JPS5830231Y2 - Pure water conductivity measuring device - Google Patents

Pure water conductivity measuring device

Info

Publication number
JPS5830231Y2
JPS5830231Y2 JP11556576U JP11556576U JPS5830231Y2 JP S5830231 Y2 JPS5830231 Y2 JP S5830231Y2 JP 11556576 U JP11556576 U JP 11556576U JP 11556576 U JP11556576 U JP 11556576U JP S5830231 Y2 JPS5830231 Y2 JP S5830231Y2
Authority
JP
Japan
Prior art keywords
pure water
operational amplifier
conductivity
output
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11556576U
Other languages
Japanese (ja)
Other versions
JPS5332773U (en
Inventor
彰一 西川
Original Assignee
電気化学計器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学計器株式会社 filed Critical 電気化学計器株式会社
Priority to JP11556576U priority Critical patent/JPS5830231Y2/en
Publication of JPS5332773U publication Critical patent/JPS5332773U/ja
Application granted granted Critical
Publication of JPS5830231Y2 publication Critical patent/JPS5830231Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】 本考案は、極めて導電率の低い純水の導電率測定装置に
関するものである。
[Detailed Description of the Invention] The present invention relates to an apparatus for measuring the conductivity of pure water, which has extremely low conductivity.

原子力発電所等において使用される導電率の極めて低い
(0,05〜0.5μυ/cm)純水を生成する純水装
置においては、純化作用と水の通る器壁及び管壁等から
の不純物の溶出とが平衡状態に保たれていると考えられ
るので、この純水装置によって生成される純水の導電率
には次式のように考えられる。
In water purification equipment that produces pure water with extremely low conductivity (0.05 to 0.5 μυ/cm) used in nuclear power plants, etc., there is a purification process and impurities from the vessel walls and tube walls through which the water flows. Since it is considered that the elution of

K=Ki+Ko・・・・・・(1) ここに、 Ki:純水装置の器壁、管壁等からの電解質の溶出によ
って生ずる導電率 Ko:理想的な純水、即ち器壁、管壁等からの電解質等
の溶出が皆無であると想定した状態における純水の導電
率 そして水の導電率は正の温度係数を有すると共に、温度
25℃換算値で求める習慣であるため、(1)式より次
式が導かれる。
K=Ki+Ko...(1) Where, Ki: Electrical conductivity caused by elution of electrolyte from the vessel wall, tube wall, etc. of a pure water device Ko: Ideal pure water, i.e. vessel wall, tube wall, etc. The electrical conductivity of pure water under the assumption that there is no elution of electrolytes, etc., and the electrical conductivity of water has a positive temperature coefficient, and it is customary to calculate it as a value converted to a temperature of 25°C, so (1) The following equation is derived from the equation.

K 25=Ki25+Ko25・・・・・・(2)Kt
=Ki25 f (t )十Ko 25 g (j )
””(3)ここに、 K 25 : 25℃における純水の導電率にの値Ki
25 : 25℃におけるKiの値KO25: 25
℃におけるKoの値 Kt:任意の温度t℃におけるKの値 f(t):Kiの温度特性を表わす関数 g(t):Koの温度特性を表わす関数 (2)式及び(3)式よりK125を消去すると次式が
得られる。
K25=Ki25+Ko25 (2) Kt
=Ki25 f (t) 10Ko 25 g (j)
``'' (3) Here, K 25 : Value Ki of the conductivity of pure water at 25°C
25: Ki value KO25 at 25°C: 25
Value of Ko at °C Kt: Value of K at arbitrary temperature t °C f(t): Function representing temperature characteristics of Ki g(t): Function representing temperature characteristics of Ko From equations (2) and (3) By eliminating K125, the following equation is obtained.

(4)式においてKo25は既知の値であり、又、f(
1)及びg(t)も既知の関数で、f(t)は1℃当り
約2%、g(t)は1℃当り約6%である。
In equation (4), Ko25 is a known value, and f(
1) and g(t) are also known functions; f(t) is approximately 2% per 1°C, and g(t) is approximately 6% per 1°C.

したがって、任意の温度t℃におけるKの値Ktを測定
し、これに(4)式の演算を施すことにより、25℃換
算の純水の導電率に25を求めることが出来る。
Therefore, by measuring the value Kt of K at an arbitrary temperature t°C and applying the calculation of equation (4) to this, it is possible to obtain 25 as the conductivity of pure water in terms of 25°C.

本考案は、上述の検討結果に基づきなされたもので、簡
単な構成で、Ktの測定及び(4)式の演算を自動的に
行い、以て迅速かつ正確に純水の25℃換算導電率を求
め得る測定装置を実現することを目とする。
The present invention was made based on the above study results, and has a simple configuration that automatically measures Kt and calculates equation (4), thereby quickly and accurately measuring the 25°C equivalent conductivity of pure water. The aim is to realize a measuring device that can determine the

図は本考案の一実施例を示す結線図で、Slは交流定電
圧源で、商用電源或は振幅の安定化の容易な方形波電圧
電源より成る。
The figure is a wiring diagram showing an embodiment of the present invention, where Sl is an AC constant voltage source, which is a commercial power source or a square wave voltage source whose amplitude can be easily stabilized.

S2は直流定電圧源、MCは被測定純水の導電率測定用
セルで、被測定純水をセル内に連続的に流入流出せしめ
るための流入流出管及びその開閉弁(何れも図示してい
ない)を設けると共に、セル内に導電率測定用の対向電
極を設けである。
S2 is a direct current constant voltage source, MC is a cell for measuring the conductivity of pure water to be measured, and includes an inflow/outflow pipe and an on/off valve thereof (none of which are shown) to allow the pure water to be measured to flow continuously into and out of the cell. In addition, a counter electrode for measuring conductivity is provided inside the cell.

A11ないしA6は演算増幅器、R1,R3,R4,R
5,R7,R9,R13、及びR17は帰還抵抗、R2
,R6,R8,RIO,R11,R12,R14、R1
5及びR16は入力抵抗、Cはコンデンサ、Dl及びD
2はダイオード、Oは出力端子である。
A11 to A6 are operational amplifiers, R1, R3, R4, R
5, R7, R9, R13, and R17 are feedback resistors, R2
, R6, R8, RIO, R11, R12, R14, R1
5 and R16 are input resistances, C is a capacitor, Dl and D
2 is a diode, and O is an output terminal.

尚、帰還抵抗R4は、負の温度特性を有する感温抵抗素
子、例えばいわゆるサーミスタより威り、抵抗R5及び
R5と直並列接続されて温度補償回路を形成する。
The feedback resistor R4 is a temperature-sensitive resistance element having negative temperature characteristics, such as a so-called thermistor, and is connected in series and parallel with the resistors R5 and R5 to form a temperature compensation circuit.

入力抵抗R10もまた負の温度特性を有する感温抵抗素
子よす戊す、抵抗R12及びR11と直並列接続されて
温度補償回路を形成する。
The input resistor R10 is also a temperature sensitive resistive element having a negative temperature characteristic, and is connected in series and parallel with the resistors R12 and R11 to form a temperature compensation circuit.

感温抵抗素子R4及びR10は、導電率測定用セルMC
と常に等しい温度を保ち得るように、例えば導電率測定
用セルMCに出来るだけ近接して設けである。
The temperature sensitive resistance elements R4 and R10 are conductivity measurement cells MC.
For example, it is provided as close as possible to the conductivity measurement cell MC so as to maintain the same temperature at all times.

又、演算増幅器A3は、ダイオードD1及びD2、抵抗
R6及びR7、コンテ゛ンサCと共に整流回路を構成し
、演算増幅器A6は、入力抵抗R14,R15及びR1
6、帰還抵抗R17と共に加算回路を構成する。
Further, operational amplifier A3 constitutes a rectifier circuit together with diodes D1 and D2, resistors R6 and R7, and capacitor C, and operational amplifier A6 constitutes a rectifier circuit together with input resistors R14, R15, and R1.
6. Configure an adder circuit together with feedback resistor R17.

今、電源S1の電圧をEl、導電率測定用セルMCの容
器定数をC1,このセルに内装された導電率測定用対向
電極間における被測定純水の抵抗値をrt、帰還抵抗R
1及びR7の抵抗値をそれぞれrl及びrl、帰還抵抗
R3,R4及びR5より成る温度補償回路の合成抵抗値
をr3(t)、入力抵抗R2及びR6の抵抗値をそれぞ
れr2及びr6とすると、演算増幅器A3、ダイオード
DI、D2、抵抗R6,R7及びコンデ゛ンサCより成
る整流回路の出力電圧Eo3は、 となる。
Now, the voltage of the power source S1 is El, the container constant of the conductivity measurement cell MC is C1, the resistance value of the pure water to be measured between the opposite electrodes for conductivity measurement built in this cell is rt, and the feedback resistance R
If the resistance values of input resistors R2 and R7 are rl and rl, respectively, the combined resistance value of the temperature compensation circuit consisting of feedback resistors R3, R4, and R5 is r3(t), and the resistance values of input resistors R2 and R6 are r2 and r6, respectively, The output voltage Eo3 of the rectifier circuit consisting of the operational amplifier A3, the diodes DI and D2, the resistors R6 and R7, and the capacitor C is as follows.

次に電源S2の電圧をEl、演算増幅器A4の入力抵抗
R8及び帰還抵抗R9の抵抗値をそれぞれr8及びr9
とすると、演算増幅器A4の出力電圧Eo4は、 となる。
Next, the voltage of the power supply S2 is set to El, and the resistance values of the input resistance R8 and the feedback resistance R9 of the operational amplifier A4 are set to r8 and r9, respectively.
Then, the output voltage Eo4 of the operational amplifier A4 is as follows.

又、演算増幅器A5の入力抵抗RIO,R11及びR1
2(7)合成抵抗値をrlO(t)、帰還抵抗R13の
抵抗値をr 13とすると、演算増幅器A5の出力電圧
Eo5は、 となる。
In addition, the input resistances RIO, R11 and R1 of the operational amplifier A5
2(7) When the combined resistance value is rlO(t) and the resistance value of the feedback resistor R13 is r13, the output voltage Eo5 of the operational amplifier A5 is as follows.

更に演算増幅器A6の入力抵抗R14ないしR16及び
帰還抵抗R17の各抵抗値をすべて等しく選ぶと、演算
増幅器A6の出力電圧、即ち出力端子Oの出力電圧Eo
は、 Eo=−(Eo3+Eo4+Eo5) となり、演算増幅器A3.A4及びA5の各出力電圧が
加算される。
Furthermore, if the respective resistance values of the input resistors R14 to R16 and the feedback resistor R17 of the operational amplifier A6 are all selected to be equal, the output voltage of the operational amplifier A6, that is, the output voltage Eo of the output terminal O
is Eo=-(Eo3+Eo4+Eo5), and operational amplifier A3. The respective output voltages of A4 and A5 are added.

上式に(5)ないしく7)式を代入すると、となる。Substituting equations (5) to 7) into the above equation yields.

上式においで、 となるように各定数を遭−クーと、 (8) 式は、 となり、(4)式と対応することとなるから、出力端子
Oの出力電圧Eoから被測定純水の25℃換算の導電率
に25を求めることが出来る。
In the above equation, if we set each constant so that 25 can be calculated as the electrical conductivity at 25°C.

以上の説明から明らかなように、本案装置は、簡単な構
成で、純水の25℃換算導電率を自動的に、かつ迅速正
確に測定し得るもので実用上の効果甚だ大である。
As is clear from the above description, the device of the present invention has a simple configuration and is capable of automatically, quickly and accurately measuring the 25° C. equivalent conductivity of pure water, and has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

図は本考案の一実施例を示す結線図で、Sl:交流定電
圧源、S2:直流定電圧源、MC:導電率測定用セル、
A1ないしA6:演算増幅器、R1,R3、R4,R5
,R7,R9,R13及びR17:帰還抵抗、R2,R
6,R8,R10,R11,R12,R14,R15及
びR16:人力抵抗、C:コンデ゛ンサ、Dl及びDl
:ダイオード、O:出力端子で゛ある。
The figure is a wiring diagram showing an embodiment of the present invention, in which Sl: AC constant voltage source, S2: DC constant voltage source, MC: cell for measuring conductivity,
A1 to A6: operational amplifier, R1, R3, R4, R5
, R7, R9, R13 and R17: feedback resistance, R2, R
6, R8, R10, R11, R12, R14, R15 and R16: Human resistance, C: Capacitor, Dl and Dl
: Diode, O: Output terminal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電解質の溶解している純水における導電率の温度特性を
表わす関数をf(t)、電解質の溶解が皆無であると想
定した理想純水の温度25℃における導電率をKo 2
5、前記理想純水における導電率の温度特性を表わす関
数をg(t)とした場合、被測定純水の導電率測定用セ
ルに内装された対向電極を介して交流電圧の加えられる
第1の演算増幅器と、前記関数f(t)の逆数の入出力
特性を有し、かつ前記第1の演算増幅器出力の加えられ
る第2の演算増幅器と、この第2の演算増幅器出力の加
えられる整流回路と、前記導電率に025に比例した出
力電圧が得られるように直流電圧の加えられる第3の演
算増幅器と、前記関数g(t)と前記関数f(t)との
比の入出力特性を有し、かつ前記第3の演算増幅器出力
の加えられる第4の演算増幅器と、前記整流回路出力及
び前記第3並に第4の演算増幅出力の加えられる加算回
路とより成ることを特徴とする純水の導電率測定装置。
The function representing the temperature characteristic of electrical conductivity in pure water in which electrolyte is dissolved is f(t), and the electrical conductivity at a temperature of 25°C of ideal pure water assuming no dissolution of electrolyte is Ko 2
5. If g(t) is a function representing the temperature characteristic of conductivity in the ideal pure water, then the first a second operational amplifier having an input/output characteristic of the reciprocal of the function f(t) and to which the output of the first operational amplifier is added; and a rectifier to which the output of the second operational amplifier is added. a circuit, a third operational amplifier to which a DC voltage is applied so as to obtain an output voltage proportional to 025 to the conductivity, and an input/output characteristic of the ratio of the function g(t) to the function f(t). and a fourth operational amplifier to which the output of the third operational amplifier is added, and an addition circuit to which the output of the rectifier circuit and the outputs of the third and fourth operational amplifiers are added. Pure water conductivity measuring device.
JP11556576U 1976-08-27 1976-08-27 Pure water conductivity measuring device Expired JPS5830231Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11556576U JPS5830231Y2 (en) 1976-08-27 1976-08-27 Pure water conductivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11556576U JPS5830231Y2 (en) 1976-08-27 1976-08-27 Pure water conductivity measuring device

Publications (2)

Publication Number Publication Date
JPS5332773U JPS5332773U (en) 1978-03-22
JPS5830231Y2 true JPS5830231Y2 (en) 1983-07-02

Family

ID=28725154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11556576U Expired JPS5830231Y2 (en) 1976-08-27 1976-08-27 Pure water conductivity measuring device

Country Status (1)

Country Link
JP (1) JPS5830231Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892311A (en) * 1981-11-25 1983-06-01 松下電工株式会社 Hair iron

Also Published As

Publication number Publication date
JPS5332773U (en) 1978-03-22

Similar Documents

Publication Publication Date Title
JPS5543447A (en) Hot-wire type flow rate measuring device
KR20090105773A (en) Measurement Device of Internal Impedance or it's effective value, And Method Thereof
JPS5830231Y2 (en) Pure water conductivity measuring device
JPS587341Y2 (en) Jiyunsuinododenritsusokuteisouchi
US3187576A (en) Electronic thermometer
JPH0634700Y2 (en) Conductivity meter measurement circuit
CN207611304U (en) Linear temperature coefficient voltage follower circuit
CN109100041A (en) Temperature measurement circuit, heating film, humidification machine and ventilation therapy equipment
JPH052864Y2 (en)
JPS6118452Y2 (en)
GB900329A (en) Systems for measuring electrolytic conductivity of a liquid
JPS5832152A (en) Humidity detector
JPS5925177B2 (en) Soutai Shitsudokei
CN204027720U (en) indoor temperature and humidity detecting unit device
US1869128A (en) Power measuring and telemetering apparatus
SU746325A1 (en) Active two-terminal network complex-resistance meter
JPS61105434A (en) Heat compensation type calorimeter
JPS6018943B2 (en) conductivity meter
JPS6010266B2 (en) conductivity meter
SU1056063A1 (en) Method of measuring current and voltage effective value in infrasound frequency range
SU798628A1 (en) Apparatus for automatic monitoring of electric circuit insulation resistance
SU428231A1 (en) DEVICE FOR POWER SUPPLY OF ELECTRIC HEATER AND CONTROL OF ITS TEMPERATURE
SU617721A1 (en) Follow-up balancing thermoanemometer
JPS63174066U (en)
SU746587A1 (en) Device for simulating non-stationary temperature fields with distributed sources