JPS5830075A - Protecting device for generating system of fuel cell - Google Patents

Protecting device for generating system of fuel cell

Info

Publication number
JPS5830075A
JPS5830075A JP56127889A JP12788981A JPS5830075A JP S5830075 A JPS5830075 A JP S5830075A JP 56127889 A JP56127889 A JP 56127889A JP 12788981 A JP12788981 A JP 12788981A JP S5830075 A JPS5830075 A JP S5830075A
Authority
JP
Japan
Prior art keywords
valve
fuel cell
pressure
reaction gas
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56127889A
Other languages
Japanese (ja)
Inventor
Kazuo Koseki
小関 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP56127889A priority Critical patent/JPS5830075A/en
Publication of JPS5830075A publication Critical patent/JPS5830075A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To furnish the captioned device by a method, wherein if D.C. overcurrent is generated in a fuel cell-generating system, the overcurrent can be prevented from reaching a danger level, and if reaction gas escapes from the generating system, the supply of the gas can be stopped immediately. CONSTITUTION:On a point P between an ejector pump 3 and a pressure-regulating valve 5, a differential pressure-shut out valve 8 is enclosed. The pressure at the above-mentioned point P changes in proportion to fuel consumption in a fuel cell 1. As to the differential pressure valve 8, a valve body 16 moves in a valve housing 10 to communicate or interrupt the flowing path by means of the differential pressure between the pressure P1 at the inlet port and the pressure P2 at the outlet port. Namely, during operation, in case an overcurrent flows due to short-circuit in a D.C. circuit and a commutation failure of an inverter, or in case a large amount of reaction gas escapes at a time due to injury of constituent material for a generating cell of the fuel cell, the reaction gas consumption increases suddenly, therefore the valve body 16 is forced to move toward the left direction of the figure so that a valve head 17 is pushed to the face of a valve seat 14 in order to shut out said flowing path.

Description

【発明の詳細な説明】 本発明は燃料電池発電システムの保護装置に係り、特に
燃料電池の負荷電流が直流回路短絡あるいはインバータ
の転流失敗によって急増したり、反応ガスが漏洩したり
したときに反応ガスの供給を停止して燃料電池発電シス
テムを保護する装置に関する。
[Detailed Description of the Invention] The present invention relates to a protection device for a fuel cell power generation system, particularly when the load current of the fuel cell increases rapidly due to a DC circuit short circuit or commutation failure of the inverter, or when reactant gas leaks. The present invention relates to a device that protects a fuel cell power generation system by stopping the supply of reactant gas.

一般に燃料電池および静止形インバータからなる燃料電
池発電システムにおいては直流回路短絡時あるいはイン
バータ、の転流失敗時に流れる過電流からシステムを保
護する必要がある。過電流保護のための方法としては、
直流しゃ断器を使ってしゃ断する方法と直流電流抑制用
抵抗を挿入する方法とが考えられる0しかしながら、前
者の場合には低圧大電流の高速直流しゃ断器を必要とす
るにもか\わらずその開発と実用化は非常に困難である
しまた高価でもある0また、後者の場合は大電流直流抵
抗器およびそれを挿入するための高速スイッチング装置
を必要としシステムが高価となる0 他方、燃料電池の発電セルを構成する材料が疲労によっ
て破損したり、あるいは接合部の剥離や材料腐食等によ
り大量の反応ガ、スが洩れることもある。このような場
合には、洩れたガスをガス洩れ検知器で検知し、その検
知信号に連動・して電磁しゃ新井を作動させることが考
えられる。しかしながら、この方法によるときは、検知
までの時間遅れが数秒あるから、この間にかなシの量の
ガスが洩れて非常に危険であり、制御構成が複雑であっ
てしかも制御電力を消費する等の問題があった。
In general, in a fuel cell power generation system consisting of a fuel cell and a stationary inverter, it is necessary to protect the system from overcurrent that flows when a DC circuit is short-circuited or when commutation of the inverter fails. Methods for overcurrent protection include:
Two methods are considered: using a DC breaker to disconnect the current, and inserting a DC current suppression resistor. However, in the former case, a low-voltage, high-current, high-speed DC breaker is required. Development and practical application are extremely difficult and expensive.In addition, in the latter case, a high-current DC resistor and a high-speed switching device to insert it are required, making the system expensive.On the other hand, fuel cells The materials that make up the power generation cells may break due to fatigue, or a large amount of reactive gas may leak due to peeling of joints or material corrosion. In such a case, it is conceivable to detect the leaked gas with a gas leak detector and operate the electromagnetic shield in conjunction with the detection signal. However, when using this method, there is a time delay of several seconds until detection, which is extremely dangerous as a large amount of gas may leak during this time, and the control configuration is complex and control power is consumed. There was a problem.

そこで本発明の目的は、燃料電池発電システムに直流過
電流が発生したときに簡単な手段で過電流が危険レベル
に達するのを防止できると共に発電セルから反応ガスが
洩れたときに迅速にガスの供給を停止できるようにした
燃料電池発電システムの保護装置を提供することにある
Therefore, an object of the present invention is to prevent the overcurrent from reaching a dangerous level by a simple means when a DC overcurrent occurs in a fuel cell power generation system, and to quickly remove the gas when the reactant gas leaks from the power generation cell. An object of the present invention is to provide a protection device for a fuel cell power generation system that can stop supply.

本発明によれば、この目的は、燃料電池内に反応ガスを
連続供給する反応ガス循環回路中にエゼクタポンプを組
み込み、このエゼクタポンプの吸込側に反応ガス供給管
路を接続したものにお諭て、上記反応ガス供給管路上に
弁の前後の差圧が所定値を越えたときに流路をしゃ断す
る差圧しゃ新井を組込むことによって達成される。
According to the present invention, this purpose is achieved by incorporating an ejector pump into a reaction gas circulation circuit that continuously supplies a reaction gas into a fuel cell, and connecting a reaction gas supply pipe to the suction side of the ejector pump. This is achieved by incorporating a differential pressure barrier on the reaction gas supply pipe that shuts off the flow path when the differential pressure across the valve exceeds a predetermined value.

以下本発明による燃料電池発電システムの保護装置の一
実施例を図を参照して説明する。
An embodiment of a protection device for a fuel cell power generation system according to the present invention will be described below with reference to the drawings.

第1図において、符号1は燃料電池を示しており、この
燃料電池1は水素−酸素燃料電池であって燃料ガスとし
て水素(H2)が、酸化剤ガスとして酸素(02)が使
用される。また、この燃料電池1は図示を省略している
が水素極と酸素極の2つの電磁を備えており、その間に
電解質が存在していることはもちろんである。
In FIG. 1, reference numeral 1 indicates a fuel cell, and this fuel cell 1 is a hydrogen-oxygen fuel cell, and uses hydrogen (H2) as a fuel gas and oxygen (02) as an oxidant gas. Further, although not shown, this fuel cell 1 is equipped with two electromagnetic electrodes, a hydrogen electrode and an oxygen electrode, and it goes without saying that an electrolyte exists between them.

また、第1図には反応ガスの一方である水素ガス循環回
路2が示されており、この回路中にエゼクタポンプ3が
組込まれている。このエゼクタポンプ3は供給ポンプと
して作用するものであって、その入口には水素ガス供給
管路4が接続され、その管路上には圧力調整弁5が組込
まれている。この圧力調整弁5の操作ポートには、エゼ
クタポンプ3の出口側より分岐されたフィードバック管
路6が帰還接続されている。したがって、圧力調整弁5
は、燃料電池1の燃料ガス室の圧力とスプリング7の合
力によってポート位置を切換えられ、燃料ガス室内の水
素ガスの圧力が一定に制御されるようになっている。
Further, FIG. 1 shows a hydrogen gas circulation circuit 2, which is one of the reactant gases, and an ejector pump 3 is incorporated in this circuit. This ejector pump 3 acts as a supply pump, and a hydrogen gas supply line 4 is connected to its inlet, and a pressure regulating valve 5 is installed on the line. A feedback pipe 6 branched from the outlet side of the ejector pump 3 is connected to the operating port of the pressure regulating valve 5 for return. Therefore, the pressure regulating valve 5
The port position is switched by the pressure in the fuel gas chamber of the fuel cell 1 and the resultant force of the spring 7, so that the pressure of hydrogen gas in the fuel gas chamber is controlled to be constant.

しかして、本発明によれば、上記エゼクタポンプ3と圧
力調整弁5との間のP点に差圧しゃ新井8が組込まれて
いる。上記P点の圧力は、燃料電池1内での燃料ガスの
消費量に比例して変化する。
According to the present invention, a differential pressure regulator 8 is incorporated at point P between the ejector pump 3 and the pressure regulating valve 5. The pressure at the point P changes in proportion to the amount of fuel gas consumed within the fuel cell 1.

すなわち、負荷電流が増大して燃料ガスの消費量が増大
すると、燃料ガス室内の圧力が低下するから、エゼクタ
ポンプ3は多量の燃料ガスを供給して燃料ガス室内の圧
力を高める。これとは反対に燃料ガス室内の燃料ガスの
消費量が低減すると、圧力調整器5はエゼクタポンプ3
の入口側圧力を低くして燃料ガスの供給を制限する。
That is, when the load current increases and the amount of fuel gas consumed increases, the pressure within the fuel gas chamber decreases, so the ejector pump 3 supplies a large amount of fuel gas to increase the pressure within the fuel gas chamber. On the other hand, when the consumption of fuel gas in the fuel gas chamber decreases, the pressure regulator 5
The supply of fuel gas is restricted by lowering the inlet side pressure.

次に差圧しゃ新井8の構造を第2図を参照して説明する
。図中符号10は弁ハウジングを示し、この弁ハウジン
グ10は入口ボート11および出口ボート12を有し、
両ポートの間は弁孔13によって連絡され、上記入口ボ
ート11に近い弁孔13の入口部には弁座14が形成さ
れている。また弁孔13の中はどは部分的に拡iされて
スプリング室15となっている0 さらに、上記弁ハウジング10内には、弁体16が組込
まれておシ、この弁体16は入口ボート11内に位置す
る弁頭17と弁孔13内を延びる弁軸18とを有してい
る。上記弁頭17は、上記弁座14と対応するような円
すい面17aを備え、この円すい面17aの途中にシー
ルリング19が装着されている。
Next, the structure of the differential pressure shield 8 will be explained with reference to FIG. Reference numeral 10 in the figure indicates a valve housing, and this valve housing 10 has an inlet boat 11 and an outlet boat 12,
A valve hole 13 communicates between the two ports, and a valve seat 14 is formed at the inlet portion of the valve hole 13 near the inlet boat 11. The inside of the valve hole 13 is partially enlarged to form a spring chamber 15.Furthermore, a valve body 16 is incorporated into the valve housing 10, and this valve body 16 is connected to the inlet. It has a valve head 17 located within the boat 11 and a valve shaft 18 extending within the valve hole 13. The valve head 17 has a conical surface 17a that corresponds to the valve seat 14, and a seal ring 19 is mounted in the middle of the conical surface 17a.

一方、上記弁軸18の途中にはストップフランジ加が一
体的に形成されておシ、ストップランジ加には複数個の
連通孔21が穿設されている。また、弁軸18上にはス
プリングnが弾装され、このスプリングnは、弁体16
を図の右方に向って押圧するようになっている。
On the other hand, a stop flange is integrally formed in the middle of the valve stem 18, and a plurality of communication holes 21 are bored in the stop flange. Further, a spring n is loaded on the valve shaft 18, and this spring n is connected to the valve body 16.
is pressed towards the right side of the figure.

上述のように構成された差圧しゃ新井8は・、入口ポー
ト11の圧力P、と出口ポート12側の圧力P2の差圧
によって弁体16が弁ハウジングlo内を移動し、流路
を連通したりしゃ断したシする。すなゎち、燃料電池1
内における水素ガスの消費量が少ないときにはP点を通
過する水素ガスの流量は少なくPtとPlとの差圧も小
さくスプリング22のばね力が弁体16を入口ポート1
1の方向へ押しつけ、ストップ板加が弁ハウジング10
の段部に押付けた位置で停止保持される。この位置状態
においては、入口ポート11から入る水素ガスは、弁頭
17と弁座14とのすき間を通り、連通孔21、スプリ
ング室15を通して出口ポート12に導かれエゼクタポ
ンプ3に供給され循環回路2を通して燃料電池1へ供給
され続け、燃料電池の発電システムが運転を続ける0 ところが、運転中に直流回路短絡やインバータの転流失
敗により過電流が流れたり、あるいは、燃料電池の発電
セルの構成材料が破損して一時的に大量の反応ガスが洩
れたような場合には、急激に反応ガスの消費量が増大す
るから、前記P1とPlとの間にはPl> Plの関係
が成立し、差圧が大きくなって弁体16を図の左方へ動
かし、ついには弁頭17が弁座面14に押しつけられ流
路をしゃ断することになる0 以上述べたように本発明によれば、エゼクタポンプの人
口に接続された反応ガス供給管路上に差圧しゃ断弁を設
け、弁体の前後の圧力差が大きくなったときに流路をし
ゃ断するようにしたから、直流回路短絡やインバータの
転流失敗により過電流が流れたりあるいは燃料電池の発
電セルの構成材料が破損して一時的に大量の反応ガスが
漏出したときに反応ガスの供給管路の流路を閉止して燃
料電池の発生電圧を下げて直流電流を絞りこむことがで
きる。
In the differential pressure regulator Arai 8 configured as described above, the valve element 16 moves within the valve housing lo due to the differential pressure between the pressure P at the inlet port 11 and the pressure P2 at the outlet port 12 side, thereby communicating the flow path. It can be done or shut off. Sunawachi, fuel cell 1
When the amount of hydrogen gas consumed within the port is small, the flow rate of hydrogen gas passing through point P is small and the differential pressure between Pt and Pl is also small, and the spring force of the spring 22 causes the valve body 16 to flow through the inlet port 1.
1, press the stop plate in the direction of valve housing 10.
It is stopped and held at the position where it is pressed against the stepped part. In this position, hydrogen gas entering from the inlet port 11 passes through the gap between the valve head 17 and the valve seat 14, is guided to the outlet port 12 through the communication hole 21 and the spring chamber 15, and is supplied to the ejector pump 3, where it is supplied to the circulation circuit. 2 continues to be supplied to the fuel cell 1, and the fuel cell power generation system continues to operate. However, during operation, an overcurrent may flow due to a DC circuit short circuit or an inverter commutation failure, or the configuration of the fuel cell power generation cell may If the material is damaged and a large amount of reaction gas temporarily leaks, the consumption of reaction gas will increase rapidly, so the relationship Pl>Pl will hold between P1 and Pl. As the differential pressure increases, the valve body 16 moves to the left in the figure, and the valve head 17 is finally pressed against the valve seat surface 14, cutting off the flow path.As described above, according to the present invention, A differential pressure cutoff valve was installed on the reaction gas supply pipe connected to the ejector pump, and the flow path was cut off when the pressure difference before and after the valve body became large, preventing DC circuit short circuits and inverter damage. If a large amount of reactant gas temporarily leaks due to an overcurrent flowing due to a commutation failure or the constituent materials of the fuel cell's power generation cell are damaged, the flow path of the reactant gas supply pipe is closed and the fuel cell is closed. DC current can be narrowed down by lowering the generated voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料電池発電システムを示した回
路図、第2図は差圧しゃ断弁を示した縦断面図である。 1・・・燃料電池、2・・・反応ガス循環回路、3・・
・エゼクタポンプ、4・・・反応ガス供給管路、8・・
・差圧しゃ断弁、10・・・弁ハウジング、11・・・
入口ポート、12・・・出口ボート、13・・・弁孔、
16・・・弁体、17・・・弁頭、18・・・弁軸
FIG. 1 is a circuit diagram showing a fuel cell power generation system according to the present invention, and FIG. 2 is a longitudinal sectional view showing a differential pressure cutoff valve. 1...Fuel cell, 2...Reactant gas circulation circuit, 3...
・Ejector pump, 4...Reaction gas supply pipe, 8...
・Differential pressure cutoff valve, 10... Valve housing, 11...
Inlet port, 12... Outlet boat, 13... Valve hole,
16... Valve body, 17... Valve head, 18... Valve shaft

Claims (1)

【特許請求の範囲】 1、燃料電池内に反応ガスを連続供給する反応ガス循環
回路中にエゼクタポンプを組み込み、このエゼクタポン
プの吸込側に反応ガス供給管路を接続したものにおいて
、上記反応ガス供給管路上に弁の前後の差圧が所定値を
越えたときに流路をしゃ断する゛差圧しゃ断弁を組込ん
だことを特徴とする燃料電池発電システムの保護装置。 2、特許請求の範囲第1項に記載の燃料電池発電システ
ムの保護装置において、上記差圧しゃ断弁は、入口ボー
ト、出口ポートおよびこれらのポートを連通する弁孔を
内部に備えた弁ハウジングと、この弁ハウジング内に組
込まれ差圧によって上記人口ポートを開閉する弁体とを
有していることを特徴とする保護装置。
[Scope of Claims] 1. In a fuel cell in which an ejector pump is incorporated in a reaction gas circulation circuit that continuously supplies a reaction gas into a fuel cell, and a reaction gas supply pipe is connected to the suction side of the ejector pump, the reaction gas is A protection device for a fuel cell power generation system, characterized in that a differential pressure cutoff valve is incorporated on a supply pipe to cut off a flow path when the pressure difference before and after the valve exceeds a predetermined value. 2. In the protection device for a fuel cell power generation system according to claim 1, the differential pressure cutoff valve includes a valve housing that includes an inlet boat, an outlet port, and a valve hole that communicates these ports. and a valve body that is incorporated into the valve housing and opens and closes the artificial port based on a pressure difference.
JP56127889A 1981-08-15 1981-08-15 Protecting device for generating system of fuel cell Pending JPS5830075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56127889A JPS5830075A (en) 1981-08-15 1981-08-15 Protecting device for generating system of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56127889A JPS5830075A (en) 1981-08-15 1981-08-15 Protecting device for generating system of fuel cell

Publications (1)

Publication Number Publication Date
JPS5830075A true JPS5830075A (en) 1983-02-22

Family

ID=14971162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56127889A Pending JPS5830075A (en) 1981-08-15 1981-08-15 Protecting device for generating system of fuel cell

Country Status (1)

Country Link
JP (1) JPS5830075A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020508A1 (en) * 1994-12-23 1996-07-04 Ballard Power Systems Inc. Electrochemical fuel cell system with a regulated vacuum ejector for recirculation of the fluid fuel stream
US7279242B2 (en) 2002-10-29 2007-10-09 Honda Motor Co., Ltd. Fuel cell system
US7531257B2 (en) 2002-11-15 2009-05-12 Honda Motor Co., Ltd. Fuel cell system programmed to control reactant gas flow in a gas circulation path

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020508A1 (en) * 1994-12-23 1996-07-04 Ballard Power Systems Inc. Electrochemical fuel cell system with a regulated vacuum ejector for recirculation of the fluid fuel stream
US7279242B2 (en) 2002-10-29 2007-10-09 Honda Motor Co., Ltd. Fuel cell system
US7531257B2 (en) 2002-11-15 2009-05-12 Honda Motor Co., Ltd. Fuel cell system programmed to control reactant gas flow in a gas circulation path

Similar Documents

Publication Publication Date Title
JP4130319B2 (en) Fuel cell control device
US20020028362A1 (en) Anode oxidation protection in a high-temperature fuel cell
JPS6244387B2 (en)
RU2444094C2 (en) Aircraft equipped with fuel supply assembly for system of fuel elements
CN110364754B (en) Overvoltage protection device for fuel cell and control method
JP2010001916A (en) Solenoid shutoff valve
JP5762263B2 (en) Gas supply system
JP4338914B2 (en) Fuel circulation fuel cell system
JP5171423B2 (en) Fuel cell system
JPS5830075A (en) Protecting device for generating system of fuel cell
US7090943B2 (en) Regulating the communication of power to components of a fuel cell system
EP1703579B1 (en) Fuel cell system and method for operating same
US8875735B2 (en) Coolant ventilation system
JPS6117338B2 (en)
JP4263555B2 (en) Starting method of fuel cell system
JP6724736B2 (en) High pressure fluid control valve control device and abnormality diagnosis method
JPS58164163A (en) Stop control method of fuel cell generator
JPH0652665B2 (en) Fuel cell operation method
JPH01304668A (en) Phosphoric acid type fuel cell power generating plant
JP2008165994A (en) Control device of fuel cell system, and fuel cell system
JP2010049878A (en) Fuel cell system
JPH0354433B2 (en)
KR102460877B1 (en) Method for controlling a fuel cell and associated fuel cell system
JPH04121971A (en) Method of protective stopping of fuel cell power generator
JPH0773056B2 (en) Fuel cell