JPS5830613A - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPS5830613A
JPS5830613A JP12917181A JP12917181A JPS5830613A JP S5830613 A JPS5830613 A JP S5830613A JP 12917181 A JP12917181 A JP 12917181A JP 12917181 A JP12917181 A JP 12917181A JP S5830613 A JPS5830613 A JP S5830613A
Authority
JP
Japan
Prior art keywords
light
circuit
light receiving
output
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12917181A
Other languages
Japanese (ja)
Other versions
JPH0432324B2 (en
Inventor
Masanori Yamada
正徳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12917181A priority Critical patent/JPS5830613A/en
Priority to US06/407,280 priority patent/US4494847A/en
Publication of JPS5830613A publication Critical patent/JPS5830613A/en
Publication of JPH0432324B2 publication Critical patent/JPH0432324B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/305Systems for automatic generation of focusing signals using parallactic triangle with a base line using a scanner

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To obtain the measuring accuracy similar to the accuracy in the photographing in the daylight, by enlarging an angle of a distance measuring light receiving element, which observes an object to be photographed, at the time of flash light photographing, in comparison with the angle at the daylight photographing, thereby enlarging the distance measuring region. CONSTITUTION:The light receiving element 1 is used at the daylight photographing and has sensitivity in an infrared region. The light receiving element 225 is used at the flash light photographing and has the sensitivity in the infrared region. The light receiving elements 1 abd 225 are selectively used depending on the photographing mode. A light receiving lens 201 is provided in front of a half mirror 224 that is provided in a light receiving path of the light receiving elements 1 and 2. A light emitting device 103 is fixed to one end of a fork shaped scanning lever 203 which is guided and moved by a cam. A roller 207, which is slidably contacted with the cam, is provided at the other end.

Description

【発明の詳細な説明】 本発明は測距装置に関するものである。[Detailed description of the invention] The present invention relates to a distance measuring device.

従来、目標物休息の距離を測定する測距装置は種々提案
されている。
Conventionally, various distance measuring devices for measuring the distance of a target object have been proposed.

ここでこれら測距装置を大別すると、測距されるべき物
体に対して何んらの照射光を用いることなく、物体から
の反射光を電気信号に変換し、該電気信号出力の最大値
を検出して測距を行なう、所謂受動方式と、カメラ側に
投光器を設けて物体を該投光器からのビーム光によ抄照
射しながら走査し、物体からの該ビームの反射光の最大
値を検出して測距を行なう、所謂能動方式とに分けられ
る。
Broadly speaking, these distance measuring devices are able to convert the reflected light from the object into an electrical signal without using any irradiation light on the object to be ranged, and calculate the maximum value of the electrical signal output. The so-called passive method detects and measures the distance, and the other is the passive method, in which a projector is installed on the camera side, and the object is scanned while being illuminated with a beam of light from the projector, and the maximum value of the beam reflected from the object is measured. It can be divided into the so-called active method, which performs detection and distance measurement.

例えば後者の能動方式の測距装置では、その測距動作は
ファインダー内に設けられた前述の投光器からのビーム
が照射する範囲(以下この範囲を走査領域と称す)を示
す、所謂ゾーンマークを被写体に合致させることにより
行われる。
For example, in the latter active type distance measuring device, the distance measuring operation is performed by scanning a so-called zone mark that indicates the range illuminated by the beam from the above-mentioned projector installed in the finder (hereinafter referred to as the scanning area). This is done by matching the .

かかる仁来の測距装置でも、物体が高輝度下に置かれて
いる場合、或いは物体が高輝度を有している場合、例え
ば昼間の測距動作社物体を正確に狙うことができるため
、その測距精度は高いものとなるが、物体が暗い場所に
存し、かつそれ自身の輝度も低い場合にはファインダ内
に見える物体は暗く、又前述のゾーンマークも暗くなる
ので、ゾーンマークを物体に合致させることが非常に困
難となり、往々にして投光器からのビームが測距しよう
とする物体から外枢正確な測距ができない欠点があった
Even with such a distance measuring device, if the object is placed under high brightness or has high brightness, for example during the daytime, the distance measuring device can accurately aim at the object. The distance measurement accuracy is high, but if the object is in a dark place and its own brightness is low, the object visible in the finder will be dark and the zone mark mentioned above will also be dark. This makes it very difficult to match the object, and the beam from the projector often cannot accurately measure the distance from the object to be measured.

また前者の受動方式の測距装置でも、前述の様な夜間に
おける測距動作時には測距しようとする物体を正確に狙
うことができず、同様な問題が生じていた。
In addition, even with the former passive type distance measuring device, the same problem has arisen since it is not possible to accurately aim at the object to be measured during distance measuring operations at night as described above.

本発明の目的は物体の゛・周囲、或いは物体上の輝度が
低い場合でも高輝匿の場合に準じた1度の測距が可能な
測距装置を提供せんとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a distance measuring device capable of performing one-time distance measurement similar to the case of high brightness even when the brightness around or on the object is low.

以下図面を参照して本発明の一案施ガについて説明する
An embodiment of the present invention will be described below with reference to the drawings.

vJ1図は本発明を適用した測距装置を有するカメラ側
の要部構成図にして、1は高輝歴時、即ち昼光撮影時に
使用され、赤外領域に感度を有する受光素子、225は
物体の周囲が暗く、物体自身の輝度も低い低輝度時、即
ち閃光撮影時に使用され、赤外領域に感度を有する受光
素子にして、受光素子lおよび225は撮影モードによ
り選択的に使用される。224は受光素子1及び2の受
光光錯中に設けられたハーフミラ−12otuib記ハ
ーフきラーの前面に配置される受光レンズ、203は軸
205に枢支され、不図示のカムに案内されて揺動する
二叉状の走査レバーで、該レバー203の一端には第2
図示の発光ダイオード103が固着され、また他端には
前記不図示のカムに習接するコロ207が設けられる。
Figure vJ1 is a configuration diagram of the main parts of a camera having a distance measuring device to which the present invention is applied, in which 1 is a light receiving element that is used during high brightness history, that is, daylight photography, and has sensitivity in the infrared region, and 225 is an object. The light-receiving elements 1 and 225 are used at low-luminance times when the surroundings are dark and the brightness of the object itself is low, that is, during flash photography.The light-receiving elements are sensitive to the infrared region, and the light-receiving elements 1 and 225 are selectively used depending on the photographing mode. 224 is a light-receiving lens disposed in front of the half mirror 12 provided in the light-receiving optical complex of the light-receiving elements 1 and 2; 203 is a light-receiving lens that is pivotally supported by a shaft 205 and is guided by a cam (not shown); A two-pronged scanning lever that moves, and one end of the lever 203 has a second
The illustrated light emitting diode 103 is fixed, and the other end is provided with a roller 207 that contacts the aforementioned cam (not illustrated).

209は走査レバー203に時計方向の揺動習性を与え
るバネ、211は発光ダイオード103の前方に配置さ
れた投光レンズ、213はその内部に撮影レンズ光学系
を有する撮影レンズ鏡筒、215は鏡筒213に懸架さ
れ九駆動バネ、217は線部213の外周部に付設され
た係止爪、219はその先端が爪状に形成され、バネ2
21によ抄常時時計方向の揺動習性が与えられた停止爪
、223は前記停止爪219の為の軸、101は前記停
止爪219を初期状態において第1因示の状態に保持す
るためのマグネットである。
209 is a spring that gives the scanning lever 203 a clockwise swinging habit; 211 is a light projection lens disposed in front of the light emitting diode 103; 213 is a photographic lens barrel having a photographic lens optical system therein; 215 is a mirror. Nine drive springs are suspended on the cylinder 213; 217 is a locking claw attached to the outer periphery of the wire portion 213; 219 is a claw-shaped tip;
Reference numeral 21 denotes a stop claw which is always given a clockwise swinging habit; 223 is a shaft for the stop claw 219; and 101 is a stop claw for holding the stop claw 219 in the first state in the initial state. It's a magnet.

第1A図は第1図における受光素子に関連する部分の動
作説明用の図である。
FIG. 1A is a diagram for explaining the operation of the portion related to the light receiving element in FIG. 1.

第1B図は第1図に示す測距機構を有するカメラの外観
図であり、301[カメラの本体、302は本体301
に収納状態にある閃光発光部、302人は本体301よ
り上部に突出し良状態で定位置となる閃光発光部である
。303は収納状態にある前記発光部を突出状態に移行
させる操作つまみである。該つまみを右方向に手動でス
ライドさせると閃光発光部302が302人の位置に飛
び出すよう構成されている。304はフィルム巻上レバ
ー、213は前記第1図に示した鏡筒である。307は
ファインダー、308は第1図に示した受光レンズ20
1の前面に設けられた受光窓、306は投光レンズ21
1の前面に設けられた投光窓である。
FIG. 1B is an external view of the camera having the distance measuring mechanism shown in FIG.
The flashlight emitting unit 302 is in a stored state and is a flashlight emitting unit that protrudes above the main body 301 and is in a fixed position when in good condition. Reference numeral 303 is an operation knob for shifting the light emitting section in the retracted state to the protruding state. When the knob is manually slid to the right, the flash light emitting unit 302 is configured to pop out to the position of 302 people. 304 is a film winding lever, and 213 is the lens barrel shown in FIG. 1 above. 307 is a finder, 308 is a light receiving lens 20 shown in FIG.
1, a light receiving window provided on the front surface of 1; 306 is a light projecting lens 21;
This is a floodlight window provided in the front of 1.

第1C図は第1B図に示したカメラに内蔵される閃光発
光部302の外観を示す斜視図で、これと操作部303
、切換スイッチ等の関係を示している。303の操作部
はカメラ本体に配設された支点308によゆ回動可能に
支持されたアーム310を有し、バネ311により時計
方向に付勢されている。閃光発光部子使用時は閃光発光
部302はカメラ本体との間に配設されているバネ30
9に抗してカメラ本体内に押し下げられ、操作つまみ3
03のアーム310の端部310a がストロボ本体3
02に配設された溝部302bに係合して@lB図の実
線302の位置に保持されている。
FIG. 1C is a perspective view showing the external appearance of the flashlight emitting unit 302 built into the camera shown in FIG. 1B, and the operation unit 303.
, shows the relationship between changeover switches, etc. The operating section 303 has an arm 310 rotatably supported by a fulcrum 308 provided on the camera body, and is biased clockwise by a spring 311. When using the flashlight emitting unit, the flashlight emitting unit 302 is connected to the spring 30 disposed between the camera body and the flashlight emitting unit 302.
9 and is pushed down into the camera body, and the operation knob 3
The end 310a of the arm 310 of 03 is the strobe body 3.
It is engaged with a groove 302b provided at 02 and held at the position indicated by the solid line 302 in the diagram @lB.

この位置にある時は閃光発光部302の下端部に接触し
た状態にある。この状態から操作つまみ303を矢印方
向に手動操作するとアーム310の端部310mが閃光
装置302の溝部302bからはず行する。この時閃光
発光部302の凸起302mかから嗣4に切換えられる
When in this position, it is in contact with the lower end of the flash light emitting section 302. When the operating knob 303 is manually operated in the direction of the arrow from this state, the end 310m of the arm 310 comes off the groove 302b of the flash device 302. At this time, the protrusion 302m of the flash light emitting section 302 is switched to the 4th protrusion.

すなわち、閃光発光部302が本体に押し込まれた状態
にある時スイッチSlは前述の如く接される。
That is, when the flashlight emitting section 302 is in the state of being pushed into the main body, the switch Sl is contacted as described above.

又操作つまみ303を右方向に手動で動かし、閃光発光
部を302人の位置まで飛び出させ走時は、スイッチS
1は前述の如く接片81cと81aが接触し良状態にあ
るので第1図及び第2図に示され先受光素子225が選
択される。すなわち閃光撮影時は受光素子225が用い
られ、昼光撮影時は受光素子lが用いられる様に構成さ
れている。受光素子1及び受光素子225は第1A図に
示す如く構成されている。受光素子1は投光用発光ダイ
オード103からの光を受光レンズ201、ハーフミラ
−224を介して受光し、また受光素子225は、受光
レンズ201、前記/S−フiラー光素子lの場合では
D2、受光素子225の場合ではDlであり、DI>D
2となる様に構成されている。従って受光レンズ、レン
ズの中心から受光素子面に至る光路長は受光素子1まで
の方が受光素子225に比べて長くなり、受光素子lの
被写体を見込む角度(実線)よ抄受光素子225の被写
体を見込む角度(破線)の方が太きくなる。すなわち周
囲光が不充分の時に用いられる閃光撮影においては受光
素子225の被写体を見込む角度(これも走査領域と称
す)が昼光撮影時の前記角度(これも走査領域と称す)
より太きくなる様構成されている。
Also, manually move the operation knob 303 to the right to make the flash light emitting part pop out to the position of 302 people, and when running, press the switch S.
1 is in good condition with the contact pieces 81c and 81a in contact as described above, so the first light receiving element 225 shown in FIGS. 1 and 2 is selected. That is, the configuration is such that the light receiving element 225 is used during flash photography, and the light receiving element 1 is used during daylight photography. The light receiving element 1 and the light receiving element 225 are constructed as shown in FIG. 1A. The light receiving element 1 receives the light from the light emitting diode 103 for projecting light via the light receiving lens 201 and the half mirror 224, and the light receiving element 225 receives the light from the light receiving lens 201, and in the case of the above-mentioned /S-filler optical element l. D2, and in the case of the light receiving element 225, it is Dl, and DI>D
It is configured to be 2. Therefore, the optical path length from the center of the light-receiving lens to the light-receiving element surface is longer up to the light-receiving element 1 than to the light-receiving element 225. The angle (dashed line) from which you can see is thicker. In other words, in flash photography used when ambient light is insufficient, the angle at which the light receiving element 225 looks at the subject (also referred to as the scanning area) is the same as the angle during daylight photography (also referred to as the scanning area).
It is configured to be thicker.

第2図は第1図に用いられるカメラ用測距装置における
電気回路接続図にして、図において、点線AでWiまれ
九部分は被写体(不図示)で反射した発光ダイオード1
03からの光を電気信号に変換する受光回路で、該受光
口MAR演算増される受光素子1及び225と、該増幅
器3の帰還路に接続された抵抗5,7と、該抵抗の接続
点に一端が接続され、他端がキャノ(シタIIK接続さ
れた抵抗9とを有している。尚これら抵抗5,7.9の
抵抗値並びに前記キャパシタ11の容量としては前記発
光ダイオード103の点滅周期近傍の信号周波数のゲイ
ンを上げ、またこの周波数より低い周波数のゲインを抑
える様な値が選ばれる。
Fig. 2 is an electric circuit connection diagram of the camera distance measuring device used in Fig. 1.
A light-receiving circuit that converts light from 03 into an electrical signal, which includes light-receiving elements 1 and 225 that are multiplied by MAR calculation at the light-receiving port, resistors 5 and 7 connected to the feedback path of the amplifier 3, and a connection point between the resistors. One end is connected to a resistor 9, and the other end is connected to a resistor 9.The resistance values of these resistors 5 and 7.9 and the capacity of the capacitor 11 are determined by the blinking of the light emitting diode 103. A value is selected that increases the gain of signal frequencies near the period and suppresses the gain of frequencies lower than this frequency.

点iIBで囲まれた部分は、前記周波数近傍の入力信号
を増巾する増巾回路で、該増巾器IIIBfi バイバ
スフィルタを構成するキャパシタ13と抵抗15並びに
骸バイパスフィルタの出力端に接続された非反転入力端
を有する演算増巾器17を有している。また該増巾回路
Bは更に前記増巾!17の帰還路に接続された抵抗19
並びに該抵抗19と前記演算増巾器17の反転入力端と
の接続点に接続され′た抵抗21とを有している。点線
Cで囲まれた部分は、後述する同期信号に応答して、前
記増巾回路Bからの出力信号をサンプリングすると共に
ホールディングするための同期検波回路で、該同期検波
回路Cボ。
The part surrounded by the point iIB is an amplification circuit that amplifies the input signal near the frequency, and the amplifier IIIBfi is connected to the capacitor 13 and the resistor 15 constituting the bypass filter, as well as to the output terminal of the skeleton bypass filter. It has an operational amplifier 17 having a non-inverting input. Further, the width increasing circuit B further has the above-mentioned width increasing circuit B! Resistor 19 connected to the return path of 17
It also has a resistor 21 connected to a connection point between the resistor 19 and the inverting input terminal of the operational amplifier 17. The part surrounded by the dotted line C is a synchronous detection circuit for sampling and holding the output signal from the amplification circuit B in response to a synchronization signal, which will be described later.

はたとえばバイポーラのアナログスイッチで形成される
アナ四グスイッチ23.25と、該アナレグスイッチ2
3,25、の制御電極に接続された出力端を有する2つ
のアンド−ゲート27.29と、抵抗31.33、電圧
保持用キャパシタ35.37と、該キャパシタ35の出
力端に接続されたホロワ−回MI39と、has記キャ
パシタ37の出力端に接続された第2のホロワ−回@4
1と、抵抗43を介して該ホロワ−回j641の出力端
に接続された反転入力端を有する演算増巾器45と、該
増巾器45の帰還路に接続された抵抗47とを有してい
る。尚前記43.45,47、で形成される回路は前記
ホロワ−回路41の出力信号のレベルを演算基準レベル
KVCに対しゲイン1で反転するインバータを形成して
いる。点線りで囲まれた部分は、前記同期検波回路Cの
出力信号のうち、低しペレ ルの出力信号を増巾すると共に高れペルの出力信号を圧
縮する疑似圧縮回路で、該疑似圧縮回路りは基準電位を
決めるための抵抗49.51と、該抵抗49.51で形
成された分圧回路の出力端に接続された非反転入力端を
有する演算増巾器53と、該増巾器53の出力端と反転
入力端間に接続された抵抗55と、抵抗57を介して前
記増巾器53の出力端に接続されたエミッタを有するP
NP)jンジスタ59と抵抗61゜63.65とを有し
ている。
For example, the analog switch 23 and 25 are formed of bipolar analog switches, and the analog switch 2
3, 25, two AND gates 27.29 having output ends connected to the control electrodes 3, 25, a resistor 31.33, a voltage holding capacitor 35.37, and a follower connected to the output end of the capacitor 35. - circuit MI39 and a second follower circuit @4 connected to the output terminal of the capacitor 37
1, an operational amplifier 45 having an inverting input terminal connected to the output terminal of the follower circuit j641 via a resistor 43, and a resistor 47 connected to the feedback path of the amplifier 45. ing. The circuit formed by 43, 45, and 47 forms an inverter that inverts the level of the output signal of the follower circuit 41 with respect to the calculation reference level KVC with a gain of 1. The part surrounded by a dotted line is a pseudo compression circuit that amplifies the low Pel output signal and compresses the high Pel output signal of the output signal of the synchronous detection circuit C. are a resistor 49.51 for determining a reference potential, an operational amplifier 53 having a non-inverting input terminal connected to an output terminal of a voltage dividing circuit formed by the resistor 49.51, and the amplifier 53. P having a resistor 55 connected between the output terminal and the inverting input terminal of the P amplifier and an emitter connected to the output terminal of the amplifier 53 via a resistor 57.
NP)j resistor 59 and resistor 61°63.65.

点線Eで凹まれた部分は前記同期信号と非同期のノイズ
成分の除去並びに前記同期信号成分の除去を行なうため
に前記疑似圧縮回路りの出力端に接続されたローパスフ
ィルタで、該ローパスフィルタEは抵抗67と、該抵抗
67とアース間に接続されたキャパシタ69とを有して
いる、 点線Fで囲まれた部分は、前記ローパスフィルタEの出
力信号が所定値以下の時に後述のピーク検出回路Gの作
動を禁止するためのピーク検出禁止回路で、該禁止回路
Fは、基準電位を決定する抵抗71.73と、該抵抗7
1.73で形成される分圧回路の出力端に接続された第
1の入力端と前記ローパスフィルタEの出力端に接続さ
れた第2の入力端とを有する比較器75と、ナントゲー
ト77とを有している0点線Gで囲まれた部分紘、前記
ピーク検出回路で、該検出回路Ga前記V−バスフィル
タの出力端に接続された非反転入力端を有する演算増巾
器79と、該増巾器79の出力端に接続されたアノード
を有するダイオード81と、抵抗83を介して前記ダイ
オード81のカソードに接続されると共に増巾器79の
反転入力端に接続されたキャパシタ85と、抵抗87を
介して前記キャパシタ85に並列接続され九NPN )
ランジスタと、該トランジスタ89のベースと前記禁止
回路Fのナントゲート77の出力端に接続された抵抗9
1とを有している。
The part recessed by the dotted line E is a low-pass filter connected to the output end of the pseudo compression circuit in order to remove noise components asynchronous to the synchronization signal and the synchronization signal component. A portion surrounded by a dotted line F, which includes a resistor 67 and a capacitor 69 connected between the resistor 67 and the ground, is a peak detection circuit to be described later when the output signal of the low-pass filter E is below a predetermined value. A peak detection prohibition circuit for prohibiting the operation of G, the prohibition circuit F includes a resistor 71.73 that determines a reference potential,
a comparator 75 having a first input connected to the output of a voltage dividing circuit formed by 1.73 and a second input connected to the output of the low-pass filter E; and a Nant gate 77. In the peak detection circuit, an operational amplifier 79 having a non-inverting input terminal connected to the output terminal of the V-bus filter; , a diode 81 having an anode connected to the output terminal of the amplifier 79, and a capacitor 85 connected to the cathode of the diode 81 via a resistor 83 and to the inverting input terminal of the amplifier 79. , connected in parallel to the capacitor 85 via a resistor 87 (9NPN)
transistor, and a resistor 9 connected to the base of the transistor 89 and the output terminal of the Nandt gate 77 of the inhibition circuit F.
1.

点線Hで囲まれた部分は後述するマグネット101を駆
動する為の駆動回路で、該駆動口gHはラッチ回路を形
成するナンドゲー) 93.95と抵抗97を介して該
ラッチ回路の出力端に接続されたベースを有するNPN
 )ランジスタとを有している。101 U測距動作を
終了させる為に不図示の測距後横に連動したマグネット
で、該マグネット101が非励磁となることにより不図
示の係止爪が撮影レンズ鏡筒(不図示)の移動が停止さ
れる様に構成される。
The part surrounded by the dotted line H is a drive circuit for driving the magnet 101, which will be described later, and the drive port gH is connected to the output end of the latch circuit via a NAND gate (Nando game) 93.95 forming a latch circuit and a resistor 97. NPN with base
) has a transistor. 101 U A magnet (not shown) that is interlocked laterally after distance measurement in order to end the distance measurement operation.When the magnet 101 is de-energized, a locking claw (not shown) moves the photographing lens barrel (not shown). is configured so that it is stopped.

点iI!Jで囲まれた部分は2進のりツプルカクンタ1
02を有するカウンタで、該カウンタ102は入力端C
K、 リセット端子R並びに出力端Qを有している。
Point II! The part surrounded by J is binary glue Tupulukakunta 1
02, the counter 102 has an input C
K, a reset terminal R, and an output terminal Q.

点線にで囲まれた部分は前記発光ダイオード103を駆
動するための駆動回路で、該駆動回路にはナントゲート
105、抵抗107を介して該ナンドゲー) 105の
出力端に接続されたベースを有するNPN )ランジス
タ109、抵抗1111演算増巾器113、前記発光ダ
イオード103に接続されたPNP )ランジスタ11
5、該トランジスタ115のコレクタと前記増巾器11
3の非反転入力端間に接続された可変抵抗117と抵抗
119とを有している。
The part surrounded by the dotted line is a drive circuit for driving the light emitting diode 103, and the drive circuit includes an NPN transistor having a base connected to the output terminal of the NAND gate 105 and the NAND gate 105 via a resistor 107. ) transistor 109, resistor 1111 operational amplifier 113, PNP connected to the light emitting diode 103) transistor 11
5. The collector of the transistor 115 and the amplifier 11
It has a variable resistor 117 and a resistor 119 connected between the non-inverting input terminals of No. 3.

点@Lで囲まれた部分はレベル検出回路で、該検出回路
りは前記比較器75の出力端に接続された入力端を有す
るナントゲート121を有している。
The part surrounded by the point @L is a level detection circuit, and the detection circuit has a Nant gate 121 having an input terminal connected to the output terminal of the comparator 75.

点線Mで囲まれた部分は後述の発振回路Nの出力端に接
続された分局回路で、該分局回路Mを構成する第2番目
のDILフリップフロップ回路125の出力端Qt−j
d記アンドゲート27の一方の入力端に接続され、また
その出力端Q/Ii前記アンドゲート29の一方の入力
端に接続される。また該分周回路Mを構成する第3番目
のD臘フリップフロップ回路127の出力端Qは前記ア
ンドゲート29の他方の入力端に接続され、他方の出力
端Qは前記アンドゲート27の他方の入力端に接続され
る。
The part surrounded by the dotted line M is a branch circuit connected to the output terminal of an oscillation circuit N, which will be described later, and is the output terminal Qt-j of the second DIL flip-flop circuit 125 constituting the branch circuit M.
It is connected to one input terminal of the AND gate 27, and its output terminal Q/Ii is connected to one input terminal of the AND gate 29. Further, the output terminal Q of the third D flip-flop circuit 127 constituting the frequency dividing circuit M is connected to the other input terminal of the AND gate 29, and the other output terminal Q is connected to the other input terminal of the AND gate 27. Connected to the input end.

点線Nで囲まれた部分はその出力端がD型?リッグフロ
ツプ回路123のクロック入力端CKに接続された発振
器133を含む発振回路である。
Is the output end of the part surrounded by dotted line N a D type? This oscillation circuit includes an oscillator 133 connected to the clock input terminal CK of the rig flop circuit 123.

135は一端が接地され、測距動作のスタート時に開か
れるスタートスイッチ、137はスイッチインターフェ
イス回路、139は該スイッチインターフェイス回路1
37を介して前記スタートスイッチ135に接続された
入力端と、前記分周回路Mの出力端であるD型フリップ
70ツブ回j@ 131の出力端Qに接続され九アンド
グー)、141は一端が接地され、かつ前記発光ダイオ
ード103が所定の距離、たとえば5〔m〕に存在する
被写体を走査した時に開成状態から閉成状態に転換され
る限界スイッチ、145はスイッチインターフェイス回
路143を介して前記限界スイッチ141に接続される
入力端並びに前記ピーク検出回#!IGの出力端に接続
された入力端を有するナントゲート、147aスイツチ
インタ一フエイス回w11143の出力端に接続された
インバータである。
135 is a start switch whose one end is grounded and is opened at the start of the ranging operation; 137 is a switch interface circuit; 139 is the switch interface circuit 1;
The input end is connected to the start switch 135 via 37, and the output end Q of the D-type flip circuit 70 which is the output end of the frequency dividing circuit M is connected to the output end Q of the D-type flip circuit 131. A limit switch 145 that is grounded and is switched from an open state to a closed state when the light emitting diode 103 scans an object present at a predetermined distance, for example, 5 m, is connected to the limit switch 145 via the switch interface circuit 143. The input terminal connected to the switch 141 and the peak detection circuit #! 147a is an inverter connected to the output of the switch interface w11143, which has an input connected to the output of the IG.

つぎに上記構成にかかるカメラ用測距装置の動作につい
て第1図、第1A〜IC図並びに第2図を用いて説明す
るが、まず閃光撮影の場合、すなわち受光素子225が
選択された場合について説明する。
Next, the operation of the camera distance measuring device according to the above configuration will be explained using FIG. 1, FIGS. 1A to 1C, and FIG. explain.

第2図示の様に、スタートスイッチ135が閉成され、
限界スイッチ141が閉成された初期状態において電源
スィッチ(不図示)が投入されると、電圧供給端VBA
T並びに供給VBATの出力電圧よ抄安定し九出力電圧
を発生する電圧供給端KVCには所定の電圧が発生する
As shown in the second diagram, the start switch 135 is closed,
When the power switch (not shown) is turned on in the initial state where the limit switch 141 is closed, the voltage supply terminal VBA
A predetermined voltage is generated at the voltage supply terminal KVC, which is stable compared to the output voltage of T and the supply VBAT and generates an output voltage.

電源スィッチが投入されると前述の様にスタートスイッ
チ135が閉成された状態ではスイッチインターフェー
ス回N1137の出力端の電位はローレベル(以下LL
と略称する)となるので、アンドゲート139の出力端
の電位もLLとなり、またナントゲート105の出力端
の電位はノ・イレベル(以下HLと略称す名)となり、
更にトランジスタ109は導通する。このためトランジ
スタ115は非導通状態を保持し、また赤外線を発生す
る発光ダイオード103は消灯状態を保持する。
When the power switch is turned on and the start switch 135 is closed as described above, the potential at the output terminal of the switch interface circuit N1137 is at a low level (hereinafter referred to as LL).
Therefore, the potential at the output terminal of the AND gate 139 also becomes LL, and the potential at the output terminal of the NAND gate 105 becomes the NO level (hereinafter abbreviated as HL),
Further, transistor 109 becomes conductive. Therefore, the transistor 115 remains non-conductive, and the light emitting diode 103 that generates infrared rays remains off.

前述の様に発光ダイオード103が点灯しない場合には
、被写体(不図示)からの反射光は存在しない為に、受
光回路人はほとんど信号を発生せず、またその結果とし
てローパスフィルタEの出力端の電位も無信号時の直流
レベルとなる。この時のローパスフィルタEの電位は、
抵抗71.73で形成された分圧回路の出力電位より低
い為に、比較器75の出力端の電位はLLとなり、ナン
トゲート77の出力端電位はHLとなる。ナントゲート
77の出力端の電位がHLとなると、トランジスタ89
は導通状態にな抄、ピーク検出回路qの動作は禁止され
、演算増巾器79の出力−の電位はHLとなる。この時
スイッチインターフェース回路143の出力端の電位は
前述の様にHLとなっているので、ナントゲート145
の出力端電位は増巾器79の出力端電位が前述の様にH
Lとなると′\直ちにLLとなり、カウンタ102をリ
セットする。カウンタ102の出力端Qの電位は1述の
リセットによってHLとなるので、ラッチ回路を構成す
るナントゲート95の一方の入力端951の電位もHL
となる。一方この時ナントゲート121の出力端電位り
限界スイッチ141が開成状態にあることによりHLと
なってお9、またナントゲート95の第30入力端95
cの電位紘前配電源 、スイッチの投入によって生じた
パワーアップクリアー信号PUCにより)ILとなって
いるので、該ラッチ回路の出力状態紘カクンタ102の
リセットに応答して確実に保持され、トランジスタ99
Fi、導通状態を保持し、またマグネット101にはト
ランジスタ99を介して励磁電流が流れ続ける。このた
めカメラの測距機構は第1図示の如き初期状態に保持さ
れる。
As mentioned above, when the light emitting diode 103 does not light up, there is no reflected light from the subject (not shown), so the light receiving circuit generates almost no signal, and as a result, the output terminal of the low-pass filter E The potential of is also the DC level when there is no signal. The potential of low-pass filter E at this time is
Since it is lower than the output potential of the voltage dividing circuit formed by the resistors 71 and 73, the potential at the output end of the comparator 75 becomes LL, and the potential at the output end of the Nandt gate 77 becomes HL. When the potential at the output end of the Nandt gate 77 becomes HL, the transistor 89
becomes conductive, the operation of the peak detection circuit q is prohibited, and the potential of the output of the operational amplifier 79 becomes HL. At this time, since the potential at the output end of the switch interface circuit 143 is HL as described above, the Nant gate 145
The output terminal potential of the amplifier 79 is H as described above.
When it becomes L, '\ immediately becomes LL, and the counter 102 is reset. Since the potential of the output terminal Q of the counter 102 becomes HL due to the above-mentioned reset, the potential of one input terminal 951 of the Nant gate 95 constituting the latch circuit also becomes HL.
becomes. On the other hand, at this time, the output terminal voltage limit switch 141 of the Nante gate 121 is in the open state, so that it becomes HL9, and the 30th input terminal 95 of the Nante gate 95
The potential of the Hirosaki distribution power supply c is set to IL (by the power-up clear signal PUC generated by turning on the switch), so the output state of the latch circuit is reliably held in response to the reset of the Hirosaki circuit 102, and the transistor 99
Fi remains conductive, and the excitation current continues to flow through the magnet 101 via the transistor 99. Therefore, the distance measuring mechanism of the camera is maintained in the initial state as shown in the first diagram.

斯様な状態でスタートスイッチ135を開成すると、ス
イッチインターフェース回6137の出力端電位がHL
に反転するので、アンドゲート139は第3図示のMA
に示す如き駆動信号(該駆動信号は第1図示分周回路M
の出力端MA点における出力信号を示している)に同期
して開端は前記パワーアップクリア信号PUCに応答し
てHLとなっているので、ナントゲート105はアンド
ゲート139の出力端電・位の変化に応答して開閉し、
また発光ダイオード103は第3図の103 Aに示す
様なアンドゲート139の開閉に同期したタイミングで
点滅を繰返す。
When the start switch 135 is opened in such a state, the output terminal potential of the switch interface circuit 6137 becomes HL.
Therefore, the AND gate 139 is MA shown in the third diagram.
A drive signal as shown in FIG.
Since the open end becomes HL in response to the power-up clear signal PUC in synchronization with the output signal at the output end MA point of the Opens and closes in response to changes,
Further, the light emitting diode 103 repeats blinking at a timing synchronized with the opening and closing of the AND gate 139 as shown at 103A in FIG.

一方前記スタートスイッチ135の開成に同期して第1
図示の走査レバー203社時計方向に揺動を始め、発光
ダイオード103は点滅しながら、被写体を走査し、ま
た鏡筒213はバネ215によって発光ダイオード10
3の走査開始よねわずかに遅れて至近から無限の位置に
相応する位置に向って後退する。そして、該走査によっ
て発光ダイオード103からのビーム光が被写体(不図
示)に当ると、該被写体で反射したビーム光が第1図示
受光レンズ201を介して受光回路人の受光素子225
に入射し、該受光回路人の出力端3Aに拡大陽光、電灯
等の光に関連した低周波数成分が抑圧された、そのレベ
ルが徐々に上昇する第4図の3人に示す如き波形の信号
が埃われる。受光回路人の出力端3人に現われる信号の
うち主として発光ダイオード103の点滅周波数付近の
周波数成分の信号が増巾回路Bで増巾され死後に、アナ
ログスイッチ23.25の夫々の入力端に供給される。
On the other hand, in synchronization with the opening of the start switch 135, the first
The scanning lever 203 shown in the figure begins to swing clockwise, the light emitting diode 103 blinks and scans the subject, and the lens barrel 213 is moved by the spring 215 to move the light emitting diode 10
There is a slight delay from the start of scanning No. 3, and the object moves backward from the closest position to the position corresponding to the infinite position. When the beam light from the light emitting diode 103 hits a subject (not shown) during the scanning, the beam light reflected by the subject passes through the first illustrated light receiving lens 201 to the light receiving element 225 of the light receiving circuit.
A signal with a waveform as shown in Fig. 4, in which low frequency components related to light such as sunlight and electric lights are suppressed, is input to the output terminal 3A of the light receiving circuit, and its level gradually rises. is dusted off. Among the signals appearing at the output terminals of the three light receiving circuits, the signals mainly having frequency components near the blinking frequency of the light emitting diode 103 are amplified by the amplification circuit B, and after death, are supplied to the respective input terminals of the analog switches 23 and 25. be done.

尚増巾回路Bの出力端17人に現われる信号の波形を第
4図において17Aとして示した。
The waveform of the signal appearing at the output terminal 17 of the width increasing circuit B is shown as 17A in FIG.

一方該アナμグスイッチ23の制御信号入力端に社、ア
ンドゲート29を介して分局回路Mから第3図の29A
に示す様な同期信号が与えられており、またアナログス
イッチ250mb!J御信号入力端に紘アンドゲート2
7を介して分局回NIMから第3図の27Aに示す様な
同期信号が与えられているので、アナログスイッチ23
゜25の夫々の入力端に供給され九ha述の如き信号は
、該アナログスイッチ23.25でサンプリングされ、
また後続のホールド回路によって保持される。従ってホ
ロワ−回路39の出力端39Aには前記発光ダイオード
103の走査に応答して、第4図の39Aに示す如き波
形の(6号が祝われ、またインバータ45の出力端45
Aには前記発光ダイオード103の走査に応答して、@
4図の45Aに示す様な波形の信号が現われる。同期検
波回路Cの出力端39人、45人には発光ダイオード1
03の走査に応答して前述した様な出力信号が現われる
が、その出力信号のレベルが低く、トランジスタ59が
カットオフしている状態では出力端39AK現われる出
力信号は−55B/61 R倍(但し55Bは抵抗55
の抵抗値を示し、61Rは抵抗61の抵抗値を示してい
る)に増巾され、また出力端45 AK机われる出力信
号は−55R763R倍(但し、63R紘抵抗63の抵
抗値を示している)に増巾されて、圧縮回路りの出力端
53Aに現われる。
On the other hand, the control signal input terminal of the analog μg switch 23 is connected to the branch circuit M via the AND gate 29 to 29A in FIG.
The synchronization signal shown in is given, and the analog switch is 250mb! Hiroand gate 2 at J signal input terminal
Since a synchronizing signal as shown in 27A in FIG. 3 is given from the branch circuit NIM via 7, the analog switch 23
The signals supplied to the respective inputs of 25 and 25 are sampled by the analog switches 23 and 25, and
It is also held by a subsequent hold circuit. Therefore, in response to the scanning of the light emitting diode 103, the output terminal 39A of the follower circuit 39 has a waveform (No. 6) shown at 39A in FIG.
In response to the scanning of the light emitting diode 103, @
A signal with a waveform as shown at 45A in FIG. 4 appears. There is a light emitting diode 1 at the output end of the synchronous detection circuit C for 39 people and 45 people.
In response to the scanning of 03, the output signal as described above appears, but when the level of the output signal is low and the transistor 59 is cut off, the output signal appearing at the output terminal 39AK is -55B/61R times (however, 55B is resistance 55
and 61R indicates the resistance value of the resistor 61), and the output signal output from the output terminal 45AK is multiplied by -55R763R (however, 63R indicates the resistance value of the resistor 63). ) and appears at the output terminal 53A of the compression circuit.

そして、疑似圧縮回路りへの人力信号が$4図の39A
或い#i45人に示す様に徐々に大きくなり、増巾器5
3の出力端53人の電位がトランジスタ590ペース・
エミッタを導通させるレベルを越えると抵抗55のみな
らず抵抗57gJtびにトランジスタ59の主電極であ
るエミッタとコレクタを介しても増巾器53の出力電流
は流れ始めるので、第4図の53人に示される様に、演
算増巾器53の出力は圧縮回路りの入力信号レベルが湧
定値を越えると、徐々に圧縮される。尚この圧縮度合は
抵抗55と抵抗5た信号のうち、サンプリング周波数成
分と、サンプリング周波数と非同期のノイズ成分Lロー
パスフィルタEによって除去されそれら以外の成分の信
号すなわち、第4図の69Aで示す様な信号がピーク検
出回路GO入力端である増巾器79の非反転入力端に供
給される。
Then, the human input signal to the pseudo compression circuit is 39A in the $4 diagram.
Or, as shown in #i45, it gradually becomes larger, and the amplifier 5
The potential of the output terminal 53 of the transistor 590 is
When the level that makes the emitter conductive is exceeded, the output current of the amplifier 53 begins to flow not only through the resistor 55 but also through the resistor 57gJt and the emitter and collector, which are the main electrodes of the transistor 59. As shown, the output of the operational amplifier 53 is gradually compressed when the input signal level to the compression circuit exceeds a predetermined value. This degree of compression is determined by the sampling frequency component and the noise component L that is asynchronous with the sampling frequency among the signals generated by the resistor 55 and the resistor 5, which are removed by the low-pass filter E. A signal is supplied to the non-inverting input terminal of the amplifier 79, which is the input terminal of the peak detection circuit GO.

ところで、ローパスフィルタEの出力信号レベルが比較
器750入力端(→に接続された分圧回路の分圧電圧よ
抄低い場合には、比較器75の出力端75Aの電位は第
4図の75Aに示される様にLLの状態を保持している
ので、スタートスイッチ135の開成に同期してナント
ゲート77の入力端771にの電位がHLに反転してい
ても、この時点ではナントゲート77の出力電位はHL
を保持し、またトランジスタ89は導通状態を保持して
いる。ついで発光ダイオード103の前述の如き走査に
応答してローパスフィルタEの出力電位が前記分圧回路
71.73の分圧電圧を越えると、比較器75の出力端
75Aの電位は第4図の波形75Aに示す様に、急激に
LLからHLに反転し、またトランジスタ89は非導通
状態に反転し、ピーク検出回路Uのピーク検出動作は可
能となる。該ピーク検出動作が可能となると、増巾器7
9の出力4i79人の電位はその入力端の電位の上昇に
相応して上昇し、またキャパシタ85の端子電圧はその
出力端79Aの電位の上昇に追随して上昇する。この増
巾器79の出力端79Aの電位はトランジスタ89が非
導通状態に反転した後にも上昇するが、ローパスフィル
タBの出力端69Aの電位が第4図の69Aに示す様に
下降を開始すると、トランジスタ89が非導通状態にあ
る為にキャパシタ85はダイオード810作用により入
力信号のピーク値を記憶する。このため演算増巾器79
の帰還路は断たれ、非反転入力端(ト)の電位と反転入
力端(→の電位との差電圧が増巾器79のオープンルー
プゲインに和尚する非常に大きな増巾率で増巾され、増
巾器79の出力479人の電位線瞬時KLLIで降下す
る。
By the way, when the output signal level of the low-pass filter E is much lower than the divided voltage of the voltage dividing circuit connected to the input terminal of the comparator 750 (→), the potential of the output terminal 75A of the comparator 75 is 75A in FIG. As shown in , even if the potential at the input terminal 771 of the Nantes gate 77 is reversed to HL in synchronization with the opening of the start switch 135, the Nantes gate 77 remains in the LL state at this point. The output potential is HL
, and the transistor 89 remains conductive. Then, in response to the aforementioned scanning of the light emitting diode 103, when the output potential of the low-pass filter E exceeds the divided voltage of the voltage dividing circuits 71 and 73, the potential of the output end 75A of the comparator 75 has the waveform shown in FIG. As shown at 75A, the signal is suddenly reversed from LL to HL, and the transistor 89 is reversed to a non-conductive state, allowing the peak detection circuit U to perform the peak detection operation. When the peak detection operation becomes possible, the amplifier 7
The potential of the output 4i79 of the capacitor 85 rises in accordance with the rise in the potential at its input terminal, and the terminal voltage of the capacitor 85 rises in accordance with the rise in the potential at its output terminal 79A. The potential at the output terminal 79A of the amplifier 79 rises even after the transistor 89 is inverted to a non-conducting state, but when the potential at the output terminal 69A of the low-pass filter B starts to fall as shown at 69A in FIG. , the capacitor 85 stores the peak value of the input signal due to the action of the diode 810 since the transistor 89 is in a non-conducting state. For this reason, the operational amplifier 79
The feedback path is cut off, and the voltage difference between the potential at the non-inverting input terminal (G) and the potential at the inverting input terminal (→) is amplified at a very large amplification rate equal to the open loop gain of the amplifier 79. , the output of the amplifier 79 479 potential line drops at the instant KLLI.

す表わち増巾器79の出力端79人の電位は発光ダイオ
ード103が所定位置に存する被写体を走査するや否や
、LLに降下する。ところでこの時点では限界スイッチ
141は開成状態を保持し、ナントゲート145の一方
の入力端の電位はHLとなっているので、前述の様にピ
ーク検出回路qの出力端79Aの電位がL Lになると
、ナントゲート145の出力電位はLLからHLに反転
するのでカウンタ102のリセット状態は解除され、カ
ウンタ102はアンドゲート!39を介して分周回路M
から供給されるパルスのカウントを開始する。そしてピ
ーク検出回路Gの出力下した場合にはその降下状態は所
定時間持続する。従ってカウンタ102社その間カウン
ト動作を続け、そして所定時間が経過すると、カウンタ
102の出力4QhHtからLLに反転し、ラッチ回路
はリセットされ、そのナントゲート93の出力電位はH
LからLLに反転し、トランジスタ99は非導通状態に
反転する。この丸めマグネット101は非励磁にされ、
停止爪219社バネ221によって右旋し、係止爪21
7に係合する。
In other words, the potential at the output end 79 of the amplifier 79 drops to LL as soon as the light emitting diode 103 scans the object at a predetermined position. By the way, at this point, the limit switch 141 is kept open and the potential of one input terminal of the Nandt gate 145 is HL, so the potential of the output terminal 79A of the peak detection circuit q becomes L L as described above. Then, the output potential of the Nant gate 145 is inverted from LL to HL, so the reset state of the counter 102 is released, and the counter 102 becomes an AND gate! 39 to the frequency divider circuit M
Start counting the pulses supplied from. When the output of the peak detection circuit G drops, the falling state continues for a predetermined period of time. Therefore, the counter 102 continues to count, and after a predetermined period of time has passed, the output of the counter 102 is reversed from 4QhHt to LL, the latch circuit is reset, and the output potential of the Nant gate 93 is H.
The signal is inverted from L to LL, and the transistor 99 is inverted to a non-conducting state. This rounded magnet 101 is de-energized,
The stopping claw 219 rotates to the right by the spring 221, and the locking claw 21
7.

この結果、撮影レンズ鏡筒213は被写体の位置に相応
した適正な位置に停止される。
As a result, the photographing lens barrel 213 is stopped at an appropriate position corresponding to the position of the subject.

一方、前述の様にナントゲート93の出力が)(Lから
LLに反転すると、ナントゲート105の出力はHLに
保持されるので、発光ダイオード103は消灯して測距
動作は完全に停止する。
On the other hand, as described above, when the output of the Nandts gate 93 is inverted from L to LL, the output of the Nandts gate 105 is held at HL, so the light emitting diode 103 is turned off and the ranging operation is completely stopped.

測距動作の停止後、不図示の公知のシャッタ制御回路が
作動すると共に、シンクロ接点不図示が閉成され、閃光
撮影が行われる。
After the distance measuring operation is stopped, a known shutter control circuit (not shown) is activated, a synchro contact (not shown) is closed, and flash photography is performed.

昼光撮影時の測距回路の動作は受光素子lが受光素子2
25と入れ替っただけであ抄、動作は閃光撮影時の動作
と実質的に同様であるので省略する。
In the operation of the distance measuring circuit during daylight photography, the light receiving element 1 is the light receiving element 2.
The operation is substantially the same as the operation during flash photography, so the explanation will be omitted.

向上記実施例では閃光撮影時に受光素子の被写体を見込
む角度が大きくなり、受光素子の出力が小となり、周囲
光の影響を受は易くなるが、この時は周囲光のレベルが
充分小さいので、投光用発光素子の出力を増大させる必
要鉱ない。
In the above embodiment, the angle at which the light-receiving element looks at the subject increases during flash photography, and the output of the light-receiving element decreases, making it more susceptible to the influence of ambient light, but at this time, the level of ambient light is sufficiently low, so There is no need to increase the output of the light emitting element for projecting light.

以上の様に、本発明によれば、閃光撮影時、測距用受光
素子の被写体を見込む角度(即ち走査領域)が昼光撮影
時のそれに比べて大きくなり、測距領域が拡大するので
、閃光発光を必要とする様な暗い場所での測距時に切体
の狙い方が少々不正確であっても焦点ズレを起す可能性
が減少し、昼光撮影時に準じた測距精度が得られるもの
でおる。
As described above, according to the present invention, during flash photography, the angle at which the distance-measuring light-receiving element looks at the subject (i.e., the scanning area) is larger than that during daylight photography, and the distance-measuring area is expanded. When measuring distance in a dark place that requires flashlight emission, even if the aiming method of the object is slightly inaccurate, the possibility of defocusing is reduced, and distance measurement accuracy equivalent to daylight shooting can be obtained. It's something.

向上記実施例においては、閃光装置を使用状態にセット
することにより受光素子の被写体を見込む角度を切り換
えているが、周囲光の強さを検出して切り換える様にし
てもよい。
In the above embodiment, the angle at which the light-receiving element looks at the subject is switched by setting the flash device to the operating state, but it may also be switched by detecting the intensity of ambient light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用し九測距装置を有する乃 入メラの概略構成図、 第1A図は第1図示カメラの受光系の構成図、第1B図
は第1図示カメラの外観図、 第1C図は第1図示カメラの閃光装置に関連する部材の
斜視図、 第2図は第1図示カメラの電気回路接続図、第3因並び
に第4図は第2図示回路の各部の出力波形図である。 図において1.225・・・受光素子、224・・・ノ
・−7ミラー、201・・・受光レンズである。 特許出願人  キャノン株式会社
Fig. 1 is a schematic configuration diagram of a non-input camera to which the present invention is applied and has a distance measuring device; Fig. 1A is a configuration diagram of a light receiving system of the camera shown in the first illustration; Fig. 1B is an external view of the camera shown in the first illustration; Figure 1C is a perspective view of members related to the flash device of the camera shown in the first illustration, Figure 2 is an electric circuit connection diagram of the camera shown in the first illustration, the third factor, and Figure 4 are output waveforms of various parts of the circuit shown in the second illustration. It is a diagram. In the figure, 1.225...light receiving element, 224...-7 mirror, 201... light receiving lens. Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 測距装置において、低輝度時の走査領域を高輝度時のそ
れよ秒も拡大する様にしたことを特徴とする測距装置。
What is claimed is: 1. A distance measuring device characterized in that the scanning area during low brightness is enlarged by a second compared to the scanning area during high brightness.
JP12917181A 1981-08-18 1981-08-18 Distance measuring device Granted JPS5830613A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12917181A JPS5830613A (en) 1981-08-18 1981-08-18 Distance measuring device
US06/407,280 US4494847A (en) 1981-08-18 1982-08-11 Distance measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12917181A JPS5830613A (en) 1981-08-18 1981-08-18 Distance measuring device

Publications (2)

Publication Number Publication Date
JPS5830613A true JPS5830613A (en) 1983-02-23
JPH0432324B2 JPH0432324B2 (en) 1992-05-29

Family

ID=15002891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12917181A Granted JPS5830613A (en) 1981-08-18 1981-08-18 Distance measuring device

Country Status (1)

Country Link
JP (1) JPS5830613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228108A (en) * 1983-06-10 1984-12-21 Matsushita Electric Works Ltd Distance sensor
US10549918B2 (en) 2015-04-02 2020-02-04 Nordischer Maschinenbau Rud. Baader Gmbh + Co. Kg Trough-type conveyor, which is designed and configured for transporting fish transversely to the longitudinal extent thereof in the transport direction TM, and arrangement and method for transferring fish from such a trough-type conveyor to a transport means downstream of the trough-type conveyor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228108A (en) * 1983-06-10 1984-12-21 Matsushita Electric Works Ltd Distance sensor
US10549918B2 (en) 2015-04-02 2020-02-04 Nordischer Maschinenbau Rud. Baader Gmbh + Co. Kg Trough-type conveyor, which is designed and configured for transporting fish transversely to the longitudinal extent thereof in the transport direction TM, and arrangement and method for transferring fish from such a trough-type conveyor to a transport means downstream of the trough-type conveyor

Also Published As

Publication number Publication date
JPH0432324B2 (en) 1992-05-29

Similar Documents

Publication Publication Date Title
CA1075215A (en) Photographic flash device
US3326103A (en) Auxiliary shutter timing mechanism
US4153355A (en) Camera incorporated with a movable flash light device
US4021824A (en) Flash light photographic system for camera
US3757654A (en) Camera having automatic exposure and automatic flash controls
JPS633294B2 (en)
US4058818A (en) Fixed time delay quench strobe
US4072964A (en) Scene light responsive variable quench time delay for quench strobe
JPS5830613A (en) Distance measuring device
US4494847A (en) Distance measuring system
JPH0226207B2 (en)
JPS6015244B2 (en) camera focusing device
US4190335A (en) Shutter controlling aid means for use with camera
JPH0147770B2 (en)
US4365878A (en) Signal processing circuitry for a distance measuring system
JPS62169134A (en) Automatic condition discriminator
KR860000474Y1 (en) Automatic forcusing camera
US4057811A (en) Quench strobe with predetermined quench rate
US4220407A (en) Camera with film transport motor powered by battery which also charges a flash unit during intervals of transport motor inoperativeness
JPH035567B2 (en)
US3678825A (en) Automatic exposure controls for cameras
US4040069A (en) Fixed time delay circuit for quench strobe
JPS6243168B2 (en)
JPS5953525B2 (en) Exposure time control device for flash photography
JPH0447292B2 (en)