、る(
[、i/lj法によって各々異なるものであって、其体
的には、以降の説明又は実施例に於いて詳述ざねる。
The method of doping these impurities into the aS+ layer is a
When forming the Si layer, li′, river; ff J), ru(
[, i/lj method, and will not be explained in detail in the following description or examples.

第1図に示さ第1.る甫、子’l¥ IG感光体のfi
llき、a−8+系光4電層3が自由表面44・有17
、該自由表面4に、静電像形成の為の帯′71f、処■
11!が施される電子写真感光体に於いてはs fl 
 S I系光導電層3と支持体2との間に、静1に像形
成の際の帯電処理時に支持体2側からのギヤリアーの注
入を阻止する働きのある障壁層分設けるのが一層好まし
いものである。この様な働きのある障壁層を形成する材
料としては、’AJI<されろ支持体の種類及び形成さ
t]るa−8+系光導屯層の’+lf、気的特性に応じ
て適宜選択されて1商当なものが使用される。その様な
障壁層形成材料とl〜で幻、例えば、Au、 Ir、 
Pt、 Rh、 Pd、 Mo等であり、支持体として
は、例えば、障壁層形成材料がAuの場合には、At等
が好適なものとして挙げられる。
1 shown in FIG. Rufu, child'l¥ IG photoconductor fi
ll, the a-8+ photovoltaic layer 3 has a free surface 44 and 17
, the free surface 4 is provided with a band '71f for electrostatic image formation, a treatment
11! In electrophotographic photoreceptors to which s fl
It is more preferable to provide a barrier layer between the S I-based photoconductive layer 3 and the support 2, which functions to prevent the injection of gear from the support 2 side during charging processing during image formation. It is something. The material for forming the barrier layer having such a function is appropriately selected depending on the type of support and the type of a-8+ optical guiding layer and the chemical characteristics. A suitable product will be used. With such barrier layer forming materials, for example, Au, Ir,
Examples of the support include Pt, Rh, Pd, Mo, etc., and when the barrier layer forming material is Au, for example, At is suitable.

R,−8i系先光導電の層厚としては、所望されるFr
[L子写真特性及び使用条件、例えば、可撓性が要求さ
れるか否か等に応じて適宜決定される−て・・ もの〆あるが、通常の場合5〜80μ、好適に乞110
〜70μ、最適には10〜50μとされ為のが望才しい
The layer thickness of the R, -8i-based photoconductor is as follows:
[The thickness is determined as appropriate depending on the photographic characteristics and conditions of use, such as whether flexibility is required, etc. Although there are limitations, it is usually 5 to 80μ, preferably 110μ.
~70μ, optimally 10-50μ.

第1図に示す如きS a  Sl系光導電層表面が露呈
1〜でいる層構成の電子写真感光体に於いては、a−3
i膜の屈折率が約3.35と比較的大きいので、従来の
光導電層と較べて、露光の際、光導電層表面で光反射が
起り易く、従って、光導fli層に吸収される光量の割
合が低下し、光損失率が大きくなる。この光損失率を出
来る限り減少させるには、a−8i系先光導電上に反射
防止層を設けると良い。
In an electrophotographic photoreceptor having a layer structure in which the surface of the S a Sl photoconductive layer is exposed as shown in FIG.
Since the refractive index of the i film is relatively high at approximately 3.35, light reflection occurs more easily on the surface of the photoconductive layer during exposure compared to conventional photoconductive layers, and therefore the amount of light absorbed by the photoconductive layer decreases. The ratio of light loss decreases, and the light loss rate increases. In order to reduce this optical loss rate as much as possible, it is preferable to provide an antireflection layer on the a-8i photoconductive layer.

反射防止層の形成材料としては、a−8i系光導′Fl
f層に悪影響を与えないこと及び反射防止特性に優れて
いるという条件の他に、更に電子写真的特性、例えば、
ある程度以上の抵抗を有すること、液体It’)、 i
゛や法を採用寸Z) J5合に11、耐清剤性に優ねて
いるとと、jJj−にけ1ゾHIIH+1−1t・iる
・・形成する条件内で、既に形成さジ1ているQ−8I
系先光導電のIl′¥性を低下さ−)トない事1q+7
)イ・件が要求される。
As the material for forming the antireflection layer, a-8i light guide 'Fl
In addition to the conditions of not having an adverse effect on the f-layer and having excellent antireflection properties, further electrophotographic properties, such as
Having a certain level of resistance, liquid It'), i
11 for J5, has excellent detergent resistance, and has already been formed within the conditions of formation. Q-8I
The Il′ property of the photoconductivity of the system destination should not be reduced.1q+7
) A/item is required.

更に又、反射防1ヒを効q1的にするに(r、i % 
17i1Φな光学的計算から分かる様に反射防11−8
層It’<成材料を、その屈折率が、a  E>1層の
化1斤層と′空気の1fi(折率との間に在る様に〕ン
ク択す/、と白い。父、その層厚はλ/4v’i’Xは
、針のにγ数(1゛?とすると良いが、反射防止層自体
の)L吸収4r考對るとλ/ 4−j−nとするのが最
適であ/)n(但し、nはa、  Si層の111(折
率、λfqt、 tJ’lr 尤尤の波長である。) この様々光学的条件を加味すれば、反射防止層の層厚け
、露光光の波長が略々呵視尤の波長域にあるものとして
、50〜1 n Omllとさ、11、るのが好適であ
7)。
Furthermore, to make the anti-reflection 1 effect q1 (r, i %
As can be seen from the optical calculation of 17i1Φ, the reflection resistance is 11-8.
The layer It' is selected such that its refractive index is between the layer of a E>1 layer and the 1fi (refractive index of air).Father, The layer thickness is λ/4 v'i' /)n (where n is a, 111 of the Si layer (refractive index, λfqt, tJ'lr is the likely wavelength.) Taking these various optical conditions into account, the antireflection layer It is preferable that the thickness is 50 to 1 nm, assuming that the wavelength of the exposure light is approximately in the visible wavelength range7).

本発明に於いて、反射防止層形成H月として有効に使用
されろものとり、ては、例えば、MgF、。
In the present invention, materials that can be effectively used for forming an antireflection layer include, for example, MgF.

5101 TatOv l AI−F3 ・3NaF等
の無機弗化物や無機酸化物、或いはポリ塩化ビニル、ポ
リアミド樹脂、ポリイミド樹脂、弗化ビニリデン、メラ
ミン樹脂、エボギン樹脂、フェノール樹脂、酢酸セルロ
ース等の有機化合物が挙げられる。
Examples include inorganic fluorides and inorganic oxides such as 5101 TatOv l AI-F3 and 3NaF, or organic compounds such as polyvinyl chloride, polyamide resin, polyimide resin, vinylidene fluoride, melamine resin, Evogin resin, phenol resin, and cellulose acetate. It will be done.

第1図に示される電子写真感光体1は、a−8t系先光
導電3が自由表面4を有する構成のものであるが、a 
 Ss系光導電層3表面上には従来のを)る欅の電子写
真感光体の様に、保護層や電気的絶縁層等の表面被覆層
を設けても良い。
The electrophotographic photoreceptor 1 shown in FIG.
A surface coating layer such as a protective layer or an electrically insulating layer may be provided on the surface of the Ss-based photoconductive layer 3, as in the case of a conventional zelkova electrophotographic photoreceptor.

その様な表面被覆層を有する電子写真感光体がすf52
図に示される。
An electrophotographic photoreceptor having such a surface coating layer f52
As shown in the figure.

第2図に示される電子写真感光体5は、a−8i系先光
導電5−ヒに表面被覆層8を有する点以外V)、構成」
−に於いて、第1図に示される電子写真感光体1と本質
的に異なるものではないが、表面″f1り削屑8に要求
される特性は、適用する電子写真プロセスによって各々
異なる。即ち、例えば、特公昭42−23910号公報
、同43−24748号公報に記載さ−ね7ている様な
電子写真ブ1]土スを適用するのであれば、表面を皮1
′0層8は、電気的絶、練性であって、帯’Fl(処理
を受けた際の静′醒荷保持能が光分あって、ある程度以
上のJIJ7みがあることが弗求されるが、例えばカー
ルソンプロセスの如き′直子写Mf、−プロセスを適用
1するのであれば、静電像形成後の四部の電位r1非常
に小さいことが望−+Lいのでと面被寺”0層8の厚さ
としては非常に薄いことが要求さ′ILる。表面41ν
覆層8け、その所望される市気菌!1¥件を満足するの
に加えて、  a−3ii光導電層に化′を的・物理的
に悪影響を与え寿いこと、a  Si系光導′11子層
との電気的絶縁層及び吸着性、μfには耐IW性、耐摩
耗性、クリーニング性等を考慮し−C形b15される。
The electrophotographic photoreceptor 5 shown in FIG.
- is not essentially different from the electrophotographic photoreceptor 1 shown in FIG. For example, if you are applying electrophotographic stains such as those described in Japanese Patent Publications No. 42-23910 and No. 43-24748, the surface should be
The '0 layer 8 is electrically insulated, has a high sluggishness, has a static charge retention ability when subjected to band 'Fl (processing), and has a JIJ7 strength of at least a certain level. However, if a direct copying process such as the Carlson process is applied, it is desirable that the potential r1 of the four parts after electrostatic image formation is very small. 8 is required to be very thin.Surface 41ν
8 layers of cover, the desired city air bacteria! In addition to satisfying the above requirements, a-3ii) the photoconductive layer should not have any adverse physical or physical effects; , μf are of -C type b15 in consideration of IW resistance, abrasion resistance, cleaning properties, etc.

表向被覆層形成材料として有効に使用きれるものどして
、その代表的なの11ポリエチレンテレフタレート、ポ
リカーボネ=1・、ポリプロピレン、ポリ塩化ビニル、
ポリ塩化ビニリデン。
Typical materials that can be effectively used as surface coating layer forming materials are 11 polyethylene terephthalate, polycarbonate = 1, polypropylene, polyvinyl chloride,
Polyvinylidene chloride.

ポリビニルアルコール、ポリスチレン、ポリアミド、ポ
リ四弗化エチレン、ポリ三弗化塩化エチレン、ポリ弗化
ビニル、ポリ弗化ビニリデン。
Polyvinyl alcohol, polystyrene, polyamide, polytetrafluoroethylene, polytrifluorochloroethylene, polyvinyl fluoride, polyvinylidene fluoride.

六弗化プロピレン−四弗化エチレンコポリマー。Hexafluoropropylene-tetrafluoroethylene copolymer.

二弗化エチレンー弗化ビニリデンコポリマー。Ethylene difluoride-vinylidene fluoride copolymer.

ポリブテン、ポリビニルブチラール、ポリウレタン等の
合成樹脂、ジアセテート、トリア七チー[・等のセルロ
ース誘導体等が添げられる。これ四の合成467脂又は
セルロース誘導体は、フィルム伏とされてa−8i系先
光導電上に貼合されても自−く、父、それ等の塗布液を
形成して、a−8t糸光と14′市層5」二に塗布し、
膜形成しても良い。
Synthetic resins such as polybutene, polyvinyl butyral, polyurethane, and cellulose derivatives such as diacetate and tri-7-chie are added. These four synthetic 467 resins or cellulose derivatives can be applied as a film and laminated onto the A-8I photoconductive layer, forming a coating solution and forming an A-8T yarn. Apply light and 14' layer 5'' to 2,
A film may be formed.

表面岐控層の層厚は、所望される特性に応じて、又、使
用される材質によって適宜決定されるが、・山常の場合
、0.5〜70μ程度とされる。殊に表面被覆層が先述
した保護層としての機能が要求さJする場合には、通常
の場合、10μ以下とプれ、逆に電気的絶縁層としての
機能が要求さ)]ろ鳴合には、通常の場合10μ以上と
される。
The layer thickness of the surface barrier layer is appropriately determined depending on the desired characteristics and the material used, but in the case of normal use, it is approximately 0.5 to 70 μm. In particular, when the surface coating layer is required to function as the above-mentioned protective layer, it is usually less than 10μ, and on the contrary, it is required to function as an electrical insulating layer). is usually 10μ or more.

面乍ら、との保護層と電気絶縁層とを差別する層厚イ1
.!、:け、使用月別及び適用される電子写真プロセス
、 TIi子写真感光体の構造によって、変動するもの
で、先の10μという値1絶対的々ものではない。
Layer thickness A1 that differentiates the protective layer and the electrical insulating layer from each other
.. ! The value of 10μ is not absolute, as it varies depending on the month of use, the applied electrophotographic process, and the structure of the TIi photoreceptor.

又、この表面被覆層8は、先に述ベプこ如き反射防止層
としての役目も荷わせれシ1′、その機ス!1″4゜が
一層拡大されて効果的と々る。
This surface coating layer 8 also has the role of an anti-reflection layer as mentioned above. 1″4° is further enlarged and reaches effectively.

次に本発明の7に子写真感光体を、グロー放41i法及
びスパッタリング法VCよって製浩する場合に就で説明
する。
Next, the case where the photoreceptor of the present invention is manufactured by the glow emission 41i method and the sputtering method VC will be explained in detail.

第3図は、ギャパンタンスタイプグロー放電法によって
、本発明の電子写真感光体を製造する為のグロー放電蒸
着装置の模式的説明図である。
FIG. 3 is a schematic explanatory diagram of a glow discharge deposition apparatus for manufacturing the electrophotographic photoreceptor of the present invention by a Gapantance type glow discharge method.

10はグロー放電蒸着槽であって、内部には、a−8t
系先光導電を形成する為の基板11が固定部材12に固
定されており、ノに板11の下部側には、基板11を加
熱する為のヒーター13が設置されている。蒸着槽10
の−1一部には、高周波電源14と接続されているキャ
パシタンスタイプ電極15.15’が巻かれており、前
記高に高周波が印加されて、蒸着槽10内にグロー放電
が生起される様になっている。
10 is a glow discharge deposition tank, inside which a-8t
A substrate 11 for forming a photoconductive system is fixed to a fixing member 12, and a heater 13 for heating the substrate 11 is installed on the lower side of the plate 11. Vapor deposition tank 10
A capacitance type electrode 15, 15' connected to the high frequency power source 14 is wound around a part of -1, and a high frequency is applied to the high frequency to generate a glow discharge in the vapor deposition tank 10. It has become.

蒸着槽10の上端部には、ガス導入管が接続されており
、ガスボンベ16,17,18.1:、!l)各々のボ
ンベ内のガスが必要時に蒸着槽10内に導入される様に
なっている。19,20.21目各々フローメーターで
あってガスの流量を検知する為のメータであり、又、2
2,23.24は流量調節パルプ、25,26.27は
パルプ。
A gas introduction pipe is connected to the upper end of the vapor deposition tank 10, and gas cylinders 16, 17, 18.1:,! l) Gas in each cylinder is introduced into the vapor deposition tank 10 when necessary. 19, 20, and 21 are each flow meters and are meters for detecting the flow rate of gas, and 2
2, 23, and 24 are flow control pulps, and 25, 26, and 27 are pulps.

28は補助パルプである。28 is auxiliary pulp.

又、蒸着槽10の下端部はメインパルプ29を介して排
気装置(図示されていない)に接続されている。30は
、蒸着槽10内の真空を破る為のパルプである。
Further, the lower end of the vapor deposition tank 10 is connected to an exhaust device (not shown) via a main pulp 29. 30 is pulp for breaking the vacuum in the vapor deposition tank 10.

第3図のグロー放電装置を使用して、基板11上に所望
!特性のa−8i系先光導電を形成するには、先ず、所
定の清浄化処理を施した基板10を清浄化面を上面にし
て固定部材12に固定する。
Using the glow discharge device shown in FIG. To form a characteristic a-8i type photoconductor, first, a substrate 10 that has been subjected to a predetermined cleaning treatment is fixed to a fixing member 12 with the cleaned surface facing upward.

%板11の表面を清浄化するにrll 曲常、実施され
ている1法、例えば、アルカリ又は酸等による化学的処
理法が採用される。又、ある47度清浄化した後恭qt
槽10内の所定の位置に設置t’tl、、そのJ−にA
  Si系光導’l’に層を旧成する前にグローノ〃軍
処理を行っても!4い。との腸合、基板11の清浄化処
理からa  St系光導宙層形成迄同−系内で真空を破
ることなく行うことが出来るので、清浄化したw板面に
汚物や不純物が付着するのを避けることが出来る。基板
11を固定部材12に固定したら、メインパルプ29を
全開し7て蒸着槽10内の空気を排気[7て、真空度:
 10−5torr程度にする。蒸着槽10内が所定の
真空度に達した後、ヒーター13を点火して基板]1を
加熱し所定温度に達したら、その温度に保つ。
To clean the surface of the plate 11, one commonly practiced method is employed, for example, a chemical treatment method using an alkali or acid. Also, after cleaning a certain 47 degrees, Kyoqt
Install it at a predetermined position in the tank 10, and attach A to its J-.
Even if you perform Grono military treatment before forming a layer on the Si-based light guide 'l'! 4. In addition, since the process from cleaning the substrate 11 to forming the St-based photoconductive layer can be performed without breaking the vacuum within the same system, dirt and impurities will not adhere to the cleaned surface of the w-board. can be avoided. After fixing the substrate 11 to the fixing member 12, the main pulp 29 is fully opened and the air inside the deposition tank 10 is evacuated.
The pressure should be about 10-5 torr. After the inside of the vapor deposition tank 10 reaches a predetermined degree of vacuum, the heater 13 is ignited to heat the substrate 1, and once it reaches a predetermined temperature, it is maintained at that temperature.

次に補助パルプ28を全開L %←;いてガスボンベ1
6のパルプ25及びガスボンベ17のパルプ26を全開
する。ガスボンベ16UArガス用であ匂、ガスボンベ
17けa −81を形成する為の原料ガス用であって、
例えば、5H−L I 5t2I(a +S t 4H
,。又は、それ等の混合物等が貯蔵されている。父、ボ
ンベ]8は必要に応じてa−8i系先光導電中に導入す
る不純物を生成する為の原料ガス用であって、I’T(
s −PtH4,BtHa等が貯蔵されている。
Next, open the auxiliary pulp 28 fully L %←; and open the gas cylinder 1.
6 pulp 25 and gas cylinder 17 pulp 26 are fully opened. A gas cylinder of 16 UAr is used for raw gas, and a gas cylinder of 17 is for raw material gas to form A-81.
For example, 5H-L I 5t2I(a +S t 4H
,. Or a mixture thereof is stored. [Cylinder] 8 is for raw material gas to generate impurities to be introduced into the a-8i system photoconductor as necessary, and I'T (
s-PtH4, BtHa, etc. are stored.

その後ガスボンベ16及び17の流量調節パルプ22.
23を、フローメータ19及び20を514乍ら、徐々
に開口し、蒸着槽10内にArガス及び例えば、5iT
(4ガス等のa−8i形成用の原料ガスを導入する。こ
の時Arガスは必ずしも要するものではなく、前記原料
ガスのみ導入しても良い。Arガスを5iI(、ガス等
のa  Si形成用の原料ガスに混合して導入する場合
、その量的割合は、所望に従って決定されるが、通常の
場合、Arガスに対して前記原料ガスが10 VoL 
4以上とされる。尚、Arガスの代りにHeガスを使用
しても良い。
After that, the flow rate regulating pulp 22 for the gas cylinders 16 and 17.
23 and the flow meters 19 and 20 are gradually opened to fill the vapor deposition tank 10 with Ar gas and, for example, 5iT.
(A raw material gas such as 4 gas for a-8i formation is introduced. At this time, Ar gas is not necessarily required, and only the above raw material gas may be introduced. When introducing the raw material gas mixed with the raw material gas for the purpose, the quantitative ratio is determined as desired, but usually, the raw material gas is 10 VoL with respect to the Ar gas.
It is considered to be 4 or more. Note that He gas may be used instead of Ar gas.

蒸着槽10内に、ボンベ16.17よりガスが導入され
た時点に於いて、メインパルプ29を調節17て、所′
Iドの真空度、1山常の場合は、a−8tを形成する為
の原料ガス圧で10−2〜3 torrに保つ。次いで
、′74/7′f槽10例に巻かれたキャパシタンスタ
イプの′「1を極15,15’に高固波′市原14によ
り所定周波数、通常の場合(1,:!〜30MFfzの
高周波を1111えてグ1コー放′11℃を蒸着槽10
内に起すと、例對ば、SQLガスが分解し7て、)に板
11上にS+が蒸着さ−11てaS+層が114成され
るO 形成されるa−8ii光導111層中に不純物を導入す
る際には、ボンベ18より不紳物生成用のガスを、a 
−S I系光導′11丁、層+1q成時に蒸着槽10内
に導入してやれば凹い。この場合、流セiW、’a節パ
ルプ24を適当に調節すると2二により、ボンベ18よ
りの蒸着槽10へのガスの導入1dを適切に制御するこ
とが出来るので、形成されるa−3i系赤光導電中に導
入さ11る不純物の(itを任意に制illすることが
出来る他、更に% Fl  31系光導電層の11′1
み方向に不純物の1′、!′を変化させることも容易に
成し得る。
At the time when gas is introduced into the vapor deposition tank 10 from the cylinders 16 and 17, the main pulp 29 is adjusted 17 to
When the degree of vacuum in Ido is 1, the raw material gas pressure for forming a-8t is maintained at 10-2 to 3 torr. Next, the capacitance type ``1'' wound around the 10 ``74/7'' f tanks is connected to the pole 15, 15' at a predetermined frequency by the high-frequency wave ``Ichihara 14'', in the normal case (1,:! ~ 30 MFfz high frequency). Add 1111 and heat the glue to 11°C in the vapor deposition tank 10.
For example, when the SQL gas is decomposed 7), S+ is evaporated onto the plate 11 to form an aS+ layer 114. When introducing a
- If 11 pieces of S I-based light guides are introduced into the vapor deposition tank 10 when +1q layer is formed, it will be recessed. In this case, if the flow rate iW, 'a section pulp 24 is adjusted appropriately, the introduction 1d of gas from the cylinder 18 to the vapor deposition tank 10 can be appropriately controlled, so that the a-3i formed In addition to arbitrarily controlling the amount of impurities (it) introduced into the red photoconductive layer of the 31-based red photoconductive layer,
1' of impurities in the direction shown! ′ can also be easily changed.

第3図に示されるグロー放電蒸着装置に於いては、n 
F (radio frequenc3’ )キャパシ
タンスタイプグロー放電法が採用されているが、この他
、RFインダクタンスタイプ、DC二極タイプ等のグロ
ー放電法も本発明に於いて採用される。又、グロー放電
の為の電極は、蒸着槽10の外に設けても良いし又蒸着
槽10の内に設けても良い。
In the glow discharge deposition apparatus shown in FIG.
Although the F (radio frequency 3') capacitance type glow discharge method is employed, other glow discharge methods such as RF inductance type and DC bipolar type are also employed in the present invention. Further, the electrode for glow discharge may be provided outside the vapor deposition tank 10 or may be provided inside the vapor deposition tank 10.

本発明に於いて、有効とされるグロー放電を得ろ為には
、電流密度を0.1〜10 mA/rdlとしたAC又
はDC電流とするのが良く、又、充分なパワーをイII
る為には300〜5000Vの電圧に調整されるのが良
い。
In the present invention, in order to obtain an effective glow discharge, it is preferable to use an AC or DC current with a current density of 0.1 to 10 mA/rdl, and to use sufficient power.
It is best to adjust the voltage to 300 to 5000V in order to

形成されるa−8i系先光導電の特性は成長時の活版温
度に大きく依存するのでその制御は厳密に行うのが好ま
しい。本発明に於いては基板温10を通常は50〜35
0℃、好適には100〜200℃の範囲とすることによ
って、電子写真用光入り1it層として有効な特性を有
するa−8i系先光導電が形成される。又、a−8i層
の成長速度も、a−8i層の物性をj・°きく左右する
117因であって、本発明の目的を達成するにI/:I
’、 ;i6常の場合0.5〜100人/sec 、好
適にN’、 1〜5 (I A/secとさり、るのが
好捷しい。
Since the characteristics of the a-8i-based photoconductor formed greatly depend on the temperature of the printing plate during growth, it is preferable to strictly control it. In the present invention, the substrate temperature 10 is usually 50 to 35
By adjusting the temperature to 0° C., preferably in the range of 100 to 200° C., an a-8i-based photoconductive layer having effective characteristics as a light-included 1it layer for electrophotography is formed. Furthermore, the growth rate of the a-8i layer is also a 117 factor that greatly influences the physical properties of the a-8i layer, and to achieve the purpose of the present invention, I/:I
', ;i6 usually 0.5 to 100 people/sec, preferably N', 1 to 5 (IA/sec).

第4図は、スパッタリング法に、1ニー7)で、本発明
の電子写真感光体を製造する為の装置iiVの一つを示
す模式的説明図である。
FIG. 4 is a schematic explanatory view showing one of the apparatuses iiV for manufacturing the electrophotographic photoreceptor of the present invention using a sputtering method.

31は蒸着槽であって、内部にVj、n  F)1系光
導電層を形成する為のM檎32が市気畿、縁付の固定部
材33に固定さhてFす[定位置1f設置されている。
Reference numeral 31 denotes a vapor deposition tank, in which a M-shaped mold 32 for forming a Vj, n F) 1-based photoconductive layer is fixed to a fixing member 33 with a rim. is set up.

基板32の下方には、基板32を加熱する為のヒーター
34が配fビtされ、上方には、所定間隔を設けて活版
32と対向する位置に多結晶又は単結晶シリコンターゲ
ット35が配置されている。
A heater 34 for heating the substrate 32 is arranged below the substrate 32, and a polycrystalline or single crystal silicon target 35 is arranged above at a position facing the letterpress 32 with a predetermined interval. ing.

基板32とシリコンターゲット35間には、高周波電源
36によって、高周波が印1111さhる様になってい
る。父、#若僧31(lこけ、ボンベ37.38が各々
、バルブ:39.40、フローメータ41,42、流+
AJ7J節パルプ4ニー1.44、補助パルプ45を介
して接続されており、ボンベ37.38より必要時に蒸
着槽31内にガスが導入される様になっている。
Between the substrate 32 and the silicon target 35, a high frequency signal 1111 is generated by a high frequency power source 36. Father, #young monk 31 (l moss, cylinder 37.38 each, valve: 39.40, flow meter 41, 42, flow +
AJ7J pulp 4 knees 1.44 are connected via auxiliary pulp 45, and gas is introduced into the vapor deposition tank 31 from cylinders 37.38 when necessary.

今、第4図の装置を用いて、基板32上にa  St系
先光導電層形成するには、先ず、蒸着槽31内の空気を
矢印Bで示す様に、適当な排気装置をイ!llf用して
排気して所定の真空度にする。
Now, in order to form an aSt-based photoconductive layer on the substrate 32 using the apparatus shown in FIG. Evacuate to the specified degree of vacuum using llf.

次に、ヒーター34を点火して基板32を所定の温度ま
で加熱する。スパッタリング法によってa−8i系先光
導電を形成する場合、この基板32の加熱温度は、通常
50〜350℃、好適には100〜200℃とされる。
Next, the heater 34 is ignited to heat the substrate 32 to a predetermined temperature. When forming the a-8i-based photoconductive layer by sputtering, the heating temperature of the substrate 32 is usually 50 to 350°C, preferably 100 to 200°C.

この基板温度は、a−8i層の成長速度、層の構造、ボ
イドの存否等を左右し、形成されだa−8i層の物性を
決定する一要素であるので充分なる制御が必要である。
The substrate temperature influences the growth rate of the a-8i layer, the structure of the layer, the presence or absence of voids, etc., and is one element that determines the physical properties of the a-8i layer that is formed, so it must be sufficiently controlled.

又、基板温度は、a−8i層の形成時に、一定に保持し
ても良いし、又a−8t層め成長と共に上昇又は下降又
は上下させても良い。例えば、a−8i層の形成初期に
於いては、比較的低い温度T、に基板温度を保ち、a−
8i層がある程度成長したらT、よりも高い温度T1F
でJ、lii温度を上昇させなからa−8i層を形tj
vL、RS!層形成終期には+4びT2より低い搗++
’、)i TsにJl(板温度を下げる等して、a−8
i系光導?li層を形成することが出来る。この様に−
jるdとに、1−って、a−8i系先光導電の電気的・
光学的性質を層厚方向に連続的に変化させることが出q
6る。
Further, the substrate temperature may be kept constant during the formation of the a-8i layer, or may be raised, lowered, or raised or lowered as the a-8t layer grows. For example, in the initial stage of forming the a-8i layer, the substrate temperature is kept at a relatively low temperature T, and the a-8i layer is kept at a relatively low temperature T.
When the 8i layer grows to a certain extent, the temperature T is higher than T1F.
In order to increase the J, lii temperature, the a-8i layer is shaped tj
vL,RS! +4 and lower than T2 at the end of layer formation
', ) i Ts to Jl (lower the plate temperature, etc., a-8
I-type light guide? A li layer can be formed. Like this-
In addition, 1- is the electrical conductivity of the a-8i-based photoconductor.
Optical properties can be changed continuously in the layer thickness direction.
6ru.

又、a−81け、そのtl¥1成4 ’y1g度が、他
の、例えば、Se等に較べて遅いので、形成する層厚が
厚くなると層形成初1tll iF骸成さ、#−1,*
a−8i (〕、(板側に斤いa−8i )は、層形成
終了迄の間に、層形成初期の特性を変移きせる恐れが充
分考えられるので、層の厚み方向に一4’!; tr 
/時性を有するaS+層を形成する為にけ層1ヒ成開始
から層形成終了時に渡って基板温度を1−屓さ1ト乍ら
層形成するのが望ましい。
In addition, since the tl\1\4'y1g degree of a-81 is slower than that of other materials, such as Se, when the layer thickness to be formed becomes thicker, the initial layer formation time is 1tll iF skeleton formation, #-1 ,*
a-8i (], (a-8i placed on the plate side) is very likely to change the characteristics at the initial stage of layer formation until the layer formation is completed, so it is possible to change the properties of the layer in the thickness direction by 14'! ;tr
In order to form an aS+ layer having a time-varying property, it is desirable that the substrate temperature be kept at 1 - 1 T from the start of layer 1 formation to the end of layer formation.

次に、裁板32が所定の湛)νに加熱さねたことを検知
した後、メインパルプ46、補助パルプ45、パルプ3
9.40を全開する。
Next, after detecting that the cutting board 32 has not been heated to a predetermined temperature ν, the main pulp 46, the auxiliary pulp 45, the pulp 3
Fully open 9.40.

次いでメインパルプ46及び流1ハ調節パルプ蒸着槽3
1内に所定の真空度に下がる捷で導入17、その真空度
に保つ。
Next, the main pulp 46 and the flow 1 are controlled by the pulp vapor deposition tank 3.
1, the vacuum is lowered to a predetermined degree.

続いて、流量調節パルプ43を開いて、ボンベ37」、
すArガスを蒸着槽31内に所定の真空度に下がる脣で
導入し、その真空度に保つ。この11層合の、■■、ガ
ス及びArガスの蒸着槽31内への流子dは所望する物
性のa−8i系先光導電が形成される様に適宜決定され
る。例えば、蒸着槽;(1内のArとH7の混合ガスの
圧力は真空度で、通常f’j看0−3〜10−’ to
rr、好適にけ5X10−”〜3X ] O’torr
とされる□ Arガスは、Heガス等に代えることも出
来る。
Next, open the flow rate regulating pulp 43 and open the cylinder 37''.
Ar gas is introduced into the deposition tank 31 until the vacuum level reaches a predetermined level, and the vacuum level is maintained at that level. The fluxes d of the 11 layers, gas and Ar gas into the vapor deposition tank 31 are appropriately determined so that a-8i-based photoconductivity having desired physical properties is formed. For example, a vapor deposition tank;
rr, suitable size 5X10-"~3X] O'torr
□ Ar gas can be replaced with He gas or the like.

Zへ若僧31内に、ボンベ37.38より所定の真空度
になるまで、Arガス及びH,ガスが導入された後、高
周波電源36により、所定の周波数及び電圧で、基板3
2とシリコンターゲット:35間に高周波を印加して放
電、させ、生じたArイオンでシリコンターゲットのS
tをスパッタリングし、基板32上にa、−8i層を形
成する。
After Ar gas and H gas are introduced into the young priest 31 from cylinders 37 and 38 to Z until a predetermined degree of vacuum is reached, the substrate 3 is heated by the high frequency power supply 36 at a predetermined frequency and voltage.
A high frequency is applied between 2 and silicon target: 35 to cause a discharge, and the generated Ar ions release S of the silicon target.
Sputtering is performed to form a -8i layer on the substrate 32.

第4図の酸1明に於いてtl、高周波j(’I 113
−に上るスパッタリング法であるが、別に的流放電によ
るスパッタリング法を採用しても良い。高周波印加(で
よるスパッタリング法に於いて&1’ 、その周波数は
本発明の場合、通常02〜3(I II/1lTz 1
好適には5〜20rV■fzとさη、父、放′市Tl¥
、 l1iir、密度は通常0.1〜10 mA/c!
 、好適V(は] 〜57FIA/11とされるのが望
ましい。又、充分なパワーを得る為には3(10〜5 
n 00 V (D ?lCfE I/Cf+周節’J
tLXのが良い。
In the acid 1 light of Figure 4, tl, high frequency j ('I 113
Although the above sputtering methods are listed above, a sputtering method using targeted discharge may also be adopted. In the sputtering method using high frequency application (&1', the frequency is usually 02 to 3 (III/1lTz 1
Preferably 5 to 20rV fz, father, Ho'ichi Tl\
, l1iir, density is usually 0.1-10 mA/c!
, the preferred V(is) is preferably ~57FIA/11.Also, in order to obtain sufficient power,
n 00 V (D ?lCfE I/Cf+periodical 'J
tLX is good.

スパッタリング法に、1つで、本発明の電子写真感光体
を製造する際のasi層の成長連用け、主に基板搗Iθ
°及び放電条件Vcよって決定さ〕1.るものであって
、形成さねた層の′吻t1を左右する大きな要因の一つ
である。本発明の目的を達成する為のa  81層の成
長速用け、1lTl常の場合0.5〜100ス/sec
 、好適には1〜50人/3ccとされるのが望捷1,
7い。
The sputtering method is used for continuous growth of the ASI layer when producing the electrophotographic photoreceptor of the present invention, mainly by forming the substrate Iθ.
[Determined by ° and discharge condition Vc]1. This is one of the major factors that influences the length t1 of the formed layer. To achieve the object of the present invention, a growth rate of 81 layers is used, which is 0.5 to 100 s/sec in the case of 1lTl.
, preferably 1 to 50 people/3cc is Bokke 1,
7.

スパッタリング法に於いてもグロー放11i r)ミと
同様に不純物のドーピングによってIYa成される++
−8i系光導電周光導電或いはp型に調整することが出
来る。不純物の導入法は、スパッタリング法に於いても
グロー放電法と同様であって、例えば、PI(= 、P
JT、+ 、BtHa等の如きガス状態でa  St層
層形待時蒸着槽31内に導入して、a−8i層中にP又
けBを不純物としてドーピングする。
In the sputtering method, IYa is also formed by doping with impurities, similar to glow emission 11ir).
-8i photoconductivity can be adjusted to peripheral photoconductivity or p-type. The method of introducing impurities is the same in the sputtering method as in the glow discharge method, and for example, PI (=, P
A gas such as JT, +, BtHa, etc. is introduced into the aSt layer type temporary evaporation tank 31 to dope P into the a-8i layer with B as an impurity.

この他、又、形成されだa−8i層に不純物をイオンイ
ンプランテーション法によって導入しても良い。この場
合、a−3i層の極薄い一表面層を11!f定の伝導型
に容易に制御することが出来るので、例えば、特公昭4
9−6223号公報に記載されている如き電子写真感光
体の電荷保持層の形成が極めて容易に出来、又、その特
性を任官に制御出来るので好都合である。
In addition, impurities may be introduced into the unformed a-8i layer by ion implantation. In this case, the extremely thin one surface layer of the a-3i layer is 11! Since it can be easily controlled to a conduction type with a constant f, for example,
It is advantageous because the charge retention layer of an electrophotographic photoreceptor as described in Japanese Patent No. 9-6223 can be formed extremely easily, and its characteristics can be controlled to suit the individual.

以下、実施例によって本発明の詳細な説明実施例1 第3図に示す装置reを用い、以下の様に1.て本発明
の電子写真感光体を作成し、画像形成処理を施して画イ
9出しを行った。
Hereinafter, the present invention will be described in detail through examples.Example 1 Using the apparatus re shown in FIG. 3, 1. An electrophotographic photoreceptor of the present invention was prepared, and an image forming process was performed to produce an image (I9).

■優のNa0I−Iなる溶液を用いて表面処J111を
行い、充分水洗し乾燥させて表面を清浄化した厚さ1m
rn、大きさI QC+nx ] 0CInの7 fi
vミニウム基板を用意して、グロー放’+If:蒸着槽
10内の所定位置にある固定部材12の所定位置にヒー
ター13とは約l Q Cm程度離して堅固に固定した
■ Surface treatment J111 was performed using Yu's Na0I-I solution, and the surface was cleaned by thoroughly washing with water and drying to a thickness of 1 m.
rn, size I QC+nx] 7 fi of 0CIn
A V minium substrate was prepared and firmly fixed at a predetermined position of the fixing member 12 at a predetermined position in the vapor deposition tank 10 at a distance of about 1 Q Cm from the heater 13.

次いで、メインパルプ29を全開して蒸着槽10内の空
気を排気し、約5XIOtorrの真空度にした。その
後ヒーター13を点火I7てアルミニウム基板を均一に
加熱して150”Cに」:昇させ、この温度に保った。
Next, the main pulp 29 was fully opened to exhaust the air in the vapor deposition tank 10, resulting in a degree of vacuum of about 5XIOtorr. Thereafter, the heater 13 was ignited (I7) to uniformly heat the aluminum substrate to 150"C" and maintained at this temperature.

その後、補助パルプ28を全開し、引続いてボンベ】6
のパルプ25、ボンベ17のパルプ26を全開した後、
流量調節パルプ22及び2:3を徐々に開いて、ボンベ
16よりArガスを、ボンベ17より5III。
After that, fully open the auxiliary pulp 28, and then open the cylinder】6
After fully opening the pulp 25 of the cylinder 17 and the pulp 26 of the cylinder 17,
Gradually open the flow rate regulating pulp 22 and 2:3, and supply Ar gas from cylinder 16 and 5III from cylinder 17.

ガスを蒸着槽10内に導入した。この時、メインパルプ
29を調節して蒸着槽10内の真空度が約0.75 t
orrに保持される様にした。
Gas was introduced into the vapor deposition tank 10. At this time, the main pulp 29 is adjusted so that the degree of vacuum in the vapor deposition tank 10 is approximately 0.75 t.
It was made to be held in orr.

続いて、高周波電源14のスイッチをONにして、’r
ji極15 、 l 5層間に13.56 Mllzの
高周波を印加してグロー放電を起し、アルミニウム基イ
シ上にa−8t層を形成した。この時のグロー放電々流
V1約5mA/adで電圧は2000Vであった3、又
、この時のa−8t層の成長速度は、約4λ/ sec
であって、15時間蒸着を行い、アルミニウム基板上に
20μ厚のa−8t膜を形成した。
Next, turn on the switch of the high frequency power supply 14 and
A glow discharge was generated by applying a high frequency wave of 13.56 Mllz between the 15 and 15 layers of the ji electrode, and an a-8t layer was formed on the aluminum base plate. At this time, the glow discharge current V1 was about 5 mA/ad and the voltage was 2000 V3, and the growth rate of the a-8t layer at this time was about 4λ/sec.
Vapor deposition was performed for 15 hours to form an A-8T film with a thickness of 20 μm on the aluminum substrate.

この様にして作成した電子写真感光体を、蒸着終了後、
メインパルプ29、バ/l/7’25,26、流、M′
調節バルブ22.23を閉じ、代りにパルプ30を開い
て蒸着槽10内の真空を破シ、外部に取り出した。この
電子写真感光体に、暗中に於いて電源電圧5500Vで
eコロナ放電をa−8t系先光導電表面に行い、次いで
15 eux・secの露光量で画像露光を行って、静
電像を形成し、該静電像をカスケード法により■荷電さ
れたトナーで現像して転写紙上に転写・定着したところ
解像力が高く極めて鮮明なηすi像が得られた。
After the completion of vapor deposition, the electrophotographic photoreceptor created in this way is
Main pulp 29, B/l/7'25, 26, flow, M'
The control valves 22 and 23 were closed, and the pulp 30 was opened instead to break the vacuum inside the deposition tank 10 and take it out to the outside. On this electrophotographic photoreceptor, e-corona discharge was applied to the A-8T photoconductive surface in the dark at a power supply voltage of 5500 V, and then image exposure was performed at an exposure dose of 15 eux·sec to form an electrostatic image. When this electrostatic image was developed with a charged toner by a cascade method and transferred and fixed onto a transfer paper, an extremely clear ηS i image with high resolution was obtained.

この様な画像形成処!1!を繰返し2、前記電子写真感
光体に施しこの11イ子写真/1<<光体の耐久性に就
て試験したところ、1万枚L1の転写紙上にイ)Iられ
た画像も極めて良質であって、一枚1’Jの転写紙上の
画像と較べても何等差違はなく、この電子写真感光体が
耐コ「1ナイオン性、耐摩耗性。
Such an image forming place! 1! 2) was repeatedly applied to the electrophotographic photoreceptor, and the durability of the 11-image photoreceptor was tested. The images printed on 10,000 sheets of L1 transfer paper were also of extremely good quality. There is no difference when compared with an image on a single sheet of 1'J transfer paper, and this electrophotographic photoreceptor has excellent anti-ionic and abrasion resistance.

クリーニング性等に優れ著しく耐久性に富んでいること
が実り止された0尚、クリーニング法としてはブレード
クリーニングを採用シ、ブレードはウレタンゴムで成型
したもの6=j+jf用した。
It was found that the cleaning properties were excellent and the product was extremely durable.Blade cleaning was used as the cleaning method, and the blade was molded from urethane rubber.6=j+jf.

次に上記のMI電子写真感光体)目:て、暗中で電源電
圧6000Vで■コ「Jす放′i1【全施し、次いで1
5 eux secの光量で1IIj 隊W光を行い、
前記のOコロナ放電を施して画像出しをした時と同様の
条件で画像出しを行ったところ、fil c)れた転写
紙上の画像は0コ「1す帝11tの場合より低下してい
た。
Next, apply the above MI electrophotographic photoreceptor) in the dark with a power supply voltage of 6000V.
Perform 1IIj team W light with a light intensity of 5 eux sec,
When an image was produced under the same conditions as when the image was produced by applying O corona discharge as described above, the image on the transfer paper was lower than that in the case of 11t.

この実数から、本実施例で得た電子写、d(感光体には
帯電極性の依存性が認められた。
From this real number, it was found that the electrophotograph obtained in this example, d (photoreceptor, had dependence on charge polarity).

実施例2 実施例1と同様な条件及び千J世によって、アルミニウ
ム基板」二に20μ厚のa −S 1層を形成した後蒸
着槽10外に取シ出し、a−8I層上にポリカーボネイ
ト樹脂を乾燥後の厚さが15μとなる様に塗布して、電
気的絶縁層を形成して、?]イ子写真感光体とした。こ
の感光体の絶縁層表向に一次帯電として、電源電圧60
00Vで0)コロナ放電を0.2 sec間行ったとこ
ろ、■2000Vに帯電した。次に、二次帯電として電
源電圧5500Vでeコロナ放電を行うと同時に露光量
15 eux−secで画像露光を行い、次いで感光体
表面を一様に全面照射して静電像を形成した。この静電
像をカスケード法によってθに荷電されたトナーで現像
し、転写紙上に転写定着したところ極めて良品質の画像
が得られた3、 実施例3 実施例1と同(2)K1第3図に示す装置を用い、以下
の様にして本発明の電子写真感光体を作成し、画像形成
処理を施して画像出しを行った。
Example 2 After forming one layer of a-S with a thickness of 20 μm on an aluminum substrate under the same conditions as in Example 1 and using the same process as in Example 1, it was taken out of the deposition tank 10, and a polycarbonate resin was placed on the a-8I layer. was applied to a dry thickness of 15μ to form an electrically insulating layer. ] It was used as an Iko photographic photoreceptor. As a primary charge on the surface of the insulating layer of this photoreceptor, a power supply voltage of 60
When corona discharge was performed at 00V for 0.2 seconds, the battery was charged to 2000V. Next, as secondary charging, e-corona discharge was performed at a power supply voltage of 5500 V, and at the same time image exposure was performed at an exposure amount of 15 eux-sec, and then the entire surface of the photoreceptor was uniformly irradiated to form an electrostatic image. When this electrostatic image was developed with toner charged to θ using the cascade method and transferred and fixed onto transfer paper, an extremely high quality image was obtained.3. Example 3 Same as Example 1 (2) K1 No. 3 Using the apparatus shown in the figure, an electrophotographic photoreceptor of the present invention was prepared in the following manner, and an image was formed by performing an image forming process.

1チのNaOHなる溶液を用い一〇表面処理を行い、充
分水洗し乾燥させて表面を清浄化した厚さl r711
n 、大きさl Q 0771 X I Q (、’#
Lのアルミニウム基板を用意して、グロー放電蒸着槽1
0内の所定位置にある固定部材12の所定位置にヒータ
ー13とは約10(1m程度##して堅固に固定]7た
1、次いで、メインパルプ29を全開して蒸着槽10内
の空気を排気(7、約5X10tnrrの真空度にした
。その後ヒーター■3を点火して、アルミニウム基板を
均一に加熱(7て150°Cに上昇させ、この温度に保
った。その後、補助バルブ28を全開し、引続いてボン
ベ1Gのバルブ25、ボンベ17のバルブ26を全開し
た後、流量調節バルブ22及び23を徐々に開いて、ボ
ンベ16よすArガスを、ボンベ17よりS i)I。
The surface was treated with 10% NaOH solution, washed thoroughly with water and dried to clean the surface, resulting in a thickness of 1 r711.
n, size l Q 0771 X I Q (,'#
Prepare an L aluminum substrate and place it in glow discharge deposition tank 1.
The heater 13 is placed at a predetermined position on the fixing member 12 at a predetermined position within the evaporation tank 10. was evacuated (7) to a degree of vacuum of approximately 5 x 10 tnrr.Then, heater 3 was ignited to uniformly heat the aluminum substrate (7) to 150°C and maintained at this temperature.Then, the auxiliary valve 28 was turned on. Then, after fully opening the valve 25 of the cylinder 1G and the valve 26 of the cylinder 17, the flow control valves 22 and 23 are gradually opened to supply Ar gas from the cylinder 16 to the cylinder 17.

ガスを蒸着槽10内に導入した。この時、メインバルブ
29を調節して蒸着槽10内の真空度が約0.75 t
orrに保持される様にした。又、この場合、フローメ
ータ19及び20を注視し乍ら、流量調節バルブ22及
び23を調節して、st■r、ガスの流量がArガスの
流量−の10 vol$となる様にした。
Gas was introduced into the vapor deposition tank 10. At this time, the main valve 29 is adjusted so that the degree of vacuum in the vapor deposition tank 10 is approximately 0.75 t.
It was made to be held in orr. In this case, while monitoring the flow meters 19 and 20, the flow control valves 22 and 23 were adjusted so that the flow rate of the gas was 10 vol$, which was the flow rate of the Ar gas.

次に、ボンベ1Bのバルブ27を全開し、その後、流量
調節バルブ24を徐々に開いて、その流量が5j)I4
ガスの流量の5X10vo/チ となる様に制御し乍ら
蒸着槽10内にB2H1lガスを導入した。この時もメ
インパルプ29を調節して蒸着槽10内の真空度を0.
75 torrに保持した。
Next, the valve 27 of the cylinder 1B is fully opened, and then the flow rate adjustment valve 24 is gradually opened so that the flow rate becomes 5j)I4.
B2H1l gas was introduced into the deposition tank 10 while controlling the gas flow rate to be 5 x 10vo/ch. At this time as well, the main pulp 29 is adjusted to bring the degree of vacuum inside the deposition tank 10 to 0.
It was maintained at 75 torr.

続いて、高周波電源14のスイッチをONにして、電極
15 、15’間に13.561111zO高周波を印
加してグロー放電を起し、アルミニウム基板」;にa 
−S i膜を形成した。この時のグロー放電々流は約3
mA/屋で電圧は1500Vであった。又、この場合の
a−8j層の成長速度は、約4 A / seeにし、
15時間蒸着を行って、アルミニウム基板上に20μ厚
のa −S i層を形成した。この様にして作成した電
子写真感光体を、蒸着終了後、メインパルプ29.61
r、 4辻…、14節パルプ22 、23.24、バル
ブ25 、26 、27を閉じ、イ0りにバルブ30を
開いて蒸着4vI l O内の真空を破り、外部に取り
出した1、この電子写真感光体に、暗中に於いて電源電
圧e5500Vでθコロナ放電をasl糸先導電層人面
に行い、次いで20 /ux−secの露光量で画像t
)光を行って、静電像を形成し、該静電像をカスケード
法により■荷電されたトナーで現像して転写紙上に転写
・定着(7たところ極め−C鮮明な画像がイυられた。
Next, the switch of the high frequency power supply 14 is turned on, and a high frequency of 13.561111zO is applied between the electrodes 15 and 15' to cause a glow discharge, and a
-A Si film was formed. The glow discharge current at this time is approximately 3
The voltage was 1500V at mA/ya. In addition, the growth rate of the a-8j layer in this case is approximately 4 A/see,
Vapor deposition was performed for 15 hours to form a 20μ thick a-Si layer on the aluminum substrate. After the completion of vapor deposition, the electrophotographic photoreceptor produced in this way was heated to a main pulp of 29.61 mm.
r, 4 points..., 14-section pulp 22, 23, 24, valves 25, 26, 27 were closed, and then valve 30 was opened to break the vacuum in the vapor deposition 4vI l O and taken out to the outside. On the electrophotographic photoreceptor, θ corona discharge was applied to the face of the ASL thread leading conductive layer in the dark at a power supply voltage e of 5500 V, and then an image was formed at an exposure dose of 20/ux-sec.
) Light is applied to form an electrostatic image, and the electrostatic image is developed with charged toner using a cascade method and transferred and fixed onto transfer paper (7) A very clear image was obtained. Ta.

この様な画像形成処理を繰返(7、前記電子写真感光体
に施しこの電子′fJ貞感光感光体久性に就で試験した
ところ、1j枚[,1の転写紙−にに得られた画像も極
めて1竹であって、一枚11の転写紙上の画像と較べて
も何等差違はなく、この電子写真感光体が著しく耐久性
に市んでいることが実証された。尚、クリーニング法と
してはブレードクリーニングを採用し、ブレードはウレ
タンゴムで成型したものを使用した。
When this image forming process was repeated (7) on the electrophotographic photoreceptor and the durability of the electrophotographic photoreceptor was tested, 1j sheets [,1 of transfer paper] were obtained. The image was very thin, and there was no difference in comparison with the image on a single sheet of transfer paper, proving that this electrophotographic photoreceptor is extremely durable.In addition, as a cleaning method, adopted blade cleaning, and the blade was molded from urethane rubber.

次に、上記電子写真感光体に就で、暗中で、′α源電圧
6000Vの■コロナ放電を施し、次いで20 eux
・seeの露光量で画像露光を行ってm電像を形成した
。この静電像をカスケード法によりO荷電されたトナー
を用いて現像し、次に転写紙上に転写・定着したところ
、極めて鮮明な画像が得られた。
Next, the electrophotographic photoreceptor was subjected to corona discharge with an α source voltage of 6000 V in the dark, and then 20 eux
・Image exposure was performed with an exposure amount of see to form an m electric image. When this electrostatic image was developed using O-charged toner by a cascade method and then transferred and fixed onto transfer paper, an extremely clear image was obtained.

この結果と先の結果から本実施例で得られたtt3:子
写真感光体は、帯電極性に対する依存性がなく両極性感
光体の特性を具備していることが判った。
From this result and the previous result, it was found that the tt3: child photographic photoreceptor obtained in this example had no dependence on charging polarity and had the characteristics of a bipolar photoreceptor.

実施例4 実施例3に於いて、B、I(lIガスの流量をSi&ガ
スの流量の5X1.Ova/チになる様に調整した他は
、実施例3と同様にしてアルミニウム基板」二に厚さ2
0μのa−8i系先光導電を形成して?6子写真感光体
とした。
Example 4 In Example 3, an aluminum substrate was prepared in the same manner as in Example 3, except that the flow rate of B, I (lI gas was adjusted to be 5X1.Ova/chi of the flow rate of Si & gas). thickness 2
Forming a 0μ a-8i-based photoconductor? It was made into a 6-child photographic photoreceptor.

この電子写真感光体に就て、実施例3と同様の条件及び
手順で転写紙上に画像を形成したところ(0コロナ放電
を行って画像形成した方がeコ【フナ放11゛tを行っ
て画像形成1〜たよりも、その画質が優れており、停め
て#+1′明であった。
Using this electrophotographic photoreceptor, an image was formed on a transfer paper under the same conditions and procedures as in Example 3. The image quality was better than that of Image Formation 1 and was #+1' brighter.

この結果より、本実施例で(!J C)れた′[IL電
子写真感光体は、帯屯極件の依存性がjj2められだ。
From this result, it can be seen that the dependence of the band polarity on the IL electrophotographic photoreceptor obtained in this example (!JC) is very poor.

而し、その沙性依存性は実施シ[3で7)Iられたti
c子写真感光体とけ逆であった。
However, its dependence is due to the implementation
The photographic photoreceptor melted backwards.

実施例5 実施例4と同トヌな条件及び手順によって、アルミニウ
ム基板」−に20μ厚のa −S を層を形成した後、
蒸オ’flil l O外シこ取り出【7、a−8i層
上にポリカーボネイト樹脂を乾燥で多の厚さが15μと
なる(枳に塗布して、11L気的絶縁1−全形成して、
電子写真感光体を得た。この感光体の絶縁層表面に一次
帯電として、′r1イ源11(圧(i 0 (10Vで
Oコロナ放′11工を0.2 see間行−’−)fc
とコロ、(1)2000Vに帯電した。次に、二次帯電
とし−C電源′市重圧500Vで■コロナ放′rにを行
うと同時に露光計15 eux・8eeで画像ムズ光を
行い、次いで感光体表面を一様に全面照射し、て静′1
1も像を形成した。この静電像をカスケード法によって
写定着したところ極めて良質の画像が得られた。
Example 5 After forming a 20μ thick a-S layer on an aluminum substrate under the same conditions and procedures as in Example 4,
7. Dry the polycarbonate resin on the a-8i layer to a thickness of 15 μm (coat it on the paper and form the entire 11L gas insulation layer). ,
An electrophotographic photoreceptor was obtained. As a primary charge on the surface of the insulating layer of the photoreceptor, the voltage (i 0 (O corona radiation at 10 V is applied to the 0.2 see interval -'-) fc
(1) Charged to 2000V. Next, secondary charging was performed, and at the same time corona radiation was carried out using a C power supply's internal pressure of 500 V, an image irradiation was performed using an exposure meter of 15 eux/8 ee, and then the entire surface of the photoreceptor was uniformly irradiated. te still '1
1 also formed an image. When this electrostatic image was photofixed using the cascade method, an extremely high quality image was obtained.

実施例6 実施例1に於いて、基板温度を下記の第1表に示す様に
種々変化さすた以外は、実施例1と全く同様の条件及び
手順によって試料屋■〜■で示される電子写真感光体を
作成し、実施例3と全く同様の画像形成条件によって、
転写紙上に画像形成を行ったところ下記の第1表に示す
如き結果を得た。
Example 6 Electrophotographs shown in sample shops ■ to ■ were taken under the same conditions and procedures as in Example 1, except that the substrate temperature was varied as shown in Table 1 below. A photoreceptor was prepared and image forming conditions were exactly the same as in Example 3.
When an image was formed on the transfer paper, the results shown in Table 1 below were obtained.

第1表に示される結果からも判る様に、本発明の目的を
達成するKは、基板温度が50〜350°Cの範囲でa
  St層を形成する必要がある。
As can be seen from the results shown in Table 1, K that achieves the purpose of the present invention is a when the substrate temperature is in the range of 50 to 350°C.
It is necessary to form an St layer.

第1表 ◎:優 ○:良 △:実用上使用し得る ×:不可実施
例7 実施例3に於いて、;’+1;板温1!、1全ド1;【
シの第2表に示す様に押l・変化させた以り1(T、、
実施例;1と全く同様の条件及び手順にJ:つてト・(
旧yFx (!i)〜Oで示される電子写真感光体を作
す、Ii L、実施例3と全く同(マρの画像形成条件
によ−って、転写紙上に画像形成を行ったところ下NL
の第2衣に示す如き結果を得た。
Table 1 ◎: Excellent ○: Good △: Can be used practically ×: Not possible Example 7 In Example 3, ;'+1; plate temperature 1! , 1 all do 1; [
As shown in Table 2 of
Example; J: under the same conditions and procedures as 1.
An electrophotographic photoreceptor represented by old yFx (!i) to O was prepared, Ii L, when an image was formed on a transfer paper under the same image forming conditions as in Example 3 (ma ρ). Lower NL
The results shown in Figure 2 were obtained.

第2表に示されろ結果かC)も判かる様に、本実施例の
場合に於い−Cも本ゝ竜明の1.1的を達成するには、
基板温度が50〜:l 5 (1“0の範囲でa−8i
層を形成する必要がある。
As can be seen from the results shown in Table 2 (C), in the case of this example, -C also achieves the objective 1.1 of Ryumei.
Substrate temperature is 50~:l5 (a-8i in the range of 1"0
It is necessary to form layers.

◎:優 ○:良 △:実用」1使用し2得る ×:不可
実施例8 実施例4に於いて、基板温度を下記の第3表に示す様に
種々変化させた以外は、実施例4と全く同様の条件及び
手順によって試別y% @ −@で示される電子写真/
R光体を作成し、実施例4と全く同様の画像形成条件に
よって、転写紙上に画像形成を行ったところ下記の第3
表に示す如き結果を得た。
◎: Excellent ○: Good △: Practical 1 use, 2 obtained ×: Unsatisfactory Example 8 Example 4 except that the substrate temperature was variously changed as shown in Table 3 below y% by the same conditions and procedures as @ −@
When an R light body was created and an image was formed on a transfer paper under exactly the same image forming conditions as in Example 4, the following third image was formed.
The results shown in the table were obtained.

第3表に示される結果からも判かる様に、本実施例の場
合に於いても本発明の目的を達成するに1ま、基板温度
が50〜350°Cの範囲でa−St層を形成する必要
がある。
As can be seen from the results shown in Table 3, even in the case of this example, it is necessary to form the a-St layer at a substrate temperature in the range of 50 to 350°C in order to achieve the object of the present invention. need to be formed.

第3表 ◎:優 ○:良 △:実用上使用し得る ×:不可実M
ti例9 第3図に示されるグロー放1江蒸着装(1゛を内に、肉
厚2Irtnで大きさ150z朋X 300朋のアルミ
ニウム製シリンダーを回転自在に設置dシ、dkシリン
ダー内より、該シリンダーを加熱+、 rrする様にヒ
ーターを取り付けた。
Table 3 ◎: Excellent ○: Good △: Can be used for practical purposes ×: Not practical M
Example 9 A glow-emitting evaporation device shown in Fig. 3 (with a wall thickness of 2 Irtn and a size of 150 x 300 mm, an aluminum cylinder was installed rotatably from inside the cylinder. A heater was attached to heat the cylinder.

次いで、メインバルブ29を全開して蒸着イ¥!110
内の空気を排気し、約5 X ] 0−51.or+−
の真空度にしだ。その後ヒーター13を点火(7ぞれと
同時にシリンダーを1U分3回転の速度で回転させて該
シリンダーを均一に加熱し、てl 50 ’(Jに上昇
させこの温度に保った。その後、補助バルブ28を全開
し、引続いてボンベ16のバルブ25、ボンベ17のバ
ルブ26を全開した後、流i調節バルブ22及び23を
徐々に開いて、ボンベ16よりAtガスを、ボンベ17
よす5il(。
Next, fully open the main valve 29 and start vapor deposition! 110
Exhaust the air inside, about 5× ] 0-51. or+-
to a degree of vacuum. After that, the heater 13 was ignited (at the same time as each cylinder was rotated at a speed of 3 revolutions for 1 U to uniformly heat the cylinder, the cylinder was raised to 150' (J) and kept at this temperature. After that, the auxiliary valve 28, then fully open the valve 25 of the cylinder 16 and the valve 26 of the cylinder 17, and then gradually open the flow adjustment valves 22 and 23 to supply At gas from the cylinder 16 to the cylinder 17.
Yosu 5il (.

ガスを蒸着mlO内に導入した。この時、メインパルプ
29を調節して蒸着槽1(〕内の真空度が約0.75 
torrに保持される様にした0又、5IILガスの流
量がArガスの流量の10 voe%になる次に、ボン
ベ18のバルブ27を全開した後、フローメータ21を
注視し乍ら流量調整バルブ24を徐々に開き、その流量
がSN(、ガスの流h1の10 voe%になる様にし
て蒸着槽10内にTl、II、ガスを導入した。
Gas was introduced into the deposition mIO. At this time, adjust the main pulp 29 so that the degree of vacuum in the vapor deposition tank 1 is approximately 0.75.
The flow rate of the 0 or 5IIL gas, which is maintained at torr, becomes 10 voe% of the flow rate of the Ar gas.Next, after fully opening the valve 27 of the cylinder 18, while watching the flow meter 21, turn the flow rate adjustment valve. 24 was gradually opened, and Tl, II, and gases were introduced into the deposition tank 10 such that the flow rate was SN (10 voe% of the gas flow h1).

この時にも、メインパルプ29を調整して蒸着槽lO内
の真空度が約0.75 torrに保持される様に12
だ。
At this time, the main pulp 29 is adjusted so that the degree of vacuum in the vapor deposition tank IO is maintained at approximately 0.75 torr.
is.

続いて、高周波電源14のスイッチをONにして、’t
WAJi 15 、15’間に13.56 Mllzの
高周波を印加してグロー放電を起し、シリンダー基板上
にa−8t層を形成した。この時のグロー放電々流は約
3 rnA /cゴで電圧は1500Vであった。
Next, turn on the switch of the high frequency power supply 14 and
A high frequency of 13.56 Mllz was applied between WAJi 15 and WAJi 15' to generate a glow discharge, and an a-8t layer was formed on the cylinder substrate. At this time, the glow discharge current was about 3 rnA/c and the voltage was 1500V.

又、この場合のa−Si層の成長速度は、約2.5λ/
seeにし、23時間蒸着を行って、シリンダー基板上
に20μ厚のa−Si層を形成した。この様にして作成
した電子写真感光体を、蒸着終了後、メインパルプ29
、流量調節バルブ22゜23.24、バルブ25,26
.27を閉じ、代りにバルブ30を開いて蒸着イt’y
 i o内の〕!(空を破り、夕1部に取り出し、た。
Also, the growth rate of the a-Si layer in this case is approximately 2.5λ/
See, and vapor deposition was performed for 23 hours to form a 20μ thick a-Si layer on the cylinder substrate. After completing the vapor deposition, the electrophotographic photoreceptor produced in this way was heated to the main pulp 29.
, flow rate adjustment valve 22゜23.24, valve 25, 26
.. Close valve 27 and open valve 30 instead to begin deposition.
] in io! (I broke the sky and took it out in the evening.

この11(子11.j貢1a光体に、暗中に於いてTi
t源電月費−) 551’l OVでC)コロナ放電を
a−3i系光導電層表面に行い、次いで20eux−8
ecの露光h1“で画像露光を行って、静電像を形成し
、該静電像をカスタード法により■帯電されたトナーで
現像[7て転写紙上に転写・定着L7たところ極めて鮮
明な画像がイUられた。
This 11 (child 11.j tribute 1a light body, Ti in the dark
C) Corona discharge was performed on the surface of the a-3i photoconductive layer at 551'l OV, and then 20eux-8
An electrostatic image is formed by performing image exposure with exposure h1'' of ec, and this electrostatic image is developed with charged toner by the custard method [7] When transferred and fixed on transfer paper L7, an extremely clear image is obtained. was raped.

この様な画像形成処理を繰返し2、前記電子写真感光体
に施(−この電子′lJ真感光感光体久性に就て試験し
たところ、1万枚目の転写紙上にイ(Iられた画像も極
めて良質であって、一枚目の転写紙上の画像と較べても
何等差違はなく、この電子写真感光体が著しく耐久性に
富X7でいることが実証された。尚、クリーニング法と
1〜てけブレードクリーニングを採用し、ブレードはウ
レタンゴムで成型したものを使用した。
After repeating this image forming process 2, and testing the durability of the electrophotographic photoreceptor, it was found that the image formed on the 10,000th sheet of transfer paper was The quality of the image was also extremely high, and there was no difference in comparison with the image on the first sheet of transfer paper, proving that this electrophotographic photoreceptor was extremely durable at X7. ~Teke blade cleaning was adopted, and the blade was molded from urethane rubber.

次に」1記の電子写真感光体に就て、暗中で電源電圧6
000Vで(リコロナ放電を施し、次いで20 eux
・secの光量で画像露光を行い、前記のOコロナ放電
を施して画像出しをした時と同1美の条件で画像出しを
行ったところ、得られた転写紙上の画像はeコロナ帯電
の場合より低下していた。
Next, with respect to the electrophotographic photoreceptor described in item 1, the power supply voltage was 6
000V (recorona discharge, then 20 eux
・Image exposure was carried out with a light intensity of sec, and the image was produced under the same conditions as when the image was produced using O corona discharge as described above. It was lower than that.

この実験から、本実施例でイ0た電子写真感光体には帯
電極性の依存性が認められた。
From this experiment, it was found that the electrophotographic photoreceptor used in this example had a dependence on charging polarity.

実施例1O 実施例3に於いてB2ルガスの流量をSin、ガスの流
I7Lに対して種々変化させて、形成されるaSr層中
にドーピングされるBの量を下記の第4表に示す様に種
々の値に制御した以外は、実施例3と同様の条件及び試
料A@−@で示される電子写真感光体を作成した。
Example 1O In Example 3, the amount of B doped into the formed aSr layer was determined as shown in Table 4 below by varying the B2 gas flow rate with respect to Sin and the gas flow I7L. An electrophotographic photoreceptor designated as Sample A@-@ was prepared under the same conditions as in Example 3, except that the conditions were controlled to various values.

これ等を使用して実施例3と同様の画像形成条件によっ
て転写紙上に画像形成を行ったところ第4表に示す如き
の結果を得た。これ等の結果からも明白に判る様に、実
用的にも供される電子写真感光体としてはa−8t層中
にBが10′〜10  atornic%の範囲の量で
ドーピングされることか望オし、い。
When these were used to form an image on transfer paper under the same image forming conditions as in Example 3, the results shown in Table 4 were obtained. As is clear from these results, it is desirable that B be doped in the a-8t layer in an amount in the range of 10' to 10 atomic% for an electrophotographic photoreceptor that can be used practically. Yes, yes.

():  俊     O: 良      × : 
イζ ロF実施例11 第4図に示す装置濯を用い、以−1の様にして本発明の
電子写真感光体を作成し、両得!ノ[り酸処理を施して
画像出しを行った。
(): Shun O: Good ×:
Example 11 An electrophotographic photoreceptor of the present invention was prepared as described below using the apparatus shown in FIG. 4, and both results were achieved! An image was produced by performing phosphoric acid treatment.

1チのNaOHなる溶液を用いて表面処理を行い、充分
水洗し乾燥させて表面を清浄化した厚さ1mm、大きさ
l OcmX ]、 □crnのアルミニウム基板上に
予め約1000AlにMoを蒸着1−だ基板を用意して
蒸着槽31内の所定61置にある固定部材33の所定位
置にヒーター、34とは約10C1rL程度離して¥1
−4に固定した。
Surface treatment was performed using a solution of 1000 Al of Mo on an aluminum substrate with a thickness of 1 mm and a size of lOcmX], □crn, which was cleaned by thoroughly washing with water and drying to clean the surface. - Prepare a substrate and place a heater at a predetermined position of the fixing member 33 at a predetermined position in the vapor deposition tank 31, about 10C1rL apart from the heater 34 for 1 yen.
It was fixed at -4.

又、純度5nineの多結晶/リコンターゲット35か
らは約8.5CI71離した。次いで、蒸着槽31内の
空気を排気し、約lX10torrの真空度にしだ。そ
の後ヒーター34を点火して基板を均一に加熱して15
0“0に上昇させ、この温度に保った。その後補助バル
ブ45を全開り1、引続いてボンベ3Bのバルブ49を
全開した後、流量調節バルブ44を徐々に開いてメイン
ノ(ルブ46で調節しながらボンベ38よシ迅ガスを、
蒸着槽31内の真空度が5.5 X 10’ torr
になる様にして蒸着槽31内に導入した0 続いで、バルブ39を全開した後、流量調節バルブ43
を70−メータ41を注視し乍ら徐々に開き蒸着槽31
内の真空度が5 X 10’torrになる様にしてA
rガスを蒸着槽31内に導入した3、 その後、高周波電源36のスイッチをONにして、アル
ミニウム基板と多結晶シリコンターゲット間に13.5
6MIIz、 I KVの高周波を加えて放電を起させ
、アルミニウム基板上にa −S 1層の形成を開始し
た。この時のa−8層層の成長速度は約21 / se
eに制御し、30時間連続的に行った。
Further, it was separated from the polycrystalline/recon target 35 with a purity of 5 nines by about 8.5 CI71. Next, the air in the vapor deposition tank 31 is evacuated to create a vacuum of about 1×10 torr. After that, the heater 34 is ignited to uniformly heat the board.
After that, the auxiliary valve 45 was fully opened and the valve 49 of the cylinder 3B was fully opened, and the flow rate adjustment valve 44 was gradually opened and the main nozzle (adjusted with the lube 46) While doing so, fill cylinder 38 with gas,
The degree of vacuum in the vapor deposition tank 31 is 5.5 x 10' torr.
Then, after fully opening the valve 39, the flow rate adjustment valve 43 was opened.
While watching the 70-meter 41, gradually open the vapor deposition tank 31.
Make sure that the vacuum inside is 5 x 10'torr.
After introducing r gas into the deposition tank 31, the high-frequency power source 36 was turned on, and 13.5% was introduced between the aluminum substrate and the polycrystalline silicon target.
A high frequency wave of 6 MIIz, I KV was applied to generate a discharge, and the formation of an a-S 1 layer on the aluminum substrate was started. The growth rate of the a-8 layer at this time is approximately 21/se
The test was conducted continuously for 30 hours.

その結果形成されたa  S1層の厚さけ20 ttで
あった。
The thickness of the resulting aS1 layer was 20 tt.

この暖にして作成した本発明の電子写真感光体に対して
暗中で電源電圧550 (l Vで0コロナ放電を行い
、次いで15 /IIX”8eeの充積で画像露光を行
って静電像を形成した。この静電像をカスケード法によ
り■に荷Mイされたトナーを用いて現像を行い、次いで
転写紙上VC転写定着を行ったところ、極めて鮮明で良
質の画像が得られた。
The electrophotographic photoreceptor of the present invention prepared in this warm state was subjected to 0 corona discharge at a power supply voltage of 550 (l V) in the dark, and then imagewise exposed at a charge of 15/IIX"8ee to form an electrostatic image. This electrostatic image was developed by a cascade method using a toner loaded with M, and then VC transfer fixation was performed on a transfer paper, and an extremely clear and high quality image was obtained.

実施例20 実施例11に於いてJf、ガスの流量をArガスの流量
に対して種々変化させて、形成されるa−8層層中にド
ーピングされるHの蕾を下記の第5表に示す様に種々の
値に制御した以外は、実施例11と同様のφ件及び試料
〕KO〜0で示される電子写真感光体を作成した。
Example 20 In Example 11, the flow rate of Jf and gas was varied with respect to the flow rate of Ar gas, and the H buds doped in the a-8 layer formed are shown in Table 5 below. Electrophotographic photoreceptors with φ values and samples KO~0 were prepared in the same manner as in Example 11, except that the values were controlled to various values as shown.

これ等を使用して実施例11と同様の画像形成条F’l
:によって転写紙上に画像形成を行ったところ第5表に
示す如きの結果を得た。これ等の結果からも明白に判る
様に、実用的にも供される′電子写真感光体としてはa
−8層層中にHが10〜40 atomic%の範囲の
量でドーピングされることが望才しい。
Using these, the same image forming strip F'l as in Example 11 was prepared.
When an image was formed on a transfer paper using the following method, the results shown in Table 5 were obtained. As is clear from these results, as a practical electrophotographic photoreceptor, a
Preferably, H is doped into the -8 layer in an amount ranging from 10 to 40 atomic percent.

O:侵 ○:良 △:実用上使用し得る ×:不可実施
例21 実施例1.3及び4で作成した電子写真感光体を、各々
、温度40°C1湿度90RHチの高温多湿雰囲気中に
放置した。96時間経過後、温度23°0、湿度50R
H%の雰囲気中に取υ出してすぐに、各々の感光体に就
て各々の実施例で行った条件及び手順で転写紙上に画像
形成を行ったところ、鮮明で良品質の画像が得られた。
O: Violation ○: Good △: Practically usable ×: Not possible Example 21 The electrophotographic photoreceptors prepared in Examples 1, 3 and 4 were placed in a high-temperature and humid atmosphere at a temperature of 40° C. and a humidity of 90 RH. I left it alone. After 96 hours, temperature 23°0, humidity 50R
Immediately after being taken out into a H% atmosphere, images were formed on transfer paper using the conditions and procedures used in each example for each photoreceptor, and clear and high-quality images were obtained. Ta.

この結果から本発明の?lL子写真感光体が耐湿性の点
に於いても極めて優1]、ていることが実証された。
Based on this result, is this invention possible? It has been demonstrated that the LL photographic photoreceptor has excellent moisture resistance as well.

実施例22 実施例1と全く同様にI7て作成1.だ?に子写貞感光
体に対し−C1暗中に於いて電源tri F「60 (
10Vでeコロナ放電を行い、次いで20 eux−s
acの露光量で画像露光を行って静′屯像を形成し、該
靜vt像を、イソパラフィン系炭化水木溶剤に荷電性ト
ナーを分散させた液体現像剤を使用して現像して、転写
紙上に転写定オ“1した。、この様にして得られた転写
紙上の画像U」1、極めて解像度が高く鮮明であって、
高品質であった。
Example 22 Created using I7 in exactly the same manner as Example 1. is? For Niko photoreceptor -C1 in the dark, power supply tri F'60 (
e-corona discharge at 10V, then 20 eux-s
A static image is formed by imagewise exposure with an AC exposure amount, and the static VT image is developed using a liquid developer in which a charged toner is dispersed in an isoparaffinic hydrocarbon wood solvent, and is then printed on a transfer paper. The image U on the transfer paper thus obtained was extremely high in resolution and clear.
It was of high quality.

更に−に配電子写真感光体の耐溶剤性(耐液現性)を試
験する為に上記の画像形成ブjffセスを繰返し施し、
先の転写紙上の画像J:1万枚目の転写紙上の画像とを
比較したところ、差違は全く見られず本発明の電子写真
感光体が耐溶剤性に長けているのが実証された。尚感光
体のクリーニング法としては、ブレードクリーニング法
を適用し、ウレタンゴムを成型したブレードを使用した
Furthermore, in order to test the solvent resistance (liquid development resistance) of the electrophotographic photoreceptor, the above image forming process was repeatedly applied.
Image J on the previous transfer paper: When the image on the 10,000th transfer paper was compared, no difference was observed, demonstrating that the electrophotographic photoreceptor of the present invention has excellent solvent resistance. As a cleaning method for the photoreceptor, a blade cleaning method was applied, and a blade made of urethane rubber was used.

【図面の簡単な説明】[Brief explanation of the drawing]

2111図及び第2図は、各々本発明の電子写真感光体
の好適ガ実施態様の一例を示す模式的構成断面図、 第3図及び第4図は各々本発明の電子写真感光体を製造
する為の装置の一例を示す模式的説明図である。 ■、5・・・電子写真感光体、2.6・・・支持体、;
3,7・・・光導電層、8・・・表面被覆層、4,9・
・自由表面、10.31・・・蒸着槽、14.36・・
高周波電源 出願人  キャノン株式会社 Itτユ辿(5
2111 and 2 are schematic structural cross-sectional views showing examples of preferred embodiments of the electrophotographic photoreceptor of the present invention, and FIGS. 3 and 4 are respectively for manufacturing the electrophotographic photoreceptor of the present invention. FIG. 2 is a schematic explanatory diagram showing an example of a device for ■, 5... Electrophotographic photoreceptor, 2.6... Support;
3, 7... Photoconductive layer, 8... Surface coating layer, 4, 9...
・Free surface, 10.31... Vapor deposition tank, 14.36...
High frequency power supply applicant: Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 支持体と、アモルファスシリコンで構成されている光導
電層とを有する電子写真感光体の製造法に於いて、支持
体の層形成面をグロー放電に晒す事を特徴とする電子写
真感光体の製造方法。
A method for producing an electrophotographic photoreceptor having a support and a photoconductive layer made of amorphous silicon, which comprises exposing the layer-forming surface of the support to glow discharge. Method.
JP9804482A 1982-06-08 1982-06-08 Preparation of photosensitive material for electrophotography Pending JPS5832009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9804482A JPS5832009A (en) 1982-06-08 1982-06-08 Preparation of photosensitive material for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9804482A JPS5832009A (en) 1982-06-08 1982-06-08 Preparation of photosensitive material for electrophotography

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52154629A Division JPS6035059B2 (en) 1977-12-22 1977-12-22 Electrophotographic photoreceptor and its manufacturing method

Publications (1)

Publication Number Publication Date
JPS5832009A true JPS5832009A (en) 1983-02-24

Family

ID=14209141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9804482A Pending JPS5832009A (en) 1982-06-08 1982-06-08 Preparation of photosensitive material for electrophotography

Country Status (1)

Country Link
JP (1) JPS5832009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212844A (en) * 1983-05-18 1984-12-01 Kyocera Corp Electrophotographic sensitive body
JPS59212845A (en) * 1983-05-18 1984-12-01 Kyocera Corp Electrophotographic sensitive body
JPS60125369A (en) * 1983-12-12 1985-07-04 Mitsubishi Electric Corp Vapor deposition device for thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212844A (en) * 1983-05-18 1984-12-01 Kyocera Corp Electrophotographic sensitive body
JPS59212845A (en) * 1983-05-18 1984-12-01 Kyocera Corp Electrophotographic sensitive body
JPS60125369A (en) * 1983-12-12 1985-07-04 Mitsubishi Electric Corp Vapor deposition device for thin film

Similar Documents

Publication Publication Date Title
JPS6035059B2 (en) Electrophotographic photoreceptor and its manufacturing method
USRE35198E (en) Image forming member for electrophotography
US4737428A (en) Image forming process for electrophotography
US5753936A (en) Image forming member for electrophotography
US4664998A (en) Electrophotographic image forming member having hydrogenated amorphous photoconductive layer including carbon
US4552824A (en) Electrophotographic photosensitive member and process for production thereof
JPS6226459B2 (en)
JPS6226458B2 (en)
JPS639221B2 (en)
JPS6161103B2 (en)
JPS649623B2 (en)
JPS5832009A (en) Preparation of photosensitive material for electrophotography
JPS6161102B2 (en)
JPS5828752A (en) Electrophotographic receptor
JPS5828753A (en) Electrophotographic receptor
JPS6227388B2 (en)
JPS5952251A (en) Manufacture of electrophotographic image forming material
JPH0241742B2 (en)
JP3535664B2 (en) Electrophotographic equipment
JPS58111951A (en) Image forming member for electrophotography
JPS58187935A (en) Photoconductive member
JPS6161101B2 (en)
JPS6161105B2 (en)
JP2558210B2 (en) Electrophotographic image forming member
JPS5875155A (en) Image forming member for electrophotography