JPS6243168B2 - - Google Patents

Info

Publication number
JPS6243168B2
JPS6243168B2 JP48003923A JP392373A JPS6243168B2 JP S6243168 B2 JPS6243168 B2 JP S6243168B2 JP 48003923 A JP48003923 A JP 48003923A JP 392373 A JP392373 A JP 392373A JP S6243168 B2 JPS6243168 B2 JP S6243168B2
Authority
JP
Japan
Prior art keywords
light
flash
shutter
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48003923A
Other languages
Japanese (ja)
Other versions
JPS4990527A (en
Inventor
Takashi Uchama
Tetsuya Taguchi
Zenzo Nakamura
Yukio Mashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP48003923A priority Critical patent/JPS6243168B2/ja
Priority to US05/488,441 priority patent/US4005444A/en
Publication of JPS4990527A publication Critical patent/JPS4990527A/ja
Publication of JPS6243168B2 publication Critical patent/JPS6243168B2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Exposure Control For Cameras (AREA)
  • Stroboscope Apparatuses (AREA)

Description

【発明の詳細な説明】 本発明は、閃光装置を用いて写真撮影を行う際
に、自然光の量をも考慮した上で閃光の量を制御
することにより、精度の高い露出制御を行い、又
場合によつてはこれと自然光撮影用の自動露出制
御装置とを併用することにより、主被写体のみな
らず背景をも同時に適正露出とすることを目的と
した閃光撮影方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides highly accurate exposure control by controlling the amount of flash light while taking into account the amount of natural light when taking photographs using a flash device. This relates to a flash photography method that aims to properly expose not only the main subject but also the background at the same time by using this together with an automatic exposure control device for natural light photography in some cases.

従来被写体からの閃光の反射光を応答の早い受
光素子並びに積分回路を用いて積分し、この値が
所定値に達すると閃光の放射を中断させる閃光装
置所謂コンピユーターストロボは知られている。
しかしこの種のものでは露出中に於ける自然光の
影響分が無視されているため、被写体が比較的明
るく露出時間が長い場合には自然光の分だけ露出
過度と成つてしまう欠点があつた。
2. Description of the Related Art Conventionally, a so-called computer strobe flash device is known, which integrates the reflected light of a flash from a subject using a quick-response light-receiving element and an integrating circuit, and interrupts the emission of flash when the integrated value reaches a predetermined value.
However, this type of camera ignores the influence of natural light during exposure, so if the subject is relatively bright and the exposure time is long, it has the disadvantage of overexposure due to the natural light.

又上記の欠点を除くために制御回路中にローパ
スフイルター及びバイパスフイルターを挿入し受
光素子で受けた自然光及び閃光の情報を分離した
上で、自然光情報に露出時間情報を加味しこれら
により閃光の放射中断時期即ち発光量を制御する
という方式も既に公知である。しかしこの方式に
も制御回路が複雑になる、露出中に他の撮影者が
他の閃光装置を発光させるとその分だけ露出過度
になつてしまう等の欠点がある。
In addition, in order to eliminate the above drawbacks, a low-pass filter and a bypass filter are inserted in the control circuit to separate the natural light and flash light information received by the light receiving element, and then exposure time information is added to the natural light information to determine the flash light emission. A method of controlling the interruption timing, that is, the amount of light emission, is also already known. However, this method also has drawbacks, such as the control circuit being complicated and overexposure occurring if another photographer turns on another flash device during exposure.

本発明は、この点に鑑みなされたもので、所謂
平均測光出力に基づきシヤツター秒時を決定し、
背景に対する適正露出を補償すると共にシヤツタ
ー開時点と同期的に所謂部分測光による受光素子
出力を積分する積分回路を作動させ、更にシヤツ
ター閉に対して所定時間前に閃光管とトリガー
し、閃光発光させ、該閃光発光による被写体から
の反射光を上記部分測光による受光素子で受け、
積分回路の積分値として主被写体に対する昼光及
び閃光量の加算値が得られる様なし、該加算値が
所定レベルに達した時に閃光を停止、もつて主被
写体に対しても適正露光を得られる様なしたもの
であるから前記従来例の如く露出時間が比較的長
い場合に自然光の分だけ露出過度になつてしまう
という欠点が無いことはもちろん発光量制御回路
が簡単であり、極めて実用性の高いものである。
さらに本発明の装置を用いれば、閃光撮影中即ち
シヤツターが開いている間にたまたま他の撮影者
が他の閃光装置を発光させたとしてもその光量が
自動的に考慮されて閃光装置の発光量が制御され
る(減らされる)ため、この様な場合でも適正露
出が得られるという点も他の装置には見られない
利点である。以下実施例によつて詳細に説明す
る。
The present invention was made in view of this point, and determines the shutter time based on the so-called average photometric output,
In addition to compensating for proper exposure to the background, an integration circuit is operated to integrate the output of the light receiving element by so-called partial photometry in synchronization with the time when the shutter is opened, and the flash tube is further triggered a predetermined time before the shutter is closed to emit a flash. , receiving the light reflected from the subject by the flash light emission with the light receiving element using partial photometry;
There is no way to obtain the sum of the daylight and flash amount for the main subject as the integrated value of the integration circuit, and when the sum reaches a predetermined level, the flash is stopped and proper exposure can be obtained for the main subject as well. Because of this, it does not have the disadvantage of overexposure due to natural light when the exposure time is relatively long as in the conventional example, and the light emission amount control circuit is simple, making it extremely practical. It's expensive.
Furthermore, if the device of the present invention is used, even if another photographer happens to fire a flash while the shutter is open, the amount of light will be automatically taken into account, and the amount of light emitted by the flash will be taken into account. is controlled (reduced), so even in such a case, proper exposure can be obtained, which is an advantage not found in other devices. This will be explained in detail below using examples.

第1図はレンズシヤツターの開閉動作と閃光の
放射との関係を時間に関して示すものである。図
に於いてaはシヤツターの開閉動作を示し縦軸は
シヤツターの開度を示す。又bは閃光装置の発光
特性を示すものである。
FIG. 1 shows the relationship between the opening and closing operations of the lens shutter and the emission of flash light with respect to time. In the figure, a indicates the opening/closing operation of the shutter, and the vertical axis indicates the degree of opening of the shutter. Further, b indicates the light emitting characteristics of the flash device.

シヤツターボタンの押下により時期toにてシヤ
ツターの係止が解かれ、シヤツターの開口が急速
に開き極くわずかな時間経過後t1にて全開に達す
る。予め手動的に設定された時間経過後又は自動
露出制御装置により制御された所定時間経過後、
t2にて閉じ始め極くわずかな時間経過後t3にて閉
じる。一方閃光装置は、従来の装置の如くt1にて
発光起動されるのではなくt2よりも1ms(ミリ
セカンド)程度前のt4にて後述する発光起動手段
にて発光起動されbの如き曲線を描いてその出力
が変化するが、後述する様にt0又はt1よりt5迄の
間に被写体に照射される自然光の量とt4よりt5
の間に被写体に照射される閃光の量(図の斜線部
の面積に対応する)との加算値が所定値に達した
瞬間(即ちt5)に発光が停止される。
When the shutter button is pressed, the shutter is unlocked at time to, the shutter opens rapidly, and after a very short period of time has passed, the shutter is fully opened at time t1 . After a manually set time has elapsed or after a predetermined time controlled by an automatic exposure control device,
It begins to close at t 2 and closes at t 3 after a very short time has elapsed. On the other hand, the flash device is not activated to emit light at t 1 as in conventional devices, but is activated to emit light at t 4 , which is about 1 ms (milliseconds) before t 2 , by a light emission activation means to be described later, as shown in b. The output changes in a curved manner, but as explained later, the amount of natural light irradiated on the subject from t 0 or t 1 to t 5 and the amount of natural light irradiated on the subject from t 4 to t 5 The light emission is stopped at the moment when the sum of the amount of flash light (corresponding to the area of the shaded area in the figure) reaches a predetermined value (ie, t 5 ).

この様にして自然光の影響をも考慮した精度の
高い適正露出が得られる。
In this way, highly accurate appropriate exposure can be obtained that also takes into account the influence of natural light.

第2図は後に詳述する発光量制御回路のR−C
部のコンデンサー端子電圧の変化を示すものであ
る。t0よりt4迄の間は被写体に照射される光は自
然光のみであるため、コンデンサーの端子電圧は
cで示す如くゆつくりと上昇しt4にてv1に達す
る。t4にて閃光装置が発光を開始すると被写体は
自然光と閃光(被写体により反射されて受光素子
に入る)により同時に照射されるため、コンデン
サー端子電圧はdで示す如く急速に上昇し、間も
無くt5にて所定の動作レベルv2に達して発光が停
止させられる。
Figure 2 shows the R-C of the light emission amount control circuit, which will be explained in detail later.
This shows the change in the capacitor terminal voltage of . From t 0 to t 4 , the only light irradiating the subject is natural light, so the terminal voltage of the capacitor slowly increases as shown by c and reaches v 1 at t 4 . When the flash device starts emitting light at t 4 , the subject is simultaneously illuminated by natural light and flash light (which is reflected by the subject and enters the light receiving element), so the capacitor terminal voltage rises rapidly as shown by d, and soon At t5 , a predetermined operating level v2 is reached and the light emission is stopped.

なお前述の如くt0よりt1迄の時間(t2よりt3迄の
時間も)は極く短時間であるためコンデンサーの
充電開始時期はt0ではなくt1としても充分実用に
耐える精度が得られる。(c′の様に上昇する) なお第1図、第2図に於いてt0よりt1迄の時間
及びt2よりt3迄の時間は極くわずかであり無視出
来、又t4よりt2迄の時間は1ms程度であるとい
うことについては既に述べた。しかし発光を停止
してからもシヤツターは未だ開いているため自然
光により被写体はさらに若干露出される。
As mentioned above, the time from t 0 to t 1 (also the time from t 2 to t 3 ) is extremely short, so even if the time to start charging the capacitor is t 1 instead of t 0 , the accuracy is sufficient for practical use. is obtained. (It rises like c') In Figures 1 and 2, the time from t 0 to t 1 and from t 2 to t 3 are extremely small and can be ignored, and from t 4 It has already been mentioned that the time until t 2 is about 1 ms. However, even after the flash stops firing, the shutter is still open, so the subject will be slightly more exposed due to natural light.

しかしこの間の露出量も極くわずかであり無視
出来る程度であるが、これをも補償したい場合に
は動作レベルv2を適正露出となるレベルよりも若
干下げておくかあるいは後述する実施例の如くt5
とt2を一致させるように構成すればよい。
However, the amount of exposure during this time is extremely small and can be ignored, but if you want to compensate for this, you can either lower the operating level v2 slightly below the level that provides proper exposure, or use the method described in the example below. t 5
and t 2 should be configured to match.

又シヤツターが閉じ始めるべき時期より発光を
開始させ、発光停止後シヤツターを閉じさせる
(所定の時期より若干遅れて閉じさせる)ように
構成することも可能である。
It is also possible to configure the shutter to start emitting light at a time when the shutter should begin to close, and then close the shutter after the light emission stops (closing a little later than a predetermined time).

又閃光装置に於いて発光開始より停止迄の時間
はその装置の発光特性、被写体の距離、自然光の
量等によつて定められるべきであることはもちろ
ん、フイルム感度(ASA)及び撮影レンズの絞
り値(F)をも考慮して定めるべきである。従て装置
を簡単にするために例えばASA=100の場合はF
=5.6、ASA=200の場合はF=8と云つた様に手
動にて撮影レンズの絞り値をASAに応じて調定
して用いるようにする場合(あるいはこれを自動
化する場合)には発光量制御回路にASA及びF
の情報を入力させる必要は無くなる。
In addition, the time from the start to the end of the flash in a flash device should be determined by the device's light emission characteristics, the distance to the subject, the amount of natural light, etc., as well as the film sensitivity (ASA) and the aperture of the photographic lens. The value (F) should also be taken into consideration when determining the value. Therefore, in order to simplify the device, for example, when ASA = 100, F
= 5.6, ASA = 200, F = 8, etc. If you manually adjust the aperture value of the photographing lens according to ASA (or if you want to automate this), the light emission ASA and F in the quantity control circuit
There is no longer a need to input this information.

第3図は機械ガバナーを用いたレンズシヤツタ
ーに於いて、発光量制御回路のカウント開始信号
及び発光開始信号を接片を用いて取り出せるよう
にした実施例を示すものであり、要部のみを示し
てある。図に於いて1はセクターリングであり、
図示の状態ではシヤツター羽根は全開している。
即ちシヤツターボタン(図示せず)の押下により
ロツク爪2と1a部との係合が断たれセクターリ
ング1はバネ1cにより反時計方向に急速に回転
してシヤツター羽根が急速に開き、それにより絶
縁支持されたスイツチS1が突出部1bと接触して
アースされることによつて閉じる。これにより発
光量制御回路のカウント用コンデンサーに充電が
開始される。
Figure 3 shows an example of a lens shutter using a mechanical governor in which the count start signal and light emission start signal of the light emission amount control circuit can be taken out using a contact piece, and only the main parts are shown. It is shown. In the figure, 1 is the sector ring,
In the illustrated state, the shutter blades are fully open.
That is, when the shutter button (not shown) is pressed down, the engagement between the lock pawl 2 and the section 1a is broken, the sector ring 1 is rapidly rotated counterclockwise by the spring 1c, and the shutter blades are rapidly opened. The insulated supported switch S1 is closed by contacting the protrusion 1b and being grounded. This starts charging the counting capacitor of the light emission amount control circuit.

一方ロツク爪2と同期してロツク爪3も解除さ
れ三叉レバー4の係止部4bとの係止が断たれ、
二叉レバーはバネ4eにより回転軸4aを中心と
して反時計方向に回転しようとしているが、他の
腕部4dが歯車、ガンギ車、アンクル等によつて
構成された機械ガバナーの一部5によつて制止さ
れている。機介ガバナーに設定された所定時間経
過後5による制止が解かれて先ず、三叉レバーの
腕に植設された絶縁ピン4cが左方移動すること
によつてスイツチS2が閉じられ、閃光装置がトリ
ガーされ発光を開始する。
Meanwhile, the lock pawl 3 is also released in synchronization with the lock pawl 2, and the locking portion 4b of the three-pronged lever 4 is cut off.
The two-pronged lever is about to rotate counterclockwise around the rotating shaft 4a by the spring 4e, but the other arm 4d is rotated by a part 5 of a mechanical governor composed of gears, escape wheels, pallets, etc. It has been stopped. After the predetermined time set in the mechanical governor has elapsed, the restraint by 5 is released, and the insulating pin 4c implanted in the arm of the three-pronged lever moves to the left, thereby closing the switch S2 and turning on the flash device. is triggered and starts emitting light.

S2が閉じてから1ms程度経過後三叉レバーの腕
がセクターリング1に植設されたピン1dに初め
て当り、これをさらに下方に押し回しシヤツター
羽根が急速に閉じられる。なおスイツチS2が閉じ
てからピン1dが押され始める迄の約1msの時
間を確保するためには、この間もガバナーが若干
働いているように構成すればよい。チヤージ機構
等の細部については省略した。
After about 1 ms has elapsed after S 2 is closed, the arm of the three-pronged lever hits the pin 1d implanted in the sector ring 1 for the first time, pushing it further downward and rapidly closing the shutter blade. In order to secure a time of approximately 1 ms from when the switch S2 closes until the pin 1d begins to be pressed, the governor may be configured to work slightly during this time. Details such as the charge mechanism have been omitted.

第4図は前記第3図の機械ガバナーを用いた実
施例に対し電子ガバナーを用いた場合の実施例
で、この例はカメラ側に内蔵される電子ガバナー
装置とカメラとは別体として構成された閃光装置
と、両装置を接続するコネクター(フラツシユの
アクシユー)とから構成されている。
FIG. 4 shows an example in which an electronic governor is used in contrast to the example shown in FIG. 3 that uses a mechanical governor. In this example, the electronic governor device built into the camera and the camera are configured separately. It consists of a flash device and a connector (flash axis) that connects both devices.

同図において電子ガバナー装置は被写体の平均
的な明かるさを測光する受光素子CdS(例えば硫
化カドニウム)と、コンデンサーC1から成る時
定数回路と時定数回路のコンデンサーの充電々圧
を検出し、シヤツター後膜走行信号を出す電圧検
出回路6から成る、適正露光制御回路と、適正露
光時間の一定秒時前(閃光装置の発光時間より十
分に長い時間例えば1ms前)に閃光装置の発光
開始を指令する閃光開始信号発生回路から構成さ
れている。即ち、受光素子CdSとコンデンサーC1
との接続間に抵抗器R1を接続したCdS−R1−C1
の時定数回路を構成し、かつ受光素子と抵抗器及
び抵抗器とコンデンサーとの接続点は、それぞれ
同じ検出電圧値を持つ電圧検出回路に接続されて
いる。よつて今受光素子CdSの抵抗値をR0、抵抗
器R1、コンデンサC1の容量をC1とすると、それ
ぞれの接続点の充電特性は (CdSとR1との接続点の充電特性) (R1とC1との接続点の充電特性)となる。但しE
は電源電圧である。
In the figure, the electronic governor device detects a time constant circuit consisting of a light receiving element CdS (e.g. cadmium sulfide) that measures the average brightness of the subject, a capacitor C1 , and the charging voltage of the capacitor of the time constant circuit. A proper exposure control circuit consisting of a voltage detection circuit 6 that outputs a post-shutter film running signal, and a proper exposure control circuit that controls the flash device to start emitting light a certain number of seconds before the proper exposure time (for example, 1 ms before the light emission time of the flash device). It consists of a flash start signal generation circuit that commands. That is, the photodetector CdS and the capacitor C 1
CdS−R 1 −C 1 with resistor R 1 connected between
The connection points between the light receiving element and the resistor and between the resistor and the capacitor are respectively connected to a voltage detection circuit having the same detection voltage value. Therefore, if the resistance value of the photodetector CdS is R 0 , the resistor R 1 is the capacitance of the capacitor C 1 is C 1 , then the charging characteristics of each connection point are (Charging characteristics of the connection point between CdS and R 1 ) (Charging characteristics at the connection point between R 1 and C 1 ). However, E
is the power supply voltage.

よつてコンデンサー両端を短絡していたスイツ
チS4をオンからオフにした時点よりそれぞれの接
続点の電圧値が所定の電圧値V0に達するまでに
所要する時間をtR,tCとすると、 tR=C1(R0+R1)loge(R/R+R)(E/E
−V) tC=C1(R0+R1)loge(E/E−V) となる。このtRとtcとの時間差をt0とするとt0
は t0=tR−tC=C1(R0+R1)loge(R/R+R) となる。よつてR1を一定、R0≫R1とすると、t0
はR0が変化してもほぼ一定値となる。即ち上式
のt0は変数R0に関し−C1R1に収束する単調増加
関数であり、例えばC1=2μF、R1=1KΩとす
ると、R0が10、100、1000、10000KΩの場合に対
し、t0はそれぞれ−2.096822、−2.009966、−
2.000998、−2.0001ミリセカンドとなりR0が10〜
10000KΩという実用範囲内でほぼ一定の値を保
つこととなる。このため受光素子CdSと抵抗器R1
とコンデンサーC1とからなる時定数回路から、
前記説明の如く抵抗器R1とコンデンサーC1との
接続点からは被写界の平均的な明かるさを測光し
適正露光を制御する信号を、又受光素子CdSと抵
抗器R1との接続点からは適正露光終了の一定秒
時前の信号を取り出す事が出来る。なお同図にお
いて一点鎖線6で囲まれた回路は前記適正露光制
御回路と、適正露光終了の一定秒時前に信号を出
す閃光装置発光開始制御回路の実施例、一点鎖線
7で囲まれた回路は応答速度の速い受光素子(例
えばシリコンホトセル)を持ちその受光角が規制
されており、画面中央部に位置する主被写体から
の反射光で、閃光発光量を制御する。いわゆるコ
ンピユーターストロボ式の閃光装置の実施例、ま
た一点鎖線8で囲まれているのは適正露光制御装
置と閃光装置とを結ぶ接続端子が設けられたフラ
ツシユのアクシユーである。
Therefore, let t R and t C be the time required for the voltage value at each connection point to reach a predetermined voltage value V 0 from the time when switch S 4 , which short-circuited both ends of the capacitor, is turned off from on. t R = C 1 (R 0 + R 1 ) log e (R 0 /R 0 +R 1 ) (E/E
-V 0 ) t C =C 1 (R 0 +R 1 )log e (E/E-V 0 ). If the time difference between t R and t c is t 0 , then t 0
is t 0 =t R −t C =C 1 (R 0 +R 1 )log e (R 0 /R 0 +R 1 ). Therefore, if R 1 is constant and R 0 ≫ R 1 , then t 0
remains almost constant even if R 0 changes. That is, t 0 in the above equation is a monotonically increasing function that converges to −C 1 R 1 with respect to the variable R 0. For example, if C 1 = 2μF and R 1 = 1KΩ, when R 0 is 10, 100, 1000, 10000KΩ t 0 is −2.096822, −2.009966, −
2.000998, −2.0001 milliseconds and R 0 is 10~
It maintains a nearly constant value within the practical range of 10,000KΩ. For this reason, the photodetector CdS and resistor R 1
From the time constant circuit consisting of and capacitor C1 ,
As explained above, the connection point between resistor R 1 and capacitor C 1 outputs a signal that measures the average brightness of the object and controls appropriate exposure, and the connection point between photodetector CdS and resistor R 1 . A signal a certain number of seconds before the end of proper exposure can be taken out from the connection point. In the figure, the circuit surrounded by a dashed-dotted line 6 is an embodiment of the proper exposure control circuit and a flash device light emission start control circuit that outputs a signal a certain number of seconds before the end of proper exposure, and the circuit surrounded by a dashed-dotted line 7 The camera has a light-receiving element (for example, a silicon photocell) with a fast response speed, and its light-receiving angle is regulated, and the amount of flash light is controlled by the reflected light from the main subject located in the center of the screen. This is an embodiment of a so-called computer strobe type flash device, and what is surrounded by a dashed line 8 is a flash axis provided with a connection terminal for connecting the proper exposure control device and the flash device.

次に同図を参照して本装置の実施例の動作説明
を行う。
Next, the operation of the embodiment of this apparatus will be explained with reference to the same figure.

シヤツターレリーズボタン(図示せず)を押し
下げると、まずメインスイツチS3がオンとなつて
電気回路に電気が供給される。この状態ではカウ
ントスイツチS4がオンしたままであるから、電界
効果型トランジスターFET1と、トランジスター
Tr1,Tr2及びTr5と、抵抗器R2,R3,R4,R9
びR11とから構成される電圧検出回路の入力電
圧は零電位であり、抵抗器R5とフイルム感度情
報入力用の可変抵抗器VR1とで分割される基準電
圧V0より低いので、トランジスターTR6は導通状
態となつて電磁マグネツトMgが励磁されるの
で、シヤツター後膜走行が禁止される。一方受光
素子CdSと抵抗器R1との接続点の電圧VR
(R・E/R+R、R0は受光素子CdSの抵抗値)
もV0より 低いので、電界効果型トランジスターFET2と、
トランジスターTr3,Tr4及びTr7と、抵抗器R6
R7,R8,R10、及びR12とから構成される電圧検
出回路からは前記閃光開始信号は発生されな
い。更にシヤツターレリーズボタンを押し下げ、
押し切ると、シヤツター先膜走行の禁止が解除さ
れ露光が開始され、これに同期してカウントスイ
ツチS4が“オフ”となる。その結果受光素子CdS
を通る被写界の明かるさに対応した電流は抵抗器
R1を通りコンデンサーC1に充電され、適正露光
制御が開始される。
When the shutter release button (not shown) is pressed down, the main switch S3 is first turned on and electricity is supplied to the electric circuit. In this state, count switch S 4 remains on, so field effect transistor FET 1 and transistor
The input voltage of the voltage detection circuit consisting of Tr 1 , Tr 2 and Tr 5 and resistors R 2 , R 3 , R 4 , R 9 and R 11 is at zero potential, and the input voltage of resistor R 5 and the film sensitivity Since it is lower than the reference voltage V 0 divided by the variable resistor VR 1 for information input, the transistor TR 6 becomes conductive and the electromagnetic magnet Mg is excited, so that film movement after the shutter is prohibited. On the other hand, the voltage V R at the connection point between the photodetector CdS and the resistor R1
(R 1・E/R 0 +R 1 , R 0 is the resistance value of the light receiving element CdS)
Since V is also lower than 0 , the field effect transistor FET 2 and
Transistors Tr 3 , Tr 4 and Tr 7 and resistor R 6 ,
The flash start signal is not generated from the voltage detection circuit composed of R 7 , R 8 , R 10 , and R 12 . Further press down on the shutter release button,
When the button is pressed all the way, the prohibition of shutter tip film travel is canceled and exposure is started, and in synchronization with this, the count switch S4 is turned "off." As a result, the photodetector element CdS
A current corresponding to the brightness of the object passing through the resistor
The capacitor C1 is charged through R1 , and proper exposure control is started.

またシヤツター先膜が走行して全開すると、シ
ヤツター先膜に同期してX接点S5がオンとなり、
閃光装置の発光量を制御する応答速度の速い受光
素子PとコンデンサーC2とから成る時定数回路
が作動開始し、その結果被写体をスポツト測光す
る前記受光素子Pの出力電流はトランジスター
Tr10で増巾された後にコンデンサーC2に充電さ
れる。このコンデンサーC2の充電波形は前記第
2図に示した如く、自然光による被写体の明かる
さに対応して上昇していく。カメラの露光量制御
回路では、被写界の平均的な明かるさを測光する
受光素子CdSと抵抗器R1とコンデンサーC1とか
らなる時定数回路のCdSとR1との接続点の電圧
が、前記適正露光に必要な時間の一定秒時前にな
ると、即ちフイルム感度情報入力可変抵抗器RV1
と抵抗器R5とで分割される電圧V0に達すると、
電圧検出回路が作動し、閃光開始信号が閃光装
置に送られるので閃光装置が発光する。この閃光
開始信号発生より前記一定秒時後に、即ち適正露
光に必要な時間に達すると、前記時定数回路の抵
抗器R1とコンデンサーC1との接続点の電圧が基
準電圧V0に達するので、前記検出回路が作動
し、トランジスターTr6が不導通になるので、マ
グネツトMgが消磁しシヤツター後膜走行の禁止
が解除され、シヤツター後膜が走行し露光が終了
する。一方閃光装置の閃光量制御回路はシヤツタ
ー先膜の全開でオンするX接点S5に同期して作動
開始し、前記第2図で説明した如く、閃光装置の
発した被写体からの反射光を受光する迄は自然光
による被写体の明かるさのみをスポツト測光法式
で又発光開始後は自然光と閃光の合計量を測光し
続ける。閃光発火開始信号がカメラから閃光装置
に送られると、抵抗器R27,R28を介してシリコン
整流素子SCR3及びSCR2のゲートに信号が加わ
り、SCR3,SCR2は導通状態になる。その結果閃
光放電管F1にトリガコイルTl1によつて高電位の
電圧が誘起されるので、閃光放電管F1内部のガ
スがイオン化し導通状態になり昇圧回路Aの電圧
が閃光F1を急速に流れ、熱と共に強い光を放出
する。この強い光が被写体に当り、反射してフイ
ルムに入射する光量が自然光露光で不足していた
光量に達すると、(合計した量が適正量に達する
と)即ち、閃光装置の応答速度の速い受光素子P
とトランジスターTr10とコンデンサC2からなる
時定数回路の充電電圧が、電界効果型トランジス
ターFET3とトランジスタTr12,Tr13,Tr14と抵
抗器R18,R19,R20,R21,R22、及びR23から構成
される電圧検出回路の作動電圧である抵抗器
R20とフイルム感度情報入力用の可変抵抗器VR1
で分割される電圧V0′に達すると、前記電圧検出
回路から、閃光停止信号が、シリコン整流素子
SCR1のゲートに加えられる。よつてSCR1は導通
状態に反転するので、前記SCR2のアノード側に
コンデンサーC4を介して負の電圧が印加され不
導通に反転する。その結果、閃光放電管F1の内
部を通る電流が遮断されて閃光発光が停止され
る。その後、カメラ側の適正露光制御回路が作動
してシヤツター後膜が走行され、適正露光が終了
されるのである。以上説明の如く、自然光のもと
で被写界の平均的な明かるさによつて適正露光制
御され、かつ被写体が不足している分の光量を閃
光装置からの発光量で補うものであるから、被写
界及び被写体の両方ともに適正露光の撮影が行な
われるのである。
Also, when the shutter tip membrane runs and fully opens, X contact S5 turns on in synchronization with the shutter tip membrane.
A time constant circuit consisting of a light-receiving element P with a fast response speed and a capacitor C2 , which controls the amount of light emitted by the flash device, starts operating, and as a result, the output current of the light-receiving element P, which spot-meters the subject, is transferred to the transistor.
After being amplified by Tr 10 , it is charged to capacitor C 2 . As shown in FIG. 2, the charging waveform of the capacitor C2 rises in response to the brightness of the subject due to natural light. In a camera's exposure control circuit, the voltage at the connection point between CdS and R 1 of a time constant circuit consisting of a light receiving element CdS, resistor R 1 , and capacitor C 1 that measures the average brightness of the subject. However, when a certain number of seconds before the time required for proper exposure, the film sensitivity information input variable resistor RV 1
When we reach the voltage V 0 divided by and resistor R 5 ,
The voltage detection circuit is activated and a flash start signal is sent to the flash device, causing the flash device to emit light. After the predetermined time has elapsed since the flash start signal was generated, that is, when the time required for proper exposure is reached, the voltage at the connection point between the resistor R1 and the capacitor C1 of the time constant circuit reaches the reference voltage V0 . , the detection circuit is activated and the transistor Tr 6 becomes non-conductive, so that the magnet Mg is demagnetized and the prohibition of film running after the shutter is released, and the film runs after the shutter and the exposure is completed. On the other hand, the flash amount control circuit of the flash device starts operating in synchronization with the X contact S5 , which is turned on when the shutter tip membrane is fully opened, and receives the reflected light from the subject emitted by the flash device, as explained in Fig. 2 above. Until then, only the brightness of the subject due to natural light is measured using the spot photometry method, and after the light emission starts, the total amount of natural light and flash light is continuously measured. When a flash firing start signal is sent from the camera to the flash device, the signal is applied to the gates of silicon rectifying elements SCR 3 and SCR 2 via resistors R 27 and R 28 , and SCR 3 and SCR 2 become conductive. As a result, a high potential voltage is induced in the flash discharge tube F1 by the trigger coil Tl1 , so the gas inside the flash discharge tube F1 is ionized and becomes conductive, and the voltage of the booster circuit A increases the voltage of the flash discharge tube F1 . It flows rapidly and emits intense light along with heat. When this strong light hits the subject, reflects, and enters the film, it reaches the amount of light that was insufficient during natural light exposure (when the total amount reaches the appropriate amount), in other words, the response speed of the flash device is fast. Element P
The charging voltage of the time constant circuit consisting of the transistor Tr 10 and the capacitor C 2 is determined by the field effect transistor FET 3 , the transistors Tr 12 , Tr 13 , Tr 14 and the resistors R 18 , R 19 , R 20 , R 21 , R 22 , and a resistor that is the operating voltage of the voltage detection circuit consisting of R23 .
R 20 and variable resistor VR 1 for inputting film sensitivity information
When the voltage V 0 ' divided by
Added to SCR 1 gate. As a result, SCR 1 is inverted to a conductive state, and a negative voltage is applied to the anode side of the SCR 2 via the capacitor C 4 , and the SCR 2 is inverted to a non-conductive state. As a result, the current passing through the interior of the flash discharge tube F1 is cut off and the flash light emission is stopped. Thereafter, the proper exposure control circuit on the camera side is activated, the post-shutter film is run, and proper exposure is completed. As explained above, proper exposure is controlled based on the average brightness of the subject under natural light, and the amount of light emitted from the flash device compensates for the lack of light on the subject. Therefore, both the field and the subject are photographed with proper exposure.

なお閃光装置内で電圧検出回路の基準電圧を
作る抵抗器R20及び可変抵抗器VR2を取り除き、
アクシユー部に接続端子を追加し点線の如く、カ
メラ側の電圧検出回路,の基準電圧点と閃光
装置側の電圧検出回路の基準電圧点とを直接結
ぶ事により、閃光撮影での操作を非常に簡単にす
る事が出来る。(閃光装置側のVR2にフイルム感
度情報をセツトする必要が無くなる)また閃光発
光量停止信号によつて、シヤツター後膜を走行さ
せる如く、一部回路を改良しても良い。
In addition, remove the resistor R 20 and variable resistor VR 2 that create the reference voltage of the voltage detection circuit in the flash device.
By adding a connection terminal to the axis section and directly connecting the reference voltage point of the voltage detection circuit on the camera side and the reference voltage point of the voltage detection circuit on the flash device side, as shown by the dotted line, operation during flash photography is greatly simplified. It can be made easy. (There is no need to set the film sensitivity information in VR 2 on the flash device side.) Also, some circuitry may be improved so that the film after the shutter is run by the flash light emission amount stop signal.

同図において、FET1,FET3は電界効果型ト
ランジスター、Tr1〜Tr14はトランジスタ、SCR1
〜SCR3はシリコン整流素子、Di1,Di2はダイオ
ード、Pは応答速度の速い受光素子、CdSは光導
電性の受光素子(応答速度はあまり早くない)、
R1〜R30は抵抗器、C1〜C8はコンデンサー、F1
閃光放電管、Tl1はトリガーコイル、Lはネオン
ランプ、B,B′は絞り値情報入力用の絞り装置あ
るいはフイルターで撮影レンズの絞り値に応じて
手動又は自動的に光の通過量が調定されるもので
ある。
In the same figure, FET 1 and FET 3 are field effect transistors, Tr 1 to Tr 14 are transistors, and SCR 1
~SCR 3 is a silicon rectifier, Di 1 and Di 2 are diodes, P is a fast response light receiving element, CdS is a photoconductive light receiving element (response speed is not very fast),
R 1 to R 30 are resistors, C 1 to C 8 are capacitors, F 1 is a flash discharge tube, Tl 1 is a trigger coil, L is a neon lamp, and B and B' are aperture devices or filters for inputting aperture value information. The amount of light passing through the lens is adjusted manually or automatically according to the aperture value of the photographic lens.

Aは昇圧回路、E1,E2は電源電池、S3はメイ
ンスイツチ、S4はカウント開始スイツチ、S5はX
接点、S6はメインスイツチ、S7はこの閃光装置と
組合せて用いるカメラが上記の如き専用カメラで
あるか、あるいは一般にカメラであるかによつて
切り換えるスイツチである。
A is the booster circuit, E 1 and E 2 are the power batteries, S 3 is the main switch, S 4 is the count start switch, and S 5 is the X
Contact point S6 is a main switch, and S7 is a switch that is switched depending on whether the camera used in combination with this flash device is a dedicated camera as mentioned above or a general camera.

上記の閃光装置を、上記の如き制御回路を持つ
た専用カメラ以外の一般のカメラと組合せて使用
する場合でも、主被写体の自然光による明かるさ
については露光時間が非常に短かい場合以外は実
質的に考慮されないことになるが、閃光撮影によ
り適正露光を得ることができる。この場合は切換
スイツチS7を図示とは逆の方に切換え、受光素子
Pの絞り装置(又はフイルター)B′に撮影レンズ
の絞り値を設定し、又VR2に使用するフイルムの
感度を設定して用いる。一般のカメラのX接点
(前記S5に相当する)が閉じるとこの場合は切換
スイツチS7が切換えてあるため直ちにトリガーさ
れ閃光放電管F1が発光を開始する。X接点が閉
じると閃光量制御回路が作動を開始し、閃光量が
適正値に達すると閃光の放射が自動的に停止され
る点は前記の場合と同様である。
Even when the above flash device is used in combination with a general camera other than a dedicated camera with a control circuit like the one above, the brightness of the main subject due to natural light will not be affected unless the exposure time is very short. Although this is not taken into consideration, proper exposure can be obtained by flash photography. In this case, switch switch S7 to the opposite direction from that shown in the diagram, set the aperture value of the photographing lens in the aperture device (or filter) B' of the light receiving element P, and also set the sensitivity of the film used for VR 2 . and use it. When the X contact (corresponding to S5 mentioned above) of a general camera is closed, in this case, since the changeover switch S7 has been changed, it is immediately triggered and the flash discharge tube F1 starts emitting light. As in the case described above, when the X contact closes, the flash amount control circuit starts operating, and when the flash amount reaches an appropriate value, the flash emission is automatically stopped.

自然光撮影用の適正露光制御装置を持つた専用
カメラ以外のカメラと組合せて使用する場合には
背景も適正露光となるが、主被写体の自然光によ
る明るさの分だけ主被写体が露光過度となりその
程度は露光時間が長く、主被写体の距離が遠く、
明るいほど大きくなる。なお前記第4図の実施例
では閃光装置にもフイルム感度情報(VR2)及び
絞り値情報(B′)を入力する必要があるが、既に
述べた如くVR2をVR1で兼ねさせることも可能
で、さらにVR1に絞り値情報をも加算して入力さ
せる様に構成すればB,B′共不要となり、従つて
閃光装置側にはフイルム感度情報も絞り値情報も
設定する必要性が無くなり閃光撮影時の操作が極
めて簡単になる。
When used in conjunction with a camera other than a dedicated camera that has an appropriate exposure control device for natural light photography, the background will also be properly exposed, but the main subject will be overexposed by the amount of brightness due to the natural light of the main subject. The exposure time is long, the main subject is far away,
The brighter it is, the bigger it becomes. In the embodiment shown in FIG. 4, it is necessary to input film sensitivity information (VR 2 ) and aperture value information (B') to the flash device, but as already mentioned, VR 2 may also serve as VR 1 . If it is possible, and if the configuration is configured so that the aperture value information is also added to VR 1 and input, both B and B' become unnecessary, and therefore there is no need to set the film sensitivity information and aperture value information on the flash device side. This makes operation during flash photography extremely easy.

第5図は前記例とは異なりフオーカルプレーン
シヤツターを用いる場合のシヤツターの開閉動作
と閃光の放射との関係を時間に関して示すもので
ある。シヤツターボタンの押下により時期t0にて
シヤツターの先膜の係止が解かれ、画面の一端よ
り露出が始まりeの如き動作をして順次開口が広
がりt1に至ると全画面が露出されるようになる。
予め手動的に設定された時間経過後又は自動露出
制御装置により制御された所定時間経過後、t2
て後膜が画面の一端より開口をおおい始めeと同
じのfの如き動作をしてやがてt3にて全画面をお
おい露出を終了する。
FIG. 5 shows, with respect to time, the relationship between the opening and closing operations of the shutter and the emission of flash light when a focal plane shutter is used, unlike the previous example. When the shutter button is pressed, the front membrane of the shutter is released at time t 0 , and exposure begins from one end of the screen, and the opening gradually expands as shown in e and reaches t 1 , when the entire screen is exposed. Become so.
After the time manually set in advance or the predetermined time controlled by the automatic exposure control device has elapsed, at t2 the rear film begins to cover the opening from one end of the screen and performs the same operation as f, which is the same as e. Eventually, at t3 , the exposure will be completed by covering the entire screen.

gは閃光装置の発光特性を示すものであり、前
述の実施例と同様にt2より1ms程度前のt4より
発光を開始し、自然光と閃光の加算値が適正値に
達するt5にて発光を停止する。フオーカルプレー
ンシヤツターの場合にはレンズシヤツターの場合
とは異なり、t0よりt1迄の時間が(t2よりt3迄の時
間も)10ms前後であり無視出来ない時間である
ため閃光装置の発光量制御回路のカウント開始は
t1からではなく、t0からとする必要がある。なお
閃光撮影を行う場合は露出時間を常に一定として
(例えば1/60秒)使用することにし、かつシヤツ
ターが全開している時間即ちt1よりt2迄の時間を
1msから3ms程度にするならば発光開始時期
t4を先膜の全開時期t1に合致させてもよい。この
場合は発光量制御回路はt0より起動させ、閃光装
置の発光起動は通常のカメラに用いているものと
同じシンクロ接点(X接点)にて行わせるだけで
よい。t5の発光停止信号で後膜を起動させる様に
してもよい(t5とt2を合致させる)ということは
レンズシヤツターの場合と同様である。
g indicates the light emission characteristics of the flash device, and as in the above embodiment, light emission starts at t 4 , about 1 ms before t 2 , and at t 5 , the sum of natural light and flash light reaches an appropriate value. Stops emitting light. In the case of a focal plane shutter, unlike the case of a lens shutter, the time from t 0 to t 1 (also the time from t 2 to t 3 ) is around 10 ms, which is a time that cannot be ignored, so the flash The device's light emission control circuit starts counting.
It is necessary to start from t 0 , not from t 1 . When taking flash photography, if you always use a constant exposure time (for example, 1/60 second) and the time when the shutter is fully open, that is, the time from t 1 to t 2 , is about 1 ms to 3 ms. When luminescence starts
t 4 may coincide with the full opening time t 1 of the acromembrane. In this case, it is sufficient to start the light emission amount control circuit from t 0 and to start the flash device to emit light using the same synchronizing contact (X contact) used in a normal camera. The rear film may be activated by the light emission stop signal at t 5 (t 5 and t 2 coincide), as in the case of the lens shutter.

第6図はフオーカルプレーンシヤツターを特に
電子シヤツターとした場合の後膜ドラムと発光開
始用スイツチとの連動関係を示す要部機構図であ
る。6は後膜ドラムと一体的に回動する円盤であ
り、電子シヤツター回路に接続されたマグネツト
Mによりロツク爪7を介して制御される。又S8
発光開始用のスイツチである。シヤツターボタン
を押下するとマグネツトMに電流が流れ7aを回
転軸としたロツク爪7の立曲げ部7dを吸着し、
他端の7b部により円盤6の6b部を係止出来る
ようになる。先膜の係止が解かれると、これと同
期して図示せぬ他の後膜ドラムロツク部材が解除
されてマグネツトMによりドラムは係止され、か
つ電子シヤツター回路がカウントを開始し、所定
時間経過後マグネツトMgの電流が断たれ、円盤
6はチヤージされたバネ力(図示せず)により、
弱いバネ7cにより回転附勢されたロツク爪7を
押しのけて時計方向に回転し、この結果後膜が閉
じる。円盤6が回転を始めると後膜はこれにつれ
て動き始めるが、その先端が有効画面内に出て来
る迄の助走期間中に6に植設された絶縁ピン6c
が逃げスイツチS8が閉じることにより閃光装置は
発光を開始する。この様にシヤツター膜の助走期
間をうまく利用してやればシヤツターの閉じ信号
より発光開始信号を取り出すことが出来装置が簡
単になる。なお電子シヤツター回路から閉じ信号
を出力する際に、t2より実際に閉じさせたい場合
マグネツト及び機構部の遅延時間があるためこれ
より早めに信号を出す必要があるが、そのために
は実際にシヤツターが開き始めるt0よりも早めに
カウントを開始させる等適当に処置すればよい。
FIG. 6 is a mechanical diagram of the main parts showing the interlocking relationship between the rear film drum and the light emission start switch when the focal plane shutter is particularly an electronic shutter. Reference numeral 6 denotes a disk which rotates integrally with the rear film drum, and is controlled via a lock pawl 7 by a magnet M connected to an electronic shutter circuit. Further, S8 is a switch for starting light emission. When the shutter button is pressed down, a current flows through the magnet M, which attracts the bent portion 7d of the lock pawl 7 with the rotation axis 7a.
The 6b portion of the disc 6 can be locked by the 7b portion at the other end. When the front membrane is unlocked, at the same time, another rear membrane drum locking member (not shown) is released, the drum is locked by the magnet M, and the electronic shutter circuit starts counting, and when a predetermined period of time has elapsed. After the current of the magnet Mg is cut off, the disk 6 is moved by the charged spring force (not shown).
The lock claw 7, which is biased to rotate by the weak spring 7c, is pushed away and rotated clockwise, thereby closing the rear membrane. When the disk 6 starts rotating, the rear membrane starts to move along with it, but the insulating pin 6c implanted in the disk 6 during the run-up period until its tip comes out within the effective screen.
When the switch S8 is closed, the flash device starts emitting light. If the run-up period of the shutter film is effectively utilized in this manner, the light emission start signal can be extracted from the shutter closing signal, thereby simplifying the device. When outputting a closing signal from the electronic shutter circuit, if you want the shutter to actually close before t2 , it is necessary to output the signal earlier than this due to the delay time of the magnet and mechanism. Appropriate measures may be taken, such as starting counting earlier than t 0 , when t0 starts to open.

第7図は前記第5図で説明した、フオーカルプ
レンシヤツター用のシヤツター秒時制御回路及び
閃光装置の回路を示した図である。このシヤツタ
ー秒時制御回路も前記第4図で説明した如く、適
正露光終了信号の一定秒時前に閃光装置を発光さ
せ、自然光撮影で不足している光量を補なつた後
には、前記第4図と同様に応答度の速い受光素子
Pで閃光装置の放電管からの発光量を制御するも
のである。特に前記第4図と異なる点は、前記第
5図で説明した如く、フオーカルプレンシヤツタ
ーの先膜及び後膜が走行している時間がレンズシ
ヤツターに比べ非常に長い為に、この走行時間を
考慮した点と、閃光装置の放電管の発光量を制御
する方法として、SCRで制御するのでなく、バ
イパス放電管を用いた2点である。即ち、前記第
4図の閃光装置では発光量制御回路の作動開始信
号は、シヤツターが全開した時にオンするX接点
から取つていたものを、ここではシヤツター秒時
制御用のカウントスイツチに連動し、OFFから
ONになるスイツチS9を設け、このスイツチで行
ない、X接点を用いない点が第4図の実施例及び
いままでのカメラと特に異なる。なお第5図に関
連して既に述べた如く、シヤツターが全開してい
るt1よりt2迄の時間を閃光撮影の場合は1msよ
り3ms程度の短時間とする場合にはt4ではなく
t1より発光させてもその際の誤差はわずかとな
る。即ち所謂X接点により発光起動させてもさし
つかえない場合もある。又膜速が非常に早いフオ
ーカルプレーンシヤツタを用いる場合にはt0より
t1迄の時間はレンズシヤツタの場合と同様に実用
上無視してもさしつかえないためスイツチS9を第
4図のS5に相当するものに置換えることもでき
る。
FIG. 7 is a diagram showing a shutter time control circuit and a flash device circuit for a focal plane shutter, which were explained in FIG. 5 above. As explained in FIG. 4, this shutter time control circuit causes the flash device to emit light a certain number of seconds before the proper exposure end signal, and after compensating for the insufficient amount of light during natural light photography, As shown in the figure, the amount of light emitted from the discharge tube of the flash device is controlled by the light-receiving element P, which has a fast response. In particular, the difference from FIG. 4 is that, as explained in FIG. Two points were taken: time was taken into consideration, and the method of controlling the amount of light emitted by the discharge tube of the flash device was to use a bypass discharge tube instead of controlling it with an SCR. That is, in the flash device shown in Fig. 4, the operation start signal for the light emission amount control circuit was obtained from the X contact that was turned on when the shutter was fully opened, but here it is linked to the count switch for controlling the shutter time. , from OFF
This camera differs from the embodiment shown in FIG. 4 and previous cameras in that it is provided with a switch S9 that turns on, and does not use an X contact. As already mentioned in connection with Fig. 5, if the time from t1 to t2 when the shutter is fully open is shortened from 1ms to 3ms in the case of flash photography, instead of t4 .
Even if the light is emitted from t 1 , the error will be small. That is, there are cases where it is acceptable to start the light emission using a so-called X contact. Also, when using a focal plane shutter with a very fast film speed, t 0
Since the time up to t 1 can be ignored for practical purposes as in the case of the lens shutter, switch S 9 can be replaced with a switch corresponding to S 5 in FIG. 4.

なお回路構成及び動作は、前記第4図と同等で
あるから説明を省略する。なお、フオーカルプレ
ーンシヤツターでは露光中にミラーが上昇する為
にフアインダー系に設置されたCdSへの被写界か
らの情報が遮断されるので、当図はレンズ系を通
つた光を測光するのでなく、レンズ系を外ずれた
所に受光素子を備けた外部装光用の制御回路であ
るが、一般公知の記憶装置を用い、レンズ系を通
つた光で同様に測光する事も出来る。同図におい
てR1〜R30は抵抗器、VR2は可変抵抗器、CdSは
被写界の平均的輝度を測光する受光素子、Pは応
答速度の速い受光素子で中央部を測光する、C1
〜C9はコンデンサー、FET1及びFET2は電界効
果型トランジスター、Tr1〜Tr14はトランジスタ
ー、SCR1及びSCR3はシリコン整流素子、L1はネ
オン放電管、F1は閃光放電管、F2はバイバス放
電管、Tl1及びTl2はトリガーコイル、Di1はダイ
オード、Mgは電磁マグネツト、B′は絞り値情報
入力用の絞り装置、E1及びE2は電源電池、S3
カメラのメインスイツチ、S4はカウントスイツ
チ、S6は閃光装置のメインスイツチ、S7は専用カ
メラと一般カメラの切換スイツチ、S9はカウント
スイツチS4と連動し、閃光装置の発光量の制御開
始を伝えるスイツチであるが、場合によつてはX
接点で置換えてもよい。但しこの場合シヤツター
先膜が完全に全開するまでの自然光での露出量が
考慮されない閃光量制御となる。
Note that the circuit configuration and operation are the same as those shown in FIG. 4, so the explanation will be omitted. In addition, in a focal plane shutter, the mirror rises during exposure, which blocks information from the subject to the CdS installed in the viewfinder system, so this figure measures the light that passes through the lens system. This is a control circuit for external light mounting with a light receiving element located outside the lens system, but it is also possible to perform photometry in the same way using light that has passed through the lens system using a generally known storage device. In the figure, R 1 to R 30 are resistors, VR 2 is a variable resistor, CdS is a light receiving element that measures the average brightness of the subject, P is a fast response light receiving element that measures the center part, and C 1
~C 9 is a capacitor, FET 1 and FET 2 are field effect transistors, Tr 1 to Tr 14 are transistors, SCR 1 and SCR 3 are silicon rectifiers, L 1 is a neon discharge tube, F 1 is a flash discharge tube, F 2 is a bypass discharge tube, Tl 1 and Tl 2 are trigger coils, Di 1 is a diode, Mg is an electromagnetic magnet, B' is an aperture device for inputting aperture value information, E 1 and E 2 are power batteries, and S 3 is a camera. S 4 is the count switch, S 6 is the main switch for the flash device, S 7 is the switch for switching between a special camera and a general camera, and S 9 is the count switch, which starts controlling the amount of light emitted from the flash device. It is a switch that tells X, but in some cases
It may be replaced with a contact point. However, in this case, the flash amount control does not take into account the amount of natural light exposure until the shutter tip film is fully opened.

以上の如く、本発明では平均測光出力に基づき
シヤツター秒時を決定し、更にシヤツター開から
被写体からの光に対する部分測光出力を積分さ
せ、シヤツター閉に対して所定時間前に閃光管と
閃光させ、該閃光による被写体からの反射光を上
記部分測光にて検出し、閃光発光以前の積分値に
対して上記反射光による部分測光出力に基づく積
分値を加算し、該加算値が所定値となつた時に閃
光を停止したものであるので、背景及び主被写体
ともに適正露光となるものである。
As described above, the present invention determines the shutter time based on the average photometric output, further integrates the partial photometric output for light from the subject from the time the shutter is opened, and flashes the flash tube a predetermined time before the shutter is closed. The light reflected from the subject by the flash is detected by the partial photometry, and an integral value based on the partial photometry output by the reflected light is added to the integral value before the flash is emitted, and the added value becomes a predetermined value. Since the flash is stopped at the same time, both the background and the main subject are properly exposed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る閃光撮影方式の動作原理
を示す説明図、第2図は時定数回路充電特性を示
す説明図、第3図は本発明に係る方式をレンズシ
ヤツターに適用する場合のシヤツター機構構成
図、第4図は第3図示シヤツター機構を電気的回
路にて行なう場合の制御回路図、第5図はフオー
カルプレーンシヤツタを用いる場合の本発明方式
の動作原理図、第6図は第5図示作動を行うため
のシヤツター機構要部構成図、第7図は第6図示
機構を電気的回路にて行なう場合の制御回路図 CdSは被写体中央部からの自然光情報を測定す
る受光素子、Pは被写体からの照明反射光を受光
する受光素子、6は発光用信号を発生する制御回
路、7は発光停止信号を発生する発光量制御回路
を夫々示す。
Fig. 1 is an explanatory diagram showing the operating principle of the flash photography method according to the present invention, Fig. 2 is an explanatory diagram showing the time constant circuit charging characteristics, and Fig. 3 is an explanatory diagram showing the case where the method according to the present invention is applied to a lens shutter. FIG. 4 is a control circuit diagram when the shutter mechanism shown in FIG. 3 is implemented using an electric circuit. FIG. Figure 6 is a configuration diagram of the main parts of the shutter mechanism for performing the operation shown in Figure 5. Figure 7 is a control circuit diagram when the mechanism shown in Figure 6 is performed using an electrical circuit. CdS measures natural light information from the center of the subject. A light receiving element, P is a light receiving element that receives illumination reflected light from a subject, 6 is a control circuit that generates a light emission signal, and 7 is a light emission amount control circuit that generates a light emission stop signal.

Claims (1)

【特許請求の範囲】[Claims] 1 撮影領域全体を測光する測光回路と、該測光
回路にて測光された輝度に応じたシヤツター秒時
の経過後第1の出力を発生すると共に該第1の出
力が発生する所定時間前に第2の出力を発生する
タイマー回路を含有するシヤツター秒時制御回路
とを有し、前記第2の出力にてトリガー回路を作
動させ、閃光管をトリガーすると共に前記第1の
出力にてシヤツター閉部材を作動させ、露光を終
了させるカメラのための閃光撮影装置において、
主被写体からの光束を受光する様撮影領域を部分
的に測光する受光素子と、該受光素子出力を積分
する積分回路と、該積分回路による積分値が所定
の値となつた際、停止信号を出力する停止信号形
成回路と、該停止信号により前記閃光管による被
写体への閃光照射を停止させる閃光停止回路と、
シヤツターの開動作に同期して第1の状態から第
2の状態へ移行するスイツチ手段とを設け、該ス
イツチ手段の第1の状態から第2の状態への移行
に前記積分回路を応答させ、積分動作を開始させ
たことを特徴とするカメラのための閃光撮影装
置。
1 A photometering circuit that measures the entire photographic area, and a shutter that generates a first output after the elapse of the shutter seconds according to the luminance measured by the photometering circuit, and a second output that outputs a first output a predetermined time before the first output is generated. a shutter time control circuit containing a timer circuit that generates a second output; the second output activates a trigger circuit to trigger a flash tube, and the first output activates a shutter closing member; In a flash photography device for a camera that activates and ends the exposure,
A light-receiving element that partially meters the photographing area to receive the light flux from the main subject, an integrating circuit that integrates the output of the light-receiving element, and a stop signal when the integrated value by the integrating circuit reaches a predetermined value. a stop signal forming circuit that outputs a stop signal; a flash stop circuit that uses the stop signal to stop the flash tube from emitting flash light to a subject;
switch means for shifting from a first state to a second state in synchronization with the opening operation of the shutter, and causing the integrating circuit to respond to the shift of the switch means from the first state to the second state; A flash photography device for a camera, characterized in that an integral operation is started.
JP48003923A 1972-09-25 1972-12-27 Expired JPS6243168B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP48003923A JPS6243168B2 (en) 1972-12-27 1972-12-27
US05/488,441 US4005444A (en) 1972-09-25 1974-07-15 Exposure control system for flash photography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48003923A JPS6243168B2 (en) 1972-12-27 1972-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16848079A Division JPS568120A (en) 1979-12-24 1979-12-24 Camera for flash photography

Publications (2)

Publication Number Publication Date
JPS4990527A JPS4990527A (en) 1974-08-29
JPS6243168B2 true JPS6243168B2 (en) 1987-09-11

Family

ID=11570652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48003923A Expired JPS6243168B2 (en) 1972-09-25 1972-12-27

Country Status (1)

Country Link
JP (1) JPS6243168B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129423A (en) * 1981-02-05 1982-08-11 Mamiya Koki Kk Strobo dimming method
JPS57139725A (en) * 1981-02-23 1982-08-28 Seiko Koki Kk Shutter controlling circuit incorporating dimming signal circuit of flash
JPH052905Y2 (en) * 1990-08-22 1993-01-25

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591829A (en) * 1967-04-20 1971-07-06 Minolta Camera Kk Automatic control device for electronic flash

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591829A (en) * 1967-04-20 1971-07-06 Minolta Camera Kk Automatic control device for electronic flash

Also Published As

Publication number Publication date
JPS4990527A (en) 1974-08-29

Similar Documents

Publication Publication Date Title
US4425033A (en) Camera employing a flash illumination device and a flash photographing system
US4153355A (en) Camera incorporated with a movable flash light device
US4112444A (en) Camera with photoflash means and data photographic means operated with single battery
US4196988A (en) Manual or automatic camera and electronic flash for use therewith
JPS6240689B2 (en)
US4005444A (en) Exposure control system for flash photography
US3757654A (en) Camera having automatic exposure and automatic flash controls
JPH0435869Y2 (en)
JPS599885B2 (en) Daytime synchro control device for electric focal plane shutter camera
CA1083873A (en) Responsive variable quench time delay for quench strobe
US3913111A (en) Camera having automatic flash and shutter controls
JPS6243168B2 (en)
JPS58100838A (en) Photometric controller of film surface reflection photometric camera having electronic flash controlling function
US3748978A (en) Exposure time controls for cameras operating with flash illumination
JPH045971B2 (en)
JP2002333657A (en) Film unit with lens
JPS647647B2 (en)
US4057811A (en) Quench strobe with predetermined quench rate
JPH035567B2 (en)
JPS59149334A (en) Automatic camera
JP2003195385A (en) Film unit with lens
JPS6128184Y2 (en)
JPS6350659Y2 (en)
JPS5953525B2 (en) Exposure time control device for flash photography
JPS5925210B2 (en) camera display device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19820608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19880223