JPS5831203B2 - How to use the service - Google Patents

How to use the service

Info

Publication number
JPS5831203B2
JPS5831203B2 JP48144144A JP14414473A JPS5831203B2 JP S5831203 B2 JPS5831203 B2 JP S5831203B2 JP 48144144 A JP48144144 A JP 48144144A JP 14414473 A JP14414473 A JP 14414473A JP S5831203 B2 JPS5831203 B2 JP S5831203B2
Authority
JP
Japan
Prior art keywords
liquid
membrane
extraction
amount
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48144144A
Other languages
Japanese (ja)
Other versions
JPS49125276A (en
Inventor
チエン リユー カン
ツアン チヨン リー レスター
ソー ホー ヴイン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARAIDO CORP
Original Assignee
ARAIDO CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARAIDO CORP filed Critical ARAIDO CORP
Publication of JPS49125276A publication Critical patent/JPS49125276A/ja
Publication of JPS5831203B2 publication Critical patent/JPS5831203B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0415Solvent extraction of solutions which are liquid in combination with membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/246Membrane extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/246Membrane extraction
    • B01D61/2461Membrane extraction comprising multiple membrane extraction steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/90Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/38Nitric acid
    • C01B21/46Purification; Separation ; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/46Preparation involving solvent-solvent extraction
    • C01B25/461Preparation involving solvent-solvent extraction the phosphoric acid present in the medium obtained after reaction being first extracted from the liquid phase formed or separated then re-extracted as free acid by using water or as a phosphate by using a basic compound
    • C01B25/462Preparation involving solvent-solvent extraction the phosphoric acid present in the medium obtained after reaction being first extracted from the liquid phase formed or separated then re-extracted as free acid by using water or as a phosphate by using a basic compound the extracting agent being alcohol or a mixture of alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0731Purification ; Separation of hydrogen chloride by extraction
    • C01B7/0737Purification ; Separation of hydrogen chloride by extraction hydrogen chloride being extracted
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/09Bromine; Hydrogen bromide
    • C01B7/096Bromine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)

Description

【発明の詳細な説明】 この発明は、事実上非混和性である2つの液体を用いる
溶媒抽出用膜の使用、および従来の二相溶媒抽出に勝る
多くの利点を持つ新規方法を目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the use of membranes for solvent extraction with two liquids that are virtually immiscible and to a novel process that has many advantages over traditional two-phase solvent extraction. .

溶媒抽出法は分離処理に役立つ操作である。Solvent extraction is a useful separation procedure.

この操作においては、液体溶媒Cを使用して溶質(1種
または複数種)Aをそれが溶解している二番目の液体B
から抽出する。
In this operation, a liquid solvent C is used to transfer solute(s) A to a second liquid B in which it is dissolved.
Extract from.

液体BとCは非混和性であるか、わずかに混和性である
Liquids B and C are immiscible or slightly miscible.

通常の操作においては液体BとCを直接に混合し、それ
から二相に分離する。
In normal operation, liquids B and C are mixed directly and then separated into two phases.

しかしながら、この直接混合にはある種の固有な困難さ
が存在する。
However, there are certain inherent difficulties with this direct mixing.

例示すると、泡がしばしば発生し、この泡は例えば物質
移行速度を下げるという不利点を持ち、完全な相分離を
妨げる。
By way of example, foam is often generated, which has the disadvantage of reducing the mass transfer rate, for example, and prevents complete phase separation.

従来の溶媒抽出法において物質移行有効面積を増加させ
るためには、混合中に小滴が形成されなければならない
In order to increase the effective mass transfer area in traditional solvent extraction methods, droplets must be formed during mixing.

このような場合においては、混合器〜沈殿器、機械的な
カラム攪拌などの操作が原因となり、液体相混合物を含
む方法における粉末消費が高い。
In such cases, powder consumption is high in processes involving liquid phase mixtures due to operations such as mixer-settlers, mechanical column stirring, etc.

混合中に生ずる小滴が形成される時はバックミクシンク
が起こり得、物質移行速度の低下につながる。
Backmixing can occur when droplets are formed during mixing, leading to reduced mass transfer rates.

また、小滴のサイズが小さくなるほど泡は簡単に発生す
る。
Also, the smaller the droplet size, the easier bubbles will form.

一定の装置で溶質Aを溶質混合物から抽出しようとする
ならば、従来の操作では液体B中の他の溶質からAを選
択的に抽出する液体溶媒Cを選択せねばならない。
If solute A is to be extracted from a solute mixture in a given device, conventional operation must select a liquid solvent C that selectively extracts A from other solutes in liquid B.

しかしながら、この選択は時によっては困難となる。However, this choice can sometimes be difficult.

この制限に加え、通常の溶媒抽出法では、エントレイン
メントによる溶媒損失が多く、相分離のためにはホール
ド・アップ(hold−up)タンクが一般に必要であ
る。
In addition to this limitation, conventional solvent extraction methods suffer from high solvent losses due to entrainment, and hold-up tanks are generally required for phase separation.

膜系を使用するこの発明は、従来の溶媒抽出法に固有な
前述その他の様々な欠点がない。
The present invention, which uses a membrane system, does not suffer from the aforementioned and various other drawbacks inherent in conventional solvent extraction methods.

この発明は、従来の溶媒抽出法により優れており、分離
技術において十分な実用的重要性を持つ溶媒抽出からな
る新規な膜系分離法を意図している。
The present invention contemplates a novel membrane-based separation method consisting of solvent extraction that is superior to conventional solvent extraction methods and has sufficient practical importance in separation technology.

この発明の境膜溶媒抽出法においては、事実上非混和性
である2つの液体BとCを境膜により、すなわち2つの
液体の相接触なしに分離する。
In the membrane solvent extraction method of this invention, two liquids B and C, which are virtually immiscible, are separated by a membrane, ie, without phase contact of the two liquids.

抽出操作中に溶質(単・複)Aは液体Bから膜中に拡散
し、この膜を通過し、遂には液体Cに移る。
During the extraction operation, solute(s) A diffuses from liquid B into the membrane, passes through this membrane, and finally passes into liquid C.

膜を使用し、2つの液体を混合することなく、一番目の
液体中に存在する溶質を二番目の液体に移行させるため
の簡単で、効率よく、かつ経済的である溶媒抽出方法を
与えることがこの発明の第一の目的である。
To provide a simple, efficient, and economical solvent extraction method for transferring solutes present in a first liquid to a second liquid using a membrane and without mixing the two liquids. is the first objective of this invention.

二つの媒質を直接接触する必要なく一つの液体媒質から
物質を選択的に抽出し、その物質を二第目の液体媒質中
に沈殿させるための機構として、単位体積当たりの物質
移行有効面積の大きい中空繊維膜を用いる溶媒抽出方法
を与えることがもう一つの、そして更に特定された目的
である。
A mechanism for selectively extracting a substance from one liquid medium and precipitating the substance into a second liquid medium without the need for direct contact between the two media, with a large mass transfer effective area per unit volume. It is another and more specific object to provide a solvent extraction method using hollow fiber membranes.

この発明の他の目的および利点は以下の一層詳細な記載
より明らかになるであろう。
Other objects and advantages of the invention will become apparent from the more detailed description below.

記載中、部および割合は他に特記ないかぎり重量による
In the description, parts and percentages are by weight unless otherwise specified.

中空繊維、千判、管状形その他の形をした膜を境膜溶媒
抽出法で利用できる。
Membranes of hollow fiber, millimeter, tubular, and other shapes can be used in membrane solvent extraction methods.

しかしながら、好ましい具体化により、この発明は2つ
の液体媒質を混合することなく成分物質Aを一番目の液
体媒質Bから分離し、この物質を二番目の液体媒質C中
に導入するための機構として中空繊維膜を使用すること
を意図している。
However, according to a preferred embodiment, the invention provides a mechanism for separating component substance A from a first liquid medium B and introducing this substance into a second liquid medium C without mixing the two liquid mediums. It is intended to use hollow fiber membranes.

この発明により与えられる中空繊維の使用を含む境膜溶
媒抽出法の利点の幾つかを以下に更に詳細に述べるが、
次の通りまとめることができる。
Some of the advantages of membrane solvent extraction methods involving the use of hollow fibers provided by this invention are discussed in more detail below, including:
It can be summarized as follows.

1、単位体積当たりの大きな物質移行有効面積の利用。1. Utilization of large effective mass transfer area per unit volume.

例えば外径(0,D、)が100μm1内径(1,D、
)が907zm、そして繊維間隔が20μm(第2図参
照)である中空繊維膜では体積1フイート3当たり6.
7X103フイート2(OlDに基づき)の膜面積が得
られる。
For example, the outer diameter (0, D,) is 100 μm1 the inner diameter (1, D,
) is 907 zm and the fiber spacing is 20 μm (see Figure 2).
A membrane area of 7×10 3 ft 2 (based on OLD) is obtained.

2、二相の直接混合を避け、これにより泡発生を除く。2. Avoid direct mixing of the two phases, thereby eliminating foam generation.

3、処理対象流体中の様々な成分を異なった選択性を持
った膜の使用により順次選択的に抽出する、二つの溶媒
相の逆混合の防止。
3. Prevention of back-mixing of the two solvent phases, which sequentially selectively extracts various components in the fluid to be treated by using membranes with different selectivities.

4、優れた選択性−抽出選択性は膜を通じて確立できる
4. Excellent selectivity - Extraction selectivity can be established through membranes.

5、高純度生成物。5. High purity product.

6、溶媒損失を低下させるための、エントレインメント
現象の回避。
6. Avoidance of entrainment phenomena to reduce solvent loss.

7、 ホールドアツプ(hold−up)タンクの除去
−相分離の不必要化。
7. Elimination of hold-up tanks - no need for phase separation.

8、粉末消費量の事実上の低下。8. Practical reduction in powder consumption.

9、処理装置の配置の柔軟性、すなわち、装置は垂直に
も水平にも配置できる。
9. Flexibility in the placement of the processing equipment, ie, the equipment can be placed either vertically or horizontally.

10、その他。10. Others.

好ましい具体化として、この発明は以下に更に詳しく述
べる連続向流溶媒抽出装置を利用することにより有効に
実施できる。
In a preferred embodiment, the invention is effectively practiced using a continuous countercurrent solvent extraction apparatus, which is described in more detail below.

そのような溶媒抽出装置を用い、溶質Aをその溶質を含
む溶液から経済的かつ効率よく取り出すことができる。
Using such a solvent extraction device, solute A can be extracted economically and efficiently from a solution containing the solute.

使用する抽出装置は添付図面の第1図のような単一段で
よく、溶媒B中に初めは存在する成分Aを溶媒Cにより
取り出し、あるいは第4図に示したような、1種以上の
溶質を別々に抽出するための多段装置でよく、異なった
選択性を持つ膜および/または異なった溶媒の使用によ
り溶質AI 、 A2またはA3を順次取り出す。
The extraction apparatus used may be a single stage, as shown in Figure 1 of the accompanying drawings, in which component A, initially present in solvent B, is removed by solvent C, or one or more solutes, as shown in Figure 4, are removed. It may be a multi-stage device for the separate extraction of solutes AI, A2 or A3 by the use of membranes with different selectivities and/or different solvents.

中空繊維膜を使用する場合は、抽出用溶媒Cは中空繊維
中を通過し、溶質Aを含み、中空繊維外壁あるいは内壁
に接触している溶媒Bからその溶質を抽出するように配
置できる。
When using hollow fiber membranes, extraction solvent C can be arranged to pass through the hollow fibers and extract the solutes from solvent B, which contains solute A and is in contact with the outer or inner walls of the hollow fibers.

中空繊維膜の接触および溶質含有溶液からの溶質の分離
は広範囲の圧力と温度を使用して行なうことができる。
Contacting the hollow fiber membrane and separating the solute from the solute-containing solution can be accomplished using a wide range of pressures and temperatures.

しかしながら、実用的、すなわちこの発明の方法の操作
の全体的経済性に適合する圧力と温度とを使用すべきで
ある。
However, pressures and temperatures should be used that are practical, ie compatible with the overall economics of operation of the process of this invention.

例えば、0〜84kg/ff1(0〜1200 psi
a )あるいはそれ以上の圧力と溶液の氷点から200
℃の間の温度好ましくは周囲圧力と25〜75℃の温度
を使用できる。
For example, 0 to 84 kg/ff1 (0 to 1200 psi
a) or higher pressure and 200° from the freezing point of the solution.
Temperatures between 25 DEG and 75 DEG C. can be used, preferably at ambient pressure.

片面に溶質含有溶液を接触している膜の反対面との抽出
用溶媒の接触は、溶質が膜を通り抜は抽出用溶媒中に完
全に除去されるまで続ける。
Contact of the extraction solvent with the opposite side of the membrane, which is in contact with the solute-containing solution on one side, continues until the solute is completely removed through the membrane and into the extraction solvent.

好ましい具体化により、抽出用溶媒Cの再生は蒸留によ
り簡単に達成される。
According to a preferred embodiment, regeneration of the extraction solvent C is simply achieved by distillation.

したがって、この発明の使用による溶媒損失は最小であ
り、それゆえこの発明の重要な経済上の利点となる。
Therefore, solvent losses through use of this invention are minimal, thus representing a significant economic advantage of this invention.

境膜溶媒抽出においては、物質移行速度は2つの事実上
非混和性である液体相の境の膜を通じての溶質Aの拡散
量に左右される。
In membrane solvent extraction, the rate of mass transfer depends on the amount of diffusion of solute A through the membrane between two virtually immiscible liquid phases.

この拡散量はフィック(Fick)の式により次のよう
に表わすことができる。
This amount of diffusion can be expressed as follows using Fick's equation.

(式中Fは膜を通じての拡散量:Dは拡散率:そして4
」は濃度変化率である。
(In the formula, F is the amount of diffusion through the membrane, D is the diffusion rate, and 4
” is the concentration change rate.

)x 約lX10−9〜10−W/秒の拡散率(D)が一定の
抽出系には必要とされる。
) x A diffusivity (D) of about lX10-9 to 10-W/sec is required for a constant extraction system.

通常は10 ’crtt/秒より大きい拡散率が望まし
い。
Diffusion rates greater than 10' crtt/sec are usually desirable.

この発明により規程かの膜を多くの溶媒抽出系で用い、
望ましい結果を得ている。
With this invention, the specified membrane can be used in many solvent extraction systems,
I am getting the desired results.

最適膜の選択はその使用環境、例えば拡散率、2種の液
体の安定性、そして場合によっては酸および/または塩
基に対する耐性に左右される。
Selection of the optimal membrane depends on its use environment, such as diffusivity, stability of the two liquids, and optionally resistance to acids and/or bases.

間型的な膜としては例えばKynar(ポリフッ化ビニ
リデン)−PSSA(ポリスチレンスルホン酸)共重合
体、セルロース、BAMP(ポリ(1,7(4−メチル
)アザヘプタンアジパミド)−ナイロン、NTA(ポリ
〔1゜ω−アルキレン(2,6−シケトピペラジン)
−i。
Examples of interstitial membranes include Kynar (polyvinylidene fluoride)-PSSA (polystyrene sulfonic acid) copolymer, cellulose, BAMP (poly(1,7(4-methyl)azaheptaneadipamide)-nylon, NTA( Poly[1゜ω-alkylene (2,6-siketopiperazine)
-i.

4−ジカルボキシアミド〕)−ナイロン、ナイロン膜お
よび合成皮がある。
4-dicarboxamide]) - nylon, nylon membrane and synthetic skin.

これらの系をA/B/C〔Aは溶質(単・複);そして
BとCは事実上非混和性である2種の液体であり、Cは
Aが溶解している他の液体BからAを抽出するための液
体溶媒として使用する。
We define these systems as A/B/C [A is the solute(s); and B and C are two virtually immiscible liquids, and C is the other liquid B in which A is dissolved. used as a liquid solvent to extract A from

BとCを交換して逆にしてもよい。B and C may be exchanged and reversed.

〕の形でリストされている広範囲の抽出系と共に使用で
きる。
] Can be used with a wide range of extraction systems listed as:

この系をA/B/Cの順序でそれぞれ例示すると、例え
ば 1、 ε−カブロラククム/H2SO4/水溶液/HC
l3 2、 ε−カプロラクタム/H20/CHCl33、
C2H4cz2/n−ヘプタン 4、ジニトロトルエン/H20/トルエン5、フェノー
ル/H20/トルエン 6、トルエンジアミン/H20/ジニトロトルエン7、
フルフラル/H20/トルエン 添付図面において、第1図と第2図は、溶媒Cが中空繊
維を通じてのみ通過し、溶質Aを含む溶媒Bが中空繊維
のみの外壁に接触するように中空繊維が適当に含まれて
いる室の例示である。
To illustrate this system in the order of A/B/C, for example, 1, ε-cabrolaccum/H2SO4/aqueous solution/HC
l3 2, ε-caprolactam/H20/CHCl33,
C2H4cz2/n-heptane 4, dinitrotoluene/H20/toluene 5, phenol/H20/toluene 6, toluenediamine/H20/dinitrotoluene 7,
Furfural/H20/Toluene In the accompanying drawings, Figures 1 and 2 show that the hollow fibers are properly arranged so that solvent C passes only through the hollow fibers and solvent B containing solute A contacts the outer wall of only the hollow fibers. This is an example of the chambers included.

この発明の中空繊維機構を用いる典型的な抽出方法のフ
ローダイアグラムを第3図に例示する。
A flow diagram of a typical extraction method using the hollow fiber mechanism of this invention is illustrated in FIG.

このフローダイアグラムにおいて、導入流dを例えば1
.665kg(3,700ib)7時〔水中に0.35
%(3500pp111)のジニトロトルエンを含む〕
の流速で抽出方法に与える。
In this flow diagram, the inlet flow d is, for example, 1
.. 665 kg (3,700 ib) 7 o'clock [0.35 in water
% (3500pp111) dinitrotoluene]
to the extraction method at a flow rate of .

例えば、流れ乙1はジニトロトルエン製造で得た汚染流
からなり、中空繊維抽出単位I中に導入され、そこで、
流れ20中のジニトロトルエンは約33.84kg(7
5,21b)7時の流速のトルエンである有機溶媒流2
1中に完全に抽出される。
For example, stream O 1 consists of a contaminated stream obtained from dinitrotoluene production and is introduced into hollow fiber extraction unit I, where it is
The dinitrotoluene in stream 20 is approximately 33.84 kg (7
5,21b) Organic solvent stream 2 which is toluene at a flow rate of 7 h
It is completely extracted in 1.

この流れ21を、15%濃度のジニトロトルエンを含み
、流速が38.88kg(86,4lb)7時である流
れ22として抽出単位から取り出し、更に、処理加工の
ためにトルエンの硝酸処理装置に送られる回収流として
処理加工できる。
This stream 21 is removed from the extraction unit as stream 22 containing a 15% concentration of dinitrotoluene and having a flow rate of 38.88 kg (86,4 lb) 7 hours and sent to a toluene nitric acid treatment unit for further processing. It can be processed as a recovered stream.

抽出後の水性流23は1.665に9(3,700lb
)7時の流速を持ち、濃度2.51]pIIlのジニト
ロトルエンと濃度約450p叩のトルエンとを含む。
The aqueous stream 23 after extraction was 1.665 to 9 (3,700 lb
) and contains dinitrotoluene at a concentration of 2.51 pII and toluene at a concentration of about 450 pII.

流れ23中の痕跡量のトルエンは中空繊維抽出単位■を
通じて更に抽出でき、あるいは他手段により処理できる
Traces of toluene in stream 23 can be further extracted through the hollow fiber extraction unit 2 or treated by other means.

抽出器中の有機溶媒流24はn−デカンのような炭素数
の大きいn−アルカンであり、水には取るにたらないほ
どわずかしか溶解しない。
The organic solvent stream 24 in the extractor is a high carbon number n-alkane, such as n-decane, which is negligibly soluble in water.

中空繊維抽出単位■を通じて、流れ23中のトルエンは
約4.23kg(9,4ib)7時の流速を持つ流れ2
4により抽出される。
Through the hollow fiber extraction unit ■, approximately 4.23 kg (9,4 ib) of toluene in stream 23 is extracted from stream 2 with a flow rate of 7 hours.
4.

この抽出後に抽出単位■から出る流れ25は15%濃度
のトルエンを含み、4.995kg(11,1lb)7
時の流速を持つ。
After this extraction, the stream 25 leaving the extraction unit ■ contains toluene with a concentration of 15% and contains 4.995 kg (11,1 lb) 7
It has a flow rate of time.

流れ25中の有機溶媒、n−アルカンを蒸留により回収
して、中空繊維抽出単位■に再循環される流れ44を与
える。
The organic solvent, n-alkane, in stream 25 is recovered by distillation to provide stream 44, which is recycled to hollow fiber extraction unit 2.

0.765kg(1,7lb)7時の流速を持つトルエ
ン流26を蒸留塔28から取り出し、33.08ky(
73,5lb)7時の流速を持つ補充トルエン流27と
あわせて流れ21とする。
A toluene stream 26 having a flow rate of 0.765 kg (1.7 lb) 7 hours is removed from the distillation column 28 and
73,5 lb) to form stream 21 with make-up toluene stream 27 having a flow rate of 7:00.

中空繊維抽出単位■通過後、流れ23は2.5 ppI
nあるいはそれ以下の濃度のジニトロトルエンと2.5
ppmのトルエンとを含む水性流29となる。
After passing through the hollow fiber extraction unit, stream 23 has a concentration of 2.5 ppI
dinitrotoluene at a concentration of n or less and 2.5
ppm of toluene.

流れ29中の有機汚染物の全量は約5ppmであり、こ
の流れυを再使用のために再循環して戻すことができる
The total amount of organic contaminants in stream 29 is about 5 ppm, and this stream υ can be recycled back for reuse.

中空繊維溶媒抽出機構を用いるこの発明の抽出方法が回
収方法だけでなく汚染物調節方法でもあることは明らか
である。
It is clear that the extraction method of this invention using a hollow fiber solvent extraction mechanism is not only a recovery method but also a contaminant control method.

この抽出方法の場合、抽出単位I中の溶質Aはジニトロ
トルエン、液体BはH20、そして液体Cはトルエンで
あり、抽出単位■中のAはトルエン、BはH2O1そし
てCはn−アルカンであることが望ましい。
For this extraction method, solute A in extraction unit I is dinitrotoluene, liquid B is H20, and liquid C is toluene, and in extraction unit I, A is toluene, B is H2O1, and C is n-alkane. This is desirable.

流れ中の多数の溶質を別々に抽出することが望ましい場
合には、多段式膜抽出単位を用いる抽出方法を使用でき
る。
If it is desired to separately extract multiple solutes in a stream, an extraction method using a multi-stage membrane extraction unit can be used.

多段式膜抽出単位の配置は、例として三段式膜抽出単位
の場合を第4図に示す。
The arrangement of the multi-stage membrane extraction unit is shown in FIG. 4 as an example in the case of a three-stage membrane extraction unit.

そのダイアダラムにおいて、液体B中に3種の溶質A1
.A2およびA3を含む流れを、Bと事実上非混和性で
ある二番目の液体C1により膜抽出単位Iを通じて抽出
する。
In the diaphragm, three solutes A1 in liquid B
.. The stream containing A2 and A3 is extracted through membrane extraction unit I with a second liquid C1 which is virtually immiscible with B.

この抽出単位はA1のみを通過させ、A2とA3を通さ
ない選択性を特徴とする。
This extraction unit is characterized by the selectivity of allowing only A1 to pass and not A2 and A3.

それゆえこの一番目の抽出後に、A2とA3はまだB中
に存在するがA1はC1に転溶している。
Therefore, after this first extraction, A2 and A3 are still present in B, but A1 has been transferred to C1.

A2とA3を含む流れBを、膜抽出単位田中で、事実上
Bと非混和性である液体C2により再び抽出する。
Stream B containing A2 and A3 is extracted again in the membrane extraction unit Tanaka with liquid C2 which is virtually immiscible with B.

膜抽出単位■はA2のみを通過させ、A3を拒絶する選
択性を持つ。
The membrane extraction unit ■ has the selectivity of allowing only A2 to pass through and rejecting A3.

それゆえ、この二番目の抽出後、A2はC2中に抽出さ
れており、A3はまだBにある。
Therefore, after this second extraction, A2 has been extracted into C2 and A3 is still in B.

A3を含むBの流れを膜抽出単位■において更に液体C
3で抽出する。
The flow of B containing A3 is further processed into liquid C in the membrane extraction unit ■.
Extract with 3.

液体C3はBと事実上非混和性である。Liquid C3 is virtually immiscible with B.

A3はC3中に抽出される。溶質AH2A2およびA3
は分子サイズまたは化学構造が異なればよい。
A3 is extracted into C3. Solutes AH2A2 and A3
may differ in molecular size or chemical structure.

液体C1,C2およびC3は一つの有機溶媒として同一
でも、あるいは三つの有機溶媒として異なってもよい。
Liquids C1, C2 and C3 may be the same as one organic solvent or different as three organic solvents.

以下の実施例はこの発明の例示である。The following examples are illustrative of the invention.

詳しく列挙されたものをこの発明の範囲の制限として考
えてはならない。
The detailed recitation is not to be considered as a limitation on the scope of this invention.

実施例 1 2つの隔室を持つ拡散室を用いて境膜溶媒抽出を行なっ
た。
Example 1 Film solvent extraction was performed using a two-compartment diffusion chamber.

膜を2つの隔室の間にしっかりと据え付けた。The membrane was firmly seated between the two compartments.

溶質Aを含む液体Bを隔室の1つに導入し、一方、液体
Cを他の隔室中に注ぎ入れた。
Liquid B containing solute A was introduced into one of the compartments, while liquid C was poured into the other compartment.

溶質Aを拡散により、膜を通じて液体Bから液体Cに抽
出した。
Solute A was extracted from liquid B to liquid C through the membrane by diffusion.

この実施例においては4.58X10づ斜厚の膜1を使
った。
In this example, a membrane 1 with a diagonal thickness of 4.58×10 was used.

膜の拡散有効面積は20.78fflだった。The effective diffusion area of the membrane was 20.78 ffl.

溶質Aはε−カプロラクタムだった。Solute A was ε-caprolactam.

液体Bは30%H2SO4だった。液体CはCHCl3
だった。
Liquid B was 30% H2SO4. Liquid C is CHCl3
was.

初めは、液体Bの体積は362m1.液体Cは362m
1.液体B中の溶質Aの量は109.6.!i’、液体
C中のAの量はOだった。
Initially, the volume of liquid B is 362 m1. Liquid C is 362m
1. The amount of solute A in liquid B is 109.6. ! i', the amount of A in liquid C was O.

9.24X104秒拡散後、測定したB中のAの濃度は
0.226 j9/ml、 C中のAの濃度は0.10
9g、4?であり、液体C中のAの量は36.2.9に
上昇していた。
After diffusion for 9.24 x 104 seconds, the measured concentration of A in B is 0.226 j9/ml, and the concentration of A in C is 0.10
9g, 4? and the amount of A in liquid C had increased to 36.2.9.

4.4 X 10 ’crit、/秒の拡散率が得られ
た。温度と圧力は周囲条件だった。
A diffusivity of 4.4 x 10'crit,/sec was obtained. Temperature and pressure were at ambient conditions.

実施例 2 実施例1と同一の方法を追い抽出を行なった。Example 2 Additional extraction was carried out using the same method as in Example 1.

3.78X10−3cIrL厚の膜2を使った。A film 2 with a thickness of 3.78×10 −3 cIrL was used.

膜の拡散有効面積は20.78iだった。The effective diffusion area of the membrane was 20.78i.

溶質Aはε−カプロラクタム、液体BはH2O1液体C
はCHCl3だった。
Solute A is ε-caprolactam, liquid B is H2O1 liquid C
was CHCl3.

初めは、Bの体積は300d、Cの体積は300TL1
1B中のAの量は6(Bi’、C中のAの量はOだった
Initially, the volume of B is 300d, and the volume of C is 300TL1.
The amount of A in 1B was 6 (Bi'), and the amount of A in C was O.

1.44X10’秒拡散後、測定したB中のAの濃度は
0.18597ml!で、C中のAの濃度は0.017
8 g/mlであり、C中のA量は5.44gに上昇し
ていた。
After diffusion for 1.44 x 10' seconds, the measured concentration of A in B is 0.18597 ml! So, the concentration of A in C is 0.017
8 g/ml, and the amount of A in C had increased to 5.44 g.

3.6 X 10 W/秒の拡散率が得られた。A diffusivity of 3.6 x 10 W/sec was obtained.

温度と圧力は周囲条件だった。実施例 3 実施例1の方法を追い抽出実験を行なった。Temperature and pressure were at ambient conditions. Example 3 An extraction experiment was conducted by following the method of Example 1.

183×1O−2crrL厚の膜3を使った。A film 3 having a thickness of 183×1O−2 crrL was used.

膜C拡散有効面積は16.75−だった。The effective diffusion area of membrane C was 16.75-.

溶質Aはε−カプロラクタム、液体BはH2O1液体C
はCHCl3だった。
Solute A is ε-caprolactam, liquid B is H2O1 liquid C
was CHCl3.

初めは、Bの体積は297.5ml、Cは296−1B
中のA量は80.4!!、C中量はOだった。
Initially, the volume of B is 297.5ml, and the volume of C is 296-1B.
The amount of A inside is 80.4! ! , C content was O.

1.41X105秒拡散後、B中のAの濃度は測定した
ら0.270 g/rulで、C中のAの濃度は0.0
0261 g/mlで、C中のAの量は0.767gに
上昇していた。
After 1.41 x 105 seconds of diffusion, the concentration of A in B was measured to be 0.270 g/rul, and the concentration of A in C was 0.0
At 0.0261 g/ml, the amount of A in C had increased to 0.767 g.

2.9 X 10 W/秒の拡散率を得た。A diffusivity of 2.9 x 10 W/sec was obtained.

温度と圧力は周囲条件だった。実施例 4 実施例1の方法を追い抽出実験を行なった。Temperature and pressure were at ambient conditions. Example 4 An extraction experiment was conducted by following the method of Example 1.

16.4 X 10−2厚の膜Aを使った。A 16.4 x 10-2 thick membrane A was used.

膜の拡散有効面積は16.75cIILだった。The effective diffusion area of the membrane was 16.75 cIIL.

溶質Aはε−カプロラクタム、液体BはH2O,液体C
はCHCl3だった。
Solute A is ε-caprolactam, liquid B is H2O, liquid C
was CHCl3.

初めは、Bの体積は300m11.Cは295.5ml
Initially, the volume of B is 300 m11. C is 295.5ml
.

B中のAの量は81.l、C中のAの量はOだった。The amount of A in B is 81. The amount of A in l and C was O.

8.16X10’秒拡散後、B中のAの濃度を測定した
ら0.261 g/rrtl、 C中のAの濃度は0.
0182g/rILlであり、C中のAの量は5.38
gに上昇していた。
After 8.16 x 10' seconds of diffusion, the concentration of A in B was measured to be 0.261 g/rrtl, and the concentration of A in C was 0.261 g/rrtl.
0182g/rILl, and the amount of A in C is 5.38
It had risen to g.

2.4X10−7秒cyrt/秒の拡散率が得られた。A diffusion rate of 2.4×10 −7 sec cyrt/sec was obtained.

温度と圧力は周囲条件だった。実施例 5 実施例1の方法を追い抽出実験を行なった。Temperature and pressure were at ambient conditions. Example 5 An extraction experiment was conducted by following the method of Example 1.

9.22X10’crfL厚の膜5を使った。9. A film 5 having a thickness of 22×10′ crfL was used.

膜拡散面積は16.75−だった。The membrane diffusion area was 16.75-.

溶質Aはε−カプロラクタム、液体BはH2O1液体C
はCHCl3だった。
Solute A is ε-caprolactam, liquid B is H2O1 liquid C
was CHCl3.

初めは、Bの体積は29.6m1. Cの体積は296
m1.13中のA量は80g、C中量はOだった。
Initially, the volume of B is 29.6 m1. The volume of C is 296
The amount of A in m1.13 was 80 g, and the amount of C in m1.13 was O.

7.05X10’秒拡散後、B中のAの濃度は測定によ
り0.197g/献、C中濃度は0.0851g/ml
であり、C中のA量は26.54.!ii’に上昇した
After 7.05 x 10' seconds of diffusion, the concentration of A in B was measured to be 0.197 g/ml, and the concentration in C was 0.0851 g/ml.
and the amount of A in C is 26.54. ! It rose to ii'.

9.22 X 10 W/秒の拡散率が得られた。温
度と圧力は周囲条件だった。
A diffusivity of 9.22 x 10 W/sec was obtained. Temperature and pressure were at ambient conditions.

実施例 6 実施例1の方法を追い抽出実験を行なった。Example 6 An extraction experiment was conducted by following the method of Example 1.

2.48X10−2cIrL厚の膜6を使った。A film 6 having a thickness of 2.48×10 −2 cIrL was used.

膜の拡散有効面積は20.78CriLだった。The effective diffusion area of the membrane was 20.78 CriL.

溶質Aはε−カプロラクタム、液体BはH2O1液体C
はCHCl3だった。
Solute A is ε-caprolactam, liquid B is H2O1 liquid C
was CHCl3.

初めは、Bの体積は297.5ml、 Cの体積は30
1m1.B中のAの量は80.4g、C中のAの量はO
だった。
Initially, the volume of B is 297.5ml, and the volume of C is 30ml.
1m1. The amount of A in B is 80.4g, and the amount of A in C is O
was.

1.73×1O5秒拡散後、B中のAの濃度は測定によ
り0.259 g/ml、 C中のAの濃度は0.01
42 g/mlであり、C中のAの量は42.:lに上
昇していた。
After diffusion for 1.73 x 1O5 seconds, the concentration of A in B was measured to be 0.259 g/ml, and the concentration of A in C was 0.01.
42 g/ml, and the amount of A in C is 42. : It had risen to l.

1.11 X 10−■/秒の拡散率で得られた。A diffusivity of 1.11 x 10-■/sec was obtained.

温度と圧力は周囲条件だった。Temperature and pressure were at ambient conditions.

実施例 7 実施例1の方法を追い抽出実験を行なった。Example 7 An extraction experiment was conducted by following the method of Example 1.

2.01 X 10−2厚の膜7を使用した。A 2.01×10 −2 thick membrane 7 was used.

膜の拡散有効面積は20.78ci、だった。The effective diffusion area of the membrane was 20.78 ci.

溶質Aはε−カプロラクタム、液体BはH2O1液体C
はCHCl3だつった。
Solute A is ε-caprolactam, liquid B is H2O1 liquid C
was CHCl3.

初めは、Bの体積は296m1.Cの体積は294.5
m11B中のAの量は80g、C中のAの量は0だった
Initially, the volume of B is 296 m1. The volume of C is 294.5
The amount of A in m11B was 80 g, and the amount of A in C was 0.

1.68×1O5秒拡散後、B中のAの濃度は測定した
ら0.24897TL11C中のAの濃度は0.028
g/mlであり、C中のAの量は8.329に上昇して
いた。
After 1.68 x 1O5 seconds of diffusion, the concentration of A in B is 0.24897.The concentration of A in TL11C is 0.028.
g/ml, and the amount of A in C had increased to 8.329.

1.87X10 ’CIIL秒の拡散率が得られた。A diffusivity of 1.87×10′ CIIL seconds was obtained.

温度と圧力は周囲条件だった。実施例 8 実施例1の方法を追い抽出実験を行なった。Temperature and pressure were at ambient conditions. Example 8 An extraction experiment was conducted by following the method of Example 1.

2.26X10−”厚の膜8を使った。A 2.26 x 10-'' thick membrane 8 was used.

膜の拡散有効面積は20.78−だった。The effective diffusion area of the membrane was 20.78-.

溶質Aはε−カプロラクタム、液体BはIt(20,液
体CはCH(J’3だった。
Solute A was ε-caprolactam, liquid B was It (20), and liquid C was CH (J'3).

初めは、Bの体積は28977111Cの体積は303
m1. f3中のAの量は78.1g、そしてC中のA
の量はOだった。
Initially, the volume of B is 28977111 The volume of C is 303
m1. The amount of A in f3 is 78.1 g, and the amount of A in C
The amount was O.

1.13×1O5秒拡散後、B中のAの濃度は測定した
ら0.25 g/rnl、 C中のAの濃度は0.02
85 ji/rnlであり、C中のAの量は8.39g
に上昇していた。
After diffusion for 1.13 x 1O5 seconds, the concentration of A in B was measured to be 0.25 g/rnl, and the concentration of A in C was 0.02.
85 ji/rnl, and the amount of A in C is 8.39g
It was rising.

3.13X10−■/秒の拡散率が得られた。A diffusivity of 3.13×10 −■/sec was obtained.

温度と圧力は周囲条件だつた。Temperature and pressure were at ambient conditions.

実施例 9 実施例1の方法を追い抽出実験を行なった。Example 9 An extraction experiment was conducted by following the method of Example 1.

7.9X10−3crfL厚の膜を使った。A film with a thickness of 7.9×10 −3 crfL was used.

膜の拡散有効面積は16.75iだった。The effective diffusion area of the membrane was 16.75i.

溶質Aはε−カプロラクタム、液体BはH2O,液体C
はCHCl3だった。
Solute A is ε-caprolactam, liquid B is H2O, liquid C
was CHCl3.

初めは、Bの体積は299.5rILl、 Cの体積は
29577111B中のAの量は81g、モしてC中量
はOだった。
Initially, the volume of B was 299.5 rILl, the volume of C was 29577111, the amount of A in B was 81 g, and the amount of C in B was O.

7.63X10’秒拡散後、B中のAの濃度は測定した
ら0.21,9/1rLlであり、C中のAの濃度は0
.069297m1であり、C中のAの量は21.1g
に上昇していた。
7. After diffusion for 63 x 10' seconds, the concentration of A in B is measured to be 0.21,9/1rLl, and the concentration of A in C is 0.
.. 069297ml, and the amount of A in C is 21.1g
It was rising.

5.6X10−■/秒の拡散率が得られた。A diffusivity of 5.6×10 −■/sec was obtained.

温度と圧力は周囲条件だった。実施例 10 実施例1の方法を追い抽出実験を行なった。Temperature and pressure were at ambient conditions. Example 10 An extraction experiment was conducted by following the method of Example 1.

1.37X10−2CIrL厚の膜を使った。A film with a thickness of 1.37×10 −2 CIrL was used.

膜の拡散有効面積は20.78fflだった。The effective diffusion area of the membrane was 20.78 ffl.

溶質Aはε−カプロラクタム、液体BはH2O1液体C
はCHCl3だった。
Solute A is ε-caprolactam, liquid B is H2O1 liquid C
was CHCl3.

初めは、Bの体積は331m11Cの体積は330就、
B中のAの量は911そしてC中のAの量はOだった。
Initially, the volume of B is 331 m, the volume of C is 330 m,
The amount of A in B was 911 and the amount of A in C was O.

8.4X10’秒拡散後、B中のAの濃度を測定したら
0.225g/TL11C中のAの濃度は0.0755
9 /rrtlであり、C中のAの量は21gに上昇し
ていた。
After 8.4 x 10' seconds of diffusion, the concentration of A in B was measured, and the concentration of A in B was 0.225 g/0.0755 in TL11C.
9/rrtl, and the amount of A in C had increased to 21 g.

8.83X10−■/秒の拡散率が得られた。A diffusivity of 8.83×10 −■/sec was obtained.

温度と圧力は周囲条件だった。Temperature and pressure were at ambient conditions.

実施例 11 実施例1の方法を追い抽出実験を行なった。Example 11 An extraction experiment was conducted by following the method of Example 1.

2.48X10−2CrrL厚の膜6を使った。A film 6 having a thickness of 2.48×10 −2 CrrL was used.

膜の拡散有効面積は20.78−だった。The effective diffusion area of the membrane was 20.78-.

溶質AはC2H4C12、液体BはH2O1液体Cはn
−ヘプタンだった。
Solute A is C2H4C12, liquid B is H2O1, liquid C is n
-It was heptane.

初めは、Bの体積は292.5m7. Cの体積は29
2.5蔵、B中のAの量は2.07g、C中のAの量は
Oだった。
Initially, the volume of B is 292.5 m7. The volume of C is 29
The amount of A in B was 2.07 g, and the amount of A in C was O.

2.43×1O5秒拡散後、B中のAの濃度は測定した
ら0.0053 g/TLl、 C中濃度は0.001
78g/社であり、C中のAの量は052gに上昇して
いた。
After diffusion for 2.43×1O5 seconds, the concentration of A in B was measured to be 0.0053 g/TLl, and the concentration in C was 0.001.
It was 78g/company, and the amount of A in C had increased to 052g.

4.22 X 10−7cr7t/秒の拡散率を得た。A diffusion rate of 4.22 x 10-7 cr7t/sec was obtained.

温度と圧力は周囲条件だった。実施例 12 実施例1の方法を追い抽出実験を行なった。Temperature and pressure were at ambient conditions. Example 12 An extraction experiment was conducted by following the method of Example 1.

2.01×1O−2crIL厚の膜7を使った。A film 7 having a thickness of 2.01×1 O −2 crIL was used.

膜の拡散有効面積は20.78cfflだった。The effective diffusion area of the membrane was 20.78 cffl.

溶質AはC2H4C12、液体BはH2O1液体Cはn
−へブタンだった。
Solute A is C2H4C12, liquid B is H2O1, liquid C is n
-It was hebutane.

初めは、Bの体積は295.5ml、 Cの体積は29
1.5ml、 B中のAの量は2.0’l、C中の量は
Oだった。
Initially, the volume of B is 295.5 ml, and the volume of C is 29
1.5 ml, the amount of A in B was 2.0'l, and the amount in C was O.

2.51X105秒拡散後、B中のAの濃度は測定した
ら0.00404.F/TLl、C中の濃度は0.00
309 j;i/mlであり、C中のAの量は0.9g
に上昇していた。
After 2.51 x 105 seconds of diffusion, the concentration of A in B was measured to be 0.00404. F/TLl, concentration in C is 0.00
309 j; i/ml, and the amount of A in C is 0.9 g
It was rising.

6.47 X 1 o−7d/秒の拡散率を得た。A diffusivity of 6.47 X 1 o-7d/sec was obtained.

温度と圧力は周囲条件だった。実施例 13 実施例1の方法を追い抽出実験を行なった。Temperature and pressure were at ambient conditions. Example 13 An extraction experiment was conducted by following the method of Example 1.

7.9X10−31厚の膜1を使った。A membrane 1 with a thickness of 7.9×10 −31 was used.

膜の拡散有効m積ハ16.75 crjタッタo 溶質
にハc2H+cl)2、液体BはH2O,液体Cはn−
へブタンだった。
The effective diffusion m product of the membrane is 16.75 crj tattao, solute is 2H + cl) 2, liquid B is H2O, liquid C is n-
It was hebutane.

初めは、Bの体積は302.51rLl、 Cの体積は
296rnl。
Initially, the volume of B is 302.51rLl, and the volume of C is 296rnl.

B中のAの量は2.14g、そしてC中のAの量は0だ
った。
The amount of A in B was 2.14 g, and the amount of A in C was 0.

8.95X10’秒拡散後、B中のAの濃度は測定した
ら0.00506 g/rnl、 C中のAの濃度はo
、o 0206 g/mlであり、C中のAの量は0.
619に上昇していた。
After diffusion for 8.95 x 10' seconds, the concentration of A in B was measured to be 0.00506 g/rnl, and the concentration of A in C was o
, o 0206 g/ml, and the amount of A in C is 0.
It had risen to 619.

537X10−7み〆砂の拡散率を得た。The diffusivity of 537×10-7 sand was obtained.

温度と圧力は周囲条件だった。実施例 14 実施例1の方法を追い抽出実験を行なった。Temperature and pressure were at ambient conditions. Example 14 An extraction experiment was conducted by following the method of Example 1.

2.48 X 100−2a厚の膜6を使った。A membrane 6 with a thickness of 2.48 x 100-2a was used.

膜の拡散有効面積は20.78−だった。The effective diffusion area of the membrane was 20.78-.

溶質Aはジニトロトルエン、液体Bはトルエン、液体C
はH2Oだった。
Solute A is dinitrotoluene, liquid B is toluene, liquid C
was H2O.

初めは、Bの体積は2851n11Cの体積は296m
1.hB中のAの量は56.8g、そしてC中のAの量
は0だった。
Initially, the volume of B is 2851n11The volume of C is 296m
1. The amount of A in hB was 56.8 g, and the amount of A in C was 0.

1.67X105秒拡散後、B中のAの濃度は測定した
ら0.1999/ml、 C中のAの濃度は22.3
X 10”g/rnlであり、C中のAの量は0.00
66gに上昇していた。
After 1.67 x 105 seconds of diffusion, the concentration of A in B was measured to be 0.1999/ml, and the concentration of A in C was 22.3.
X 10”g/rnl, and the amount of A in C is 0.00
The weight had increased to 66g.

3.16 Xl0−7CI!/秒の拡散率を得た。3.16 Xl0-7CI! A diffusion rate of /sec was obtained.

温度と圧力は周囲条件だった。Temperature and pressure were at ambient conditions.

実施例 15 実施例1の方法を追い抽出実験を行なった。Example 15 An extraction experiment was conducted by following the method of Example 1.

2.03X10−2crIL厚の膜7を使った。A membrane 7 having a thickness of 2.03×10 −2 crIL was used.

膜の拡散有効面積は20.78iだった。The effective diffusion area of the membrane was 20.78i.

溶質Aはジニトロトルエン、液体Bはトルエン、液体C
はH2Oだった。
Solute A is dinitrotoluene, liquid B is toluene, liquid C
was H2O.

初めは、Bの体積は301 m11この体積は298.
577111B中のAの量は60g、そしてC中のAの
量は0だった。
Initially, the volume of B is 301 m11, and this volume is 298.
The amount of A in 577111B was 60 g, and the amount of A in C was 0.

1.73X105秒拡散後、B中のAの濃度は測定した
ら0.199 g/ml、 C中のAの濃度は44.9
X10″!!/mlであり、C中のAの量は0.013
4gに上昇していた。
After 1.73 x 105 seconds of diffusion, the concentration of A in B was measured to be 0.199 g/ml, and the concentration of A in C was 44.9
X10''!!/ml, and the amount of A in C is 0.013
It had increased to 4g.

6.06 X 10−7−7秒の拡散率を得た。A diffusivity of 6.06 x 10-7-7 seconds was obtained.

温度と圧力は周囲条件だった。Temperature and pressure were at ambient conditions.

実施例 16 実施例1の方法を追い抽出実験を行なった。Example 16 An extraction experiment was conducted by following the method of Example 1.

7.9X10−31厚の膜1を使った。A membrane 1 with a thickness of 7.9×10 −31 was used.

膜の拡散有効面積は16.75CILだった。The effective diffusion area of the membrane was 16.75 CIL.

溶質Aはジニトロトルエン、液体Bはトルエン、液体C
はH2Oだつ?、4初めは、Bの体積は293TLl、
Cの体積は298m1. 、B中のAの量は58.4g
、そしてC中のAの量はOだった。
Solute A is dinitrotoluene, liquid B is toluene, liquid C
Is it H2O? , 4At the beginning, the volume of B is 293TLl,
The volume of C is 298m1. , the amount of A in B is 58.4g
, and the amount of A in C was O.

7.85X10’秒拡散後、B中のAの濃度は測定した
ら0.199 g/ml、 C中のAの濃度は27.3
X10 ”f!/rrtlであり、C中のAの量は0.
00814gに上昇していた。
After 7.85 x 10' seconds of diffusion, the concentration of A in B was measured to be 0.199 g/ml, and the concentration of A in C was 27.3.
X10”f!/rrtl, and the amount of A in C is 0.
The weight had increased to 0.00814g.

5X10−7d/秒の拡散率を得た。A diffusivity of 5×10 −7 d/sec was obtained.

温度と圧力は周囲条件だった。Temperature and pressure were at ambient conditions.

実施例 17 実施例1の方法を追い抽出実験を行なった。Example 17 An extraction experiment was conducted by following the method of Example 1.

1.88X10−2crIl厚の膜10を使った。A membrane 10 with a thickness of 1.88×10 −2 crIl was used.

膜の拡散有効面積は20.78ciだった。The effective diffusion area of the membrane was 20.78 ci.

溶質Aはジニトロトルエン、液体Bはトルエン、液体C
はH2Oだった。
Solute A is dinitrotoluene, liquid B is toluene, liquid C
was H2O.

初めは、Bの体積は293rn11Cの体積は300、
5ml、 B中のAの量は58.4g、C中のAの量は
0だった。
Initially, the volume of B is 293rn11C's volume is 300,
5 ml, the amount of A in B was 58.4 g, and the amount of A in C was 0.

1.03X105秒拡散後、B中のAの濃度は測定した
ら0.199 g/rul、 C中のAの濃度は24.
3 X 10 ”El/mlであり、C中のAの量は0
.0073gに上昇していた。
After 1.03 x 105 seconds of diffusion, the concentration of A in B was measured to be 0.199 g/rul, and the concentration of A in C was 24.
3 x 10” El/ml, and the amount of A in C is 0
.. The weight had increased to 0,073g.

6.4 XI O−7−7秒の拡散率が得られた。A diffusivity of 6.4 XI O-7-7 seconds was obtained.

温度と圧力は周囲条件だった。Temperature and pressure were at ambient conditions.

実施例 18 実施例1の方法を追い、抽出実験を行なった。Example 18 Following the method of Example 1, an extraction experiment was conducted.

7.9X10−3厚の膜1を使った。A film 1 with a thickness of 7.9×10 −3 was used.

膜の拡散有効面積ハ16.75iだった。The effective diffusion area of the membrane was 16.75i.

溶質Aはフェノール、液体BはH2O,液体cはトルエ
ンだった。
Solute A was phenol, liquid B was H2O, and liquid C was toluene.

初めは、Bの体積は295m1.Cの体積は291m1
..13中のAの量は11g、C中のAの量はOだった
Initially, the volume of B is 295 m1. The volume of C is 291m1
.. .. The amount of A in No. 13 was 11 g, and the amount of A in C was O.

8.04X10’秒拡散後、B中のAの濃度は0.02
35g/m11C中のAの濃度は0.0141 g/r
ullテあり、C中のAの量は4.08.!i’に上昇
していた。
8. After diffusion for 04 x 10' seconds, the concentration of A in B is 0.02
The concentration of A in 35g/m11C is 0.0141 g/r
The amount of A in C is 4.08. ! It was rising to i'.

9、7 X 10−7crit/秒の拡散率を得た。A diffusivity of 9.7 x 10-7 crit/sec was obtained.

温度と圧力は周囲条件だった。Temperature and pressure were at ambient conditions.

実施例 19 実施例1の方法を追い抽出実験を行なった。Example 19 An extraction experiment was conducted by following the method of Example 1.

1.3 X 10−2crrL厚の膜11を使った。A film 11 with a thickness of 1.3×10 −2 crrL was used.

膜の拡散有効面積は16.75fflだった。The effective diffusion area of the membrane was 16.75 ffl.

溶質Aはトルエンジアミン、液体BはH2O,液体Cは
70℃のジニトロトルエンだった。
Solute A was toluenediamine, liquid B was H2O, and liquid C was dinitrotoluene at 70°C.

初めは、Bの体積は291 ml。Cの体積は290T
l11B中のAの量は2.91.!li’。
Initially, the volume of B is 291 ml. The volume of C is 290T
The amount of A in l11B is 2.91. ! li'.

そしてC中のAの量は0だった。And the amount of A in C was 0.

i、s 1xio5秒拡散後、B中のAの濃度は測定し
たら0.004579/rue、 C中のAの濃度は0
.0054511/mlであり、C中のAの量は1.5
8.9に上昇していた。
i, s After 1xio 5 seconds of diffusion, the concentration of A in B is 0.004579/rue, and the concentration of A in C is 0.
.. 0054511/ml, and the amount of A in C is 1.5
It had risen to 8.9.

1.06 X 10”cri’t/秒の拡散率を得た。A diffusion rate of 1.06 x 10" cr't/sec was obtained.

温度は70℃、圧力は周囲条件だった。The temperature was 70°C and the pressure was at ambient conditions.

実施例 20 実施例1の方法を追い抽出実験を行なった。Example 20 An extraction experiment was conducted by following the method of Example 1.

2.03 X 100−2(厚の膜7を使った。A film 7 with a thickness of 2.03 x 100-2 was used.

膜の拡散有効面積は20.78fflだった。The effective diffusion area of the membrane was 20.78 ffl.

溶質Aはトルエンジアミン、液体BはH2O,液体Cは
70℃のジニトロトルエンだった。
Solute A was toluenediamine, liquid B was H2O, and liquid C was dinitrotoluene at 70°C.

初めは、Bの体積は290 ml。Cの体積は2907
rL11B中のAの量は2.9g、そしてC中のAの量
はOだった。
Initially, the volume of B is 290 ml. The volume of C is 2907
The amount of A in rL11B was 2.9 g, and the amount of A in C was O.

1.77X105秒拡散後、B中のAの濃度は測定した
ら(100334g/77111C中のAの濃度は0.
00666 g/rulであり、C中のAの量は1.9
.1に上昇していた。
After 1.77 x 105 seconds of diffusion, the concentration of A in B is measured (the concentration of A in 100334g/77111C is 0.
00666 g/rul, and the amount of A in C is 1.9
.. It had risen to 1.

2.05X10″−7秒の拡散率を得た。A diffusion rate of 2.05 x 10''-7 seconds was obtained.

温度は70℃、圧力は周囲条件だった。The temperature was 70°C and the pressure was at ambient conditions.

実施例 21 膜12からなる中空繊維抽出器を使い境膜向流溶媒抽出
実験を実施した。
Example 21 Boundary membrane countercurrent solvent extraction experiments were conducted using a hollow fiber extractor consisting of membrane 12.

抽出器の外径、内径および有効長はそれぞれ5.ICr
fL、 4.6crn、 12.7CrrLだった。
The outer diameter, inner diameter and effective length of the extractor are 5. ICr
fL, 4.6crn, and 12.7crrL.

使用した抽出器は外径230μ扉、内径180μ扉の寸
法を持つ1.26X10’個の中空繊維から構成されて
いた。
The extractor used consisted of 1.26 x 10' hollow fibers with dimensions of 230μ outer diameter and 180μ inner diameter.

溶質Aはフルフラル、液体BはH2O,液体Cはトルエ
ンだった。
Solute A was furfural, liquid B was H2O, and liquid C was toluene.

この中空繊維溶媒抽出操作中、抽出器は水平に横たえた
During this hollow fiber solvent extraction operation, the extractor was laid horizontally.

0.948g/秒の流速を持つ液相Bを抽出器中、中空
繊維の外側に注入し、一方、0.821/秒の流速を持
つ液相Cを中空繊維の内側に入れた。
Liquid phase B with a flow rate of 0.948 g/sec was injected into the extractor on the outside of the hollow fiber, while liquid phase C with a flow rate of 0.821/sec was inside the hollow fiber.

B中のAの流入濃度は5.02%であり、流出濃度は1
.14%だった。
The inflow concentration of A in B is 5.02%, and the outflow concentration is 1
.. It was 14%.

C中のAの流入濃度はOであり、流出濃度は4,41%
だった。
The inflow concentration of A in C is O, and the outflow concentration is 4.41%
was.

1.78 X 10−7d/秒の拡散率を得た。A diffusivity of 1.78 x 10-7 d/sec was obtained.

温度と圧力は周囲条件であった。Temperature and pressure were at ambient conditions.

他の膜系と共に以上述べた膜系をそれぞれの拡散率と共
に第1表に記載する。
The membrane systems described above, along with other membrane systems, are listed in Table 1 along with their respective diffusivities.

前記の特定組成を持った膜の他に、異なった組成を持っ
た同一タイプの膜、およびセルロース誘導体、ポリエチ
レン、ポリプロピレン、ポリスチレンその他のような膜
を溶媒境膜抽出で使用できる。
In addition to membranes with the specific compositions mentioned above, membranes of the same type with different compositions and membranes such as cellulosic, polyethylene, polypropylene, polystyrene, etc. can be used in solvent film extraction.

幾つかの市販中空繊維、例えばダウ(Dow)の中空繊
維(アメリカ特許第3,228,876号)、デュポン
(DuPpn t)の“パーマセプ(Perm−ase
p)“中空繊維〔ケミカル・エンジニアリング(Che
mical Engineering)、54頁、19
71年11月29日〕、アミコンイインコーポレーショ
ン(Amicon Inc、 )ディアファイバー(D
IAFIBER)中空繊維などがある。
Several commercially available hollow fibers, such as Dow hollow fiber (U.S. Pat. No. 3,228,876), DuPont's "Perm-ase"
p) “Hollow fiber [Chemical Engineering (Che
Mical Engineering), p. 54, 19
November 29, 1971], Amicon Inc., Diafiber (D
IAFIBER) hollow fibers, etc.

これらの中空繊維は透析、超済過および再浸透分野で多
く使用されている。
These hollow fibers are widely used in dialysis, hyperfiltration and repermeation fields.

この発明の境膜溶媒抽出方法は以上の実施例に加え、更
にこの発明を例示し、かつ限定することのない以下の系
にも適用できる。
In addition to the above embodiments, the membrane solvent extraction method of the present invention can be applied to the following systems which further illustrate, but do not limit, the present invention.

これらの系を第m表中に3つの欄A、BおよびCを使い
記載する。
These systems are described using three columns A, B and C in Table m.

前記の通り、Aは溶質、モしてBとCは事実上非混和性
の2つの液体である。
As mentioned above, A is a solute and B and C are two virtually immiscible liquids.

CはAが溶は込んでいる他の液体BからAを抽出するた
めの液体溶媒として使用され、BとCを交換すると逆に
使える。
C is used as a liquid solvent to extract A from another liquid B in which A is dissolved, and can be used in reverse by exchanging B and C.

この発明の溶媒境膜抽出の適用は第1.II表および実
施例に列挙された系に限定されない。
The application of the solvent film extraction of this invention is as follows. It is not limited to the systems listed in Table II and the Examples.

他の液−液抽出系にも同様に適用できる。It is similarly applicable to other liquid-liquid extraction systems.

当業者に明らかな様々なモディフィケーションがこの発
明の範囲または精神から離れることなくできる。
Various modifications apparent to those skilled in the art can be made without departing from the scope or spirit of this invention.

これらモディフィケーションは、特許請求の範囲により
除外されるものを除いてはこの発明の範囲にある。
These modifications are within the scope of the invention except as excluded by the claims.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は典型的な抽出方法の場合の物質流動への参照を
含む、中空繊維配置の図解である。 第2図は第1図に示した種類の中空繊維配置の横断面図
である。 第3図はこの発明の中空繊維機構を用いる抽出方法の典
型的なフローダイヤグラムである。 第4図は様々な溶質が順次抽出される多層膜抽出単位配
置からなる装置の例示である。 第5図は膜抽出単位中で多数の膜抽出器を利用する配置
の図示である。
FIG. 1 is an illustration of a hollow fiber arrangement, including reference to material flow for a typical extraction method. FIG. 2 is a cross-sectional view of a hollow fiber arrangement of the type shown in FIG. FIG. 3 is a typical flow diagram of an extraction method using the hollow fiber mechanism of the present invention. FIG. 4 is an illustration of an apparatus consisting of a multilayer membrane extraction unit arrangement in which various solutes are sequentially extracted. FIG. 5 is an illustration of an arrangement utilizing multiple membrane extractors in a membrane extraction unit.

Claims (1)

【特許請求の範囲】[Claims] 1 溶質Aを含む一番目の液体を膜の片面に接触させ、
事実上液体Bに非混和性である抽出用の二番目の液体C
を膜の他方の面に接触させ、この膜により液体BとCの
分断を維持し、そして溶質Aが完全に液体C中に拡散す
るまで液体BとCを鉄膜のそれぞれ片面に維持すること
により溶質Aを膜を通じて液体Bから液体Cに抽出する
工程からなる溶媒抽出方法。
1 Bringing the first liquid containing solute A into contact with one side of the membrane,
a second liquid C for extraction which is virtually immiscible with liquid B;
in contact with the other side of the membrane, keeping liquids B and C separated by this membrane, and maintaining liquids B and C on each side of the iron membrane until solute A has completely diffused into liquid C. A solvent extraction method comprising the step of extracting solute A from liquid B to liquid C through a membrane.
JP48144144A 1973-01-02 1973-12-26 How to use the service Expired JPS5831203B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US32034173A 1973-01-02 1973-01-02

Publications (2)

Publication Number Publication Date
JPS49125276A JPS49125276A (en) 1974-11-30
JPS5831203B2 true JPS5831203B2 (en) 1983-07-05

Family

ID=23245962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48144144A Expired JPS5831203B2 (en) 1973-01-02 1973-12-26 How to use the service

Country Status (6)

Country Link
JP (1) JPS5831203B2 (en)
CA (1) CA1025368A (en)
DE (1) DE2364679C2 (en)
FR (1) FR2212163B1 (en)
GB (1) GB1437969A (en)
IT (1) IT1011515B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231001A (en) * 1984-11-06 1987-10-09 中山 市二郎 Undershirts for breast parts of winter clothes

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218312A (en) * 1975-12-01 1980-08-19 Monsanto Company Membrane separation of organics from aqueous solutions
US4078999A (en) * 1976-11-01 1978-03-14 The Dow Chemical Company Purification of polycarbonate solution
US4113886A (en) * 1977-09-28 1978-09-12 General Foods Corporation Membrane decaffeination
EP0009922B1 (en) * 1978-10-04 1981-10-14 Occidental Research Corporation Extraction process using stabilized emulsions
EP0167736B1 (en) * 1984-05-21 1988-08-10 Akzo GmbH Method of transfering metal ions by use of microporous membranes
US4966707A (en) * 1986-05-13 1990-10-30 Celanese Corporation Liquid/liquid extractions with microporous membranes
GB0909967D0 (en) 2009-06-10 2009-07-22 Membrane Extraction Tech Ltd Polyimide membrane
PT2473548T (en) * 2009-09-02 2018-06-19 Huntsman Int Llc A method for removing methylene-bridged polyphenyl polyamines from an aqueous stream
EP4234531A1 (en) * 2022-02-25 2023-08-30 Evonik Superabsorber GmbH Separation of acrylic acid using membrane contactors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB645876A (en) * 1947-05-12 1950-11-08 Robert Andrew Gordon Stockdale Improvements in and relating to the extraction and purification of organic compounds
DE1055503B (en) * 1956-06-29 1959-04-23 Dr Hans Thomass Process for exchanging the dispersant for dispersions containing solids and solutes
US3339341A (en) * 1965-12-22 1967-09-05 Du Pont Fluid separation process and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231001A (en) * 1984-11-06 1987-10-09 中山 市二郎 Undershirts for breast parts of winter clothes

Also Published As

Publication number Publication date
IT1011515B (en) 1977-02-10
JPS49125276A (en) 1974-11-30
FR2212163B1 (en) 1978-04-21
DE2364679C2 (en) 1986-11-13
GB1437969A (en) 1976-06-03
DE2364679A1 (en) 1974-07-04
CA1025368A (en) 1978-01-31
FR2212163A1 (en) 1974-07-26

Similar Documents

Publication Publication Date Title
US3956112A (en) Membrane solvent extraction
San Román et al. Liquid membrane technology: fundamentals and review of its applications
Alexander et al. Liquid-liquid extraction and stripping of gold with microporous hollow fibers
US4966707A (en) Liquid/liquid extractions with microporous membranes
US4218312A (en) Membrane separation of organics from aqueous solutions
JPS5831203B2 (en) How to use the service
US5868935A (en) Method and apparatus for extraction and recovery of ions from solutions
ES8501728A1 (en) Process for separating ethanol from a solution containing ethanol.
US4142966A (en) Membrane separation of water from aqueous mixtures
JPH01502192A (en) Phase transfer catalysis method
US6162162A (en) Centrifugal extraction apparatus
Seibert et al. Hydraulics and mass transfer efficiency of a commercial-scale membrane extractor
KR102605699B1 (en) Purification of hydrogen peroxide
US3789079A (en) Process for the separation of diene from organic mixtures
Wasan et al. Separation of metal ions by ligand-accelerated transfer through liquid surfactant membranes
Trivunac et al. Pertraction of phenol in hollow-fiber membrane contactors
JPS60229986A (en) Lubricating oil combined membrane extraction and dewaxing
Patil et al. Carboxylic acids separation using hollow fiber supported liquid membrane
Tang et al. Racemic ofloxacin separation by supported-liquid membrane extraction with two organic phases
EP3003531B1 (en) Systems and methods for recovering dimethyl ether from gas mixtures and liquid mixtures
US3733367A (en) Process for the separation of styrene from ethyl benzene
US3745744A (en) Process for the separation of diene from organic mixtures
JPH01207101A (en) Process and apparatus for producing concentrated liquid
US5057222A (en) Purification of PCNB by solvent extraction
Malan et al. The effect of molar ratio and flow velocity on the surface area required for pertraction of a Zr/Hf mixture