JPS5830030B2 - Fermentation method and fermentation equipment - Google Patents

Fermentation method and fermentation equipment

Info

Publication number
JPS5830030B2
JPS5830030B2 JP7037476A JP7037476A JPS5830030B2 JP S5830030 B2 JPS5830030 B2 JP S5830030B2 JP 7037476 A JP7037476 A JP 7037476A JP 7037476 A JP7037476 A JP 7037476A JP S5830030 B2 JPS5830030 B2 JP S5830030B2
Authority
JP
Japan
Prior art keywords
culture
tank
gas
oxygen
spaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7037476A
Other languages
Japanese (ja)
Other versions
JPS52154583A (en
Inventor
広美 坂下
精男 三村
周朗 須川
章 片山
登 木之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP7037476A priority Critical patent/JPS5830030B2/en
Publication of JPS52154583A publication Critical patent/JPS52154583A/en
Publication of JPS5830030B2 publication Critical patent/JPS5830030B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:In the aerobical cultivation of microorganisms by counter-currently contacting the oxygen-containing gas with the cultivation medium, the efficiency of the liquid/gas contact is improved by dividing the fermentation column with perforated plates.

Description

【発明の詳細な説明】 本発明は、酸素を含む気体と培地を向流接触させて微生
物を好気的に培養する方法、および該方法の実施に直接
使用する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for culturing microorganisms aerobically by bringing a medium into countercurrent contact with an oxygen-containing gas, and to an apparatus directly used for carrying out the method.

近年、世界的な蛋白質の不足が慢性化しており、今後も
ますますこの傾向が増大することが予測され、新しい蛋
白質を発酵法により大規模に工業生産するための研究が
盛んに行なわれている。
In recent years, the global shortage of proteins has become chronic, and this trend is expected to increase in the future, and research is actively being conducted on the large-scale industrial production of new proteins using fermentation methods. .

この発酵法による蛋白質の生産を企業化するためには、
省資源、省エネルギーの観点から、従来の発酵法を抜本
的に改良することが要求され、しかも、設備の大型化も
容易に行なえることが必要である。
In order to commercialize protein production using this fermentation method,
From the viewpoint of resource and energy conservation, there is a need to fundamentally improve conventional fermentation methods, and it is also necessary to be able to easily scale up the equipment.

本発明は、これらの要望にこたえうる発酵方法および発
酵装置を提供するものであり、特に微生物蛋白質の生産
に要する消費動力が著しく小さいことを特徴とする発酵
装置を提供するものである。
The present invention provides a fermentation method and a fermentation apparatus that can meet these demands, and particularly provides a fermentation apparatus characterized by extremely low power consumption required for producing microbial proteins.

従来の培養槽では、槽内を異なった微生物濃度の培養液
を保有する、より小さな二つ以上の槽に分割させるため
の構造物を内部に持たないため、槽内はほとんど均質な
培養液になっている。
Conventional culture tanks do not have an internal structure that allows them to divide the tank into two or more smaller tanks containing culture solutions with different microbial concentrations, so the culture solution inside the tank is almost homogeneous. It has become.

しかし、このような培養槽では、培養槽より取出される
培養液から微生物を分離し易くするために、培養液の微
生物の濃度を高めようとしても容易ではない。
However, in such a culture tank, it is not easy to increase the concentration of microorganisms in the culture solution in order to make it easier to separate the microorganisms from the culture solution taken out from the culture tank.

すなわち、微生物の濃度を高くすることによって、培養
液の物性が変化し、酸素吸収能力を低下させ、また培養
液当りの微生物の酸素要求量が増加するため、培養槽内
の微生物にとって酸素欠乏状態にならしめ、微生物の活
性が低下する結果、かえって培養槽の生産性を悪くする
In other words, by increasing the concentration of microorganisms, the physical properties of the culture solution change, reducing the oxygen absorption capacity and increasing the amount of oxygen required by the microorganisms per culture solution, resulting in an oxygen-deficient state for the microorganisms in the culture tank. As a result, the activity of microorganisms decreases, which actually worsens the productivity of the culture tank.

したがって、従来の培養槽では、その酸素吸収能力に応
じた微生物の濃度の培養液しか取出すことができない。
Therefore, in a conventional culture tank, only a culture solution with a concentration of microorganisms corresponding to the oxygen absorption capacity of the culture tank can be taken out.

微生物の濃度を高めようとすれば、酸素吸収能力を大き
くする必要があり、そのためには相当の動力を投入しな
ければならない。
In order to increase the concentration of microorganisms, it is necessary to increase the oxygen absorption capacity, and to do so, a considerable amount of power must be input.

従来から最も多く使用されている培養槽としては、第1
図に示すように、撹拌翼25の回転により、培地と通気
管26から供給される気体との気液接触を良好にさせる
通気撹拌槽がある。
The most commonly used culture tank is the 1st one.
As shown in the figure, there is an aeration stirring tank that improves gas-liquid contact between the culture medium and the gas supplied from the ventilation pipe 26 by rotating the stirring blades 25.

これには通気および撹拌による動力の消費が大きく、装
置の大型化も困難であり、微生物蛋白質の生産にとって
は必ずしも最適な培養槽とはいえず、新しい培養槽の開
発が望まれている。
This requires a large amount of power due to aeration and stirring, and it is difficult to increase the size of the device, so it is not necessarily the most suitable culture tank for the production of microbial proteins, and the development of a new culture tank is desired.

最近では、この種の発酵を合理的に行なうための培養槽
として、第2図に示すように、機械式撹拌を行なわない
で通気管27の通気のみによる培養槽が注目されてきた
が、単純な気泡塔では機械式撹拌がないため、酸素吸収
能力がかなり小さいものである。
Recently, as a culture tank for rationally carrying out this type of fermentation, a culture tank that uses only ventilation through the ventilation pipe 27 without mechanical stirring, as shown in Fig. 2, has been attracting attention. Bubble columns do not have mechanical stirring, so their oxygen absorption capacity is quite low.

そこで、酸素吸収能力を高めるために、第3図に示すよ
うに、槽内に通気管28と多段の多孔板29を設けたも
のが考案されている(特公昭45−20552号、特開
昭47−23591号、特開昭48−57262号)。
Therefore, in order to increase the oxygen absorption capacity, a tank was devised in which a ventilation pipe 28 and a multi-stage perforated plate 29 were provided in the tank as shown in Fig. 3 (Japanese Patent Publication No. 45-20552, No. 47-23591, Japanese Unexamined Patent Publication No. 48-57262).

これらの気泡塔で単に多孔板を設けるのみでは、酸素吸
収能力の改善への効果はかなり小さいものである。
Simply providing a perforated plate in these bubble columns has a rather small effect on improving the oxygen absorption capacity.

その原因は、槽内金体の培養液の混合を良くするために
、気体と\もに液体をも多孔板を通過させなければなら
ず、そのため多孔板の開孔率を大きくして、多孔板を通
過する流木の圧力損失を小さくする必要があるため、多
孔板による酸素吸収能力を高める効果が上がらないとこ
ろにある。
The reason for this is that in order to improve the mixing of the culture solution in the metal body in the tank, both gas and liquid must pass through the perforated plate. Since it is necessary to reduce the pressure loss of the driftwood passing through the board, the effect of increasing the oxygen absorption capacity of the perforated board is not increased.

すなわち、このような多孔板では、酸素吸収能力改善の
効果を上げようとして多孔板の開孔率を小さくシ、その
圧力損失を大きくすると、多孔板の下側に気体層が形成
され、その結果、液体が多孔板をもはや通過できなくな
る。
In other words, in order to improve the oxygen absorption capacity of such a perforated plate, if the porosity of the perforated plate is reduced and the resulting pressure loss is increased, a gas layer is formed under the perforated plate, and as a result, , the liquid can no longer pass through the perforated plate.

この時、多孔板で区切られたそれぞれの空間は独立した
状態となり、それぞれの空間にある培養液の微生物濃度
は異なってくる。
At this time, each space divided by the perforated plate becomes independent, and the microbial concentration of the culture solution in each space becomes different.

このため槽内金体の培養液の混合を良くするという目的
が達せられなくなり、したがって、多孔板の開孔率を小
さくシ、その圧力損失を太きくして、酸素吸収能力の改
善をはかることが困難となるため、多孔板の開孔率を大
きいままにせざるをえない。
For this reason, the purpose of improving the mixing of the culture solution in the metal body in the tank cannot be achieved. Therefore, it is not possible to improve the oxygen absorption capacity by reducing the porosity of the perforated plate and increasing the pressure loss. Since this becomes difficult, the porosity of the perforated plate must remain large.

このような多孔板で区切られた気泡塔を用いて連続培養
するとき、新しい培地を最下部(または最上部)から通
液するが、培養液は多孔板の孔を酸素を含む気体と同時
に通過するため、多孔板の孔を気体が通過する時の気液
接触効率は悪くなるものと推察される。
When performing continuous culture using a bubble column separated by such a perforated plate, a new culture medium is passed through from the bottom (or top), but the culture solution passes through the pores of the perforated plate at the same time as oxygen-containing gas. Therefore, it is presumed that the gas-liquid contact efficiency when gas passes through the pores of the porous plate deteriorates.

多孔板による気液接触効率を改善するためには、開孔率
を小さくシ、多孔板での圧力損失を大きくすると同時に
、多孔板の孔には気体のみが通過することが重要である
In order to improve the gas-liquid contact efficiency of the perforated plate, it is important to reduce the porosity, increase the pressure loss in the perforated plate, and at the same time allow only gas to pass through the pores of the perforated plate.

本発明者らは、従来の多孔板気泡塔培養槽の欠点を改良
するため基礎的研究を行ない、多孔板に培養液が移送さ
れる連通管を設けることにより、気液接触効率を著しく
改善すると同時に、多孔板で区切られたそれぞれの空間
にある培養液の流動の安定性を増すことができたのであ
る。
The present inventors conducted basic research to improve the shortcomings of conventional perforated plate bubble column culture tanks, and found that by providing a communication tube through which the culture solution is transferred to the perforated plate, the gas-liquid contact efficiency was significantly improved. At the same time, it was possible to increase the stability of the flow of the culture medium in each space separated by the perforated plate.

かくして、本発明の発酵装置を用いることにより、微生
物蛋白質の連続培養を効率よく行ないえられる方法を完
成したのである。
Thus, by using the fermentation apparatus of the present invention, a method for efficiently carrying out continuous culture of microbial proteins was completed.

本発明の構成を第4図および第5図にしたがって詳細に
説明する。
The configuration of the present invention will be explained in detail with reference to FIGS. 4 and 5.

培養槽本体1内に多孔質分離板2を配設して、上下方向
に二つないしそれ以上の槽(空間)を形成させる。
A porous separation plate 2 is disposed within the culture tank body 1 to form two or more tanks (spaces) in the vertical direction.

多孔質分離板2は各種(空間)の間の培養液の通路とな
る連通管3と、酸素を含む気体を高速度で通過させる多
数の孔4を有している。
The porous separation plate 2 has communication pipes 3 that serve as passages for culture fluid between various spaces (spaces), and a large number of holes 4 that allow oxygen-containing gas to pass through at high speed.

そして、上部および中間部の槽(空間)から培養槽外側
に設けた培養液の管路17,20に培養液の気液分離器
5,8を設け、さらに該気液分離器5.8より分離され
た気体を元の槽(空間)に戻す管路18,21、および
気体を除去された培養液を下方の槽(空間)に戻す管路
19,22を設け、管路19 、22には発酵熱を除去
するための冷却器6,9、および培養液の移送を助ける
ポンプ7.10が配設されている。
Then, culture solution gas-liquid separators 5 and 8 are provided in the culture solution pipes 17 and 20 provided outside the culture tank from the upper and middle tanks (spaces), and further from the gas-liquid separator 5.8. Pipes 18 and 21 that return the separated gas to the original tank (space) and pipes 19 and 22 that return the culture solution from which the gas has been removed to the tank (space) below are provided. Coolers 6 and 9 are provided to remove fermentation heat, and pumps 7 and 10 are provided to help transfer the culture solution.

培養槽本体1の下部には、酸素を含む気体の通気設備1
1を有する通気管16が設けられており、上部には培地
の供給管12が、さらに適宜槽(空間)に基質の供給管
13,14.15が設けられている。
At the bottom of the culture tank body 1, ventilation equipment 1 for gas containing oxygen is provided.
1, a medium supply pipe 12 is provided at the top, and substrate supply pipes 13, 14, and 15 are provided in appropriate tanks (spaces).

上記装置において、通常培地は供給管12により上部の
槽(空間)に供落し、酸素を含む気体は通気管16より
最下部の槽(空間)に供給し、多孔質分離板2で区切ら
れた各種(空間)で気液を接触せしめ、基質は管路13
,14.15などによって必要な槽(空間)に供給して
、微生物を好気的に培養する。
In the above device, the normal culture medium is supplied to the upper tank (space) through the supply pipe 12, and the gas containing oxygen is supplied to the lowermost tank (space) through the ventilation pipe 16, separated by the porous separator plate 2. Gas and liquid are brought into contact in various (spaces), and the substrate is pipe 13.
, 14, 15, etc., to the necessary tank (space) and culture the microorganisms aerobically.

さらに必要に応じて、二つの槽(空間)を管路で接続し
て培養液を循環することにより、この二つの槽(空間)
およびそれらの間にある槽(空間)の培養液を均一化す
る。
Furthermore, if necessary, by connecting the two tanks (spaces) with a pipe and circulating the culture solution, the two tanks (spaces) can be
and homogenize the culture solution in the tank (space) between them.

本例では管路17,19で接続された各種の培養液を均
一化し、さらにそれより下方に、管路20,22で接続
された各種(空間)の培養液を均一化している。
In this example, various culture solutions connected by pipes 17 and 19 are homogenized, and further below, culture solutions of various types (spaces) connected by pipes 20 and 22 are made uniform.

このようにして培養槽本体の中に組成の異なった2種の
培養槽を形成せしめているのである。
In this way, two types of culture tanks with different compositions are formed within the culture tank body.

本発明の発酵装置に設置される多孔質分離板2は、培養
槽本体1の必要な個所に水平に設置して各段を区切り、
酸素を含む気体か下部から上部に移動できる孔4を有す
るものであり、この多孔質分離板2の開孔率は、従来の
ものに比べて極めて小さくなっている。
The porous separation plates 2 installed in the fermentation apparatus of the present invention are installed horizontally at necessary locations on the culture tank body 1 to separate each stage.
It has pores 4 through which oxygen-containing gas can move from the bottom to the top, and the porosity of this porous separation plate 2 is extremely small compared to conventional ones.

そのため多孔質分離板2の下部に気体層が形成され、気
体のみ(但し多孔質分離板の下部の気体層に含まれる微
量の液体は同伴される)孔4を通過せしめることになる
Therefore, a gas layer is formed at the bottom of the porous separation plate 2, and only the gas (however, a small amount of liquid contained in the gas layer at the bottom of the porous separation plate is entrained) is allowed to pass through the holes 4.

したがって、多孔質分離板2の上下の液質を異なったも
のとすることが可能になり、また従来のものに比べ開孔
率が極めて小さいため、孔4を通過する気体の流速が非
常に大きくなって、気液間の物質移動が極めて大きくな
る。
Therefore, it is possible to have different liquid qualities on the upper and lower sides of the porous separation plate 2, and since the porosity is extremely small compared to conventional ones, the flow rate of gas passing through the holes 4 is extremely high. As a result, mass transfer between gas and liquid becomes extremely large.

その結果、微生物の生育に必要な酸素を十分に供給でき
るようになる。
As a result, sufficient oxygen necessary for the growth of microorganisms can be supplied.

連通管3は多孔質分離板2で区切られた槽(空間)の間
の培養液の移送を可能にする機能をもつもので、多孔質
分離板の上下の培養液を直接連絡する管であり、これは
多孔質分離板下に形成されtこ気体層から該連通管3に
気体が流入しないようにするため、該連通管3はこの気
体層内で開孔部を持ってはならない。
The communication pipe 3 has the function of enabling the transfer of culture solution between the tanks (spaces) separated by the porous separation plate 2, and is a pipe that directly communicates the culture solution above and below the porous separation plate. In order to prevent gas from flowing into the communicating tube 3 from the gas layer formed under the porous separator plate, the communicating tube 3 must have no openings in this gas layer.

培養液は連通管内を上下どちらの方向に流れてもよく、
本例では槽(空間)の間の液質の均一化を計るところで
は下から上の方向に流れ、槽(空間)の間の液質の分流
を目的とするところでは、上から下の方向に流れるよう
にしである。
The culture solution may flow in either direction up or down in the communication tube.
In this example, when the purpose is to equalize the liquid quality between tanks (spaces), the flow is from bottom to top, and when the purpose is to separate the liquid quality between tanks (spaces), the flow is from top to bottom. Let it flow.

次に培養液の循環系統について述べる。Next, we will discuss the culture fluid circulation system.

多孔質分離板2により多数の槽(空間)が形成される。A large number of tanks (spaces) are formed by the porous separation plate 2.

すなわち、多孔質分離板2によって酸素吸収能力を大き
くすることができるため、培養槽本体1に多くの多孔質
分離板2を設けた方が好ましいので、たがいに独立な多
数の槽(空間)が形成される。
In other words, since the oxygen absorption capacity can be increased by the porous separation plates 2, it is preferable to provide many porous separation plates 2 in the culture tank body 1, so that a large number of independent tanks (spaces) are provided. It is formed.

しかしながら、各種(空間)について微生物濃度、溶存
酸素濃度、培養温度、各種栄養源濃度、基質濃度および
pHなどを独立に管理することも可能であり、また培養
槽全体を均一な培養系とするためには、培養液循環系を
働かして、多数の槽(空間)を同一の液質をもつ一つの
群にまとめることも可能である。
However, it is also possible to independently control microorganism concentration, dissolved oxygen concentration, culture temperature, various nutrient source concentrations, substrate concentration, pH, etc. for each type (space), and to make the entire culture tank a uniform culture system. It is also possible to use a culture fluid circulation system to combine many tanks (spaces) into one group with the same fluid quality.

本例では二つの群を形成せしめている。すなわち、管路
17,19で連結された上部の群と、管路20,22で
連結された下部の群であり、これらは全く同一の機能を
もつため、上部の群についての培養液循環系統の説明を
行なう。
In this example, two groups are formed. That is, the upper group is connected by pipes 17 and 19, and the lower group is connected by pipes 20 and 22. Since these have exactly the same function, the culture solution circulation system for the upper group is different. I will explain.

気液分離器5は槽(空間)から管路17によって流入し
てくる培養液中の気泡を分離して、管路17.19内で
の培養液の移送を容易にするためのものであり、分離さ
れた気体は管路18を通ってもとの槽にもどる。
The gas-liquid separator 5 is for separating air bubbles in the culture solution flowing from the tank (space) through the pipe line 17 to facilitate the transfer of the culture solution within the pipe line 17.19. , the separated gas returns to the original tank through the conduit 18.

管路19に設けた冷却器6は発酵熱を除去するもので、
これは必ずしも管路19に設けなくてもよく、培養槽本
体1内に冷却管を設けて代用してもよい。
The cooler 6 provided in the pipe line 19 is for removing fermentation heat.
This does not necessarily have to be provided in the pipe line 19, and a cooling pipe may be provided in the culture tank main body 1 instead.

管路19に設けたポンプ7は、管路19による培養液の
移送を容易にするためのものであるが、これは必ずしも
必要なものではない。
Although the pump 7 provided in the conduit 19 is for facilitating the transfer of the culture solution through the conduit 19, this is not necessarily necessary.

すなわち、培養槽内の培養液の見かけ密度と管路19内
の培養液の密度差によって、培養液は管路19内を流下
することができる。
That is, the difference in density between the apparent density of the culture solution in the culture tank and the culture solution in the pipe line 19 allows the culture solution to flow down in the pipe line 19 .

通気設備11は一般の発酵装置に利用されているリング
型式多孔ノズルスパージャ−で、通常培養槽本体の最下
部に取付ける。
The ventilation equipment 11 is a ring type porous nozzle sparger used in general fermentation equipment, and is usually installed at the bottom of the culture tank body.

上記発酵装置を用いて培養を行なうに除し、培地栄養源
は主として上部の槽(空間)群のうちの一つ〔本例では
最上部の槽(空間)〕に供給し、下部の槽(空間)郡に
移行させ、そのうちの一つの槽(空間)から管路23を
経て流出させ、一方、酸素を含む気体は最下部の槽(空
間)に供給し、多孔質分離板を通過して順次上の槽を通
過し、最上部の槽(空間)から管路24を経て流出する
When culturing is carried out using the above fermentation apparatus, the medium nutrient source is mainly supplied to one of the upper tanks (spaces) [in this example, the top tank (space)], and the lower tank ( The gas containing oxygen is supplied to the lowest tank (space) and flows through a porous separator plate. It sequentially passes through the upper tanks and flows out from the uppermost tank (space) through the pipe 24.

多孔質分離板を気体が10センチメートル水柱以上の圧
力損失を与える高流速で通過する際に、分離板上の培養
液と気体がはげしく接触して発酵が促進される。
When gas passes through the porous separation plate at a high flow rate giving a pressure loss of 10 centimeters of water or more, the gas comes into intense contact with the culture solution on the separation plate, promoting fermentation.

このとき、多孔質分離板と連通管を通過する流体の圧力
損失に応じた大きさの気体層が多孔質分離板の下方に形
成されるため、多孔質分離板の孔を気体のみ(微量の液
体の同伴は認められる)が通過できる。
At this time, a gas layer of a size corresponding to the pressure loss of the fluid passing through the porous separator plate and the communication pipe is formed below the porous separator plate. Entrainment of liquids is allowed) can pass through.

上部の槽(空間)群で培養され、そこから下部の槽(空
間)群に培養液が移行し、そこでさらに培養されるため
、下部の槽(空間)群での培養液中の微生物濃度は大き
くなる。
The microorganism concentration in the culture solution in the lower tank (space) group is growing.

このように培養槽木本の底部の方が微生物濃度を大きく
なるようにしても、底部における酸素吸収能力が大きい
ため、酸素欠乏による微生物の活性低下を防ぐことがで
きる。
Even if the concentration of microorganisms is made higher at the bottom of the culture tank in this manner, the oxygen absorption capacity at the bottom is greater, so it is possible to prevent a decrease in the activity of microorganisms due to oxygen deficiency.

すなわち、培養槽底部では、気体中には未利用酸素が多
く、かつ静圧が大きいので気体中の酸素分圧が大きくな
るため、培養槽上部に比べてはるかに酸素吸収能がよく
なっている。
In other words, at the bottom of the culture tank, there is a lot of unused oxygen in the gas and the static pressure is high, so the partial pressure of oxygen in the gas increases, so the oxygen absorption capacity is much better than at the top of the culture tank. .

このように、培養槽本体内で微生物濃度に分布をもたせ
底部はど濃度を高くシ、それを流出させることによって
、従来の培養槽よりも高濃度の培養液を流出させること
ができる。
In this way, by creating a distribution in the concentration of microorganisms within the culture tank main body, increasing the concentration at the bottom, and allowing the microorganisms to flow out, it is possible to flow out a culture solution with a higher concentration than in a conventional culture tank.

本例においては、培養槽木本を二つの槽(空間:郡に分
割したが、それ以上の槽(空間)群に分割してもよく、
また一つの槽(空間)群は三つの槽(空間)で形成して
いるが、各種(空間)を単独で一つの槽(空間)と同じ
作用をさせることも可能である。
In this example, the culture tank woody plants are divided into two tank (space) groups, but they may be divided into more tank (space) groups.
Also, although one tank (space) group is formed by three tanks (spaces), it is also possible for each type of tank (space) to have the same effect as one tank (space).

本発明の発酵装置は、こうした特徴をもつまったく新し
いものであり、その利点は次の項目が認められる。
The fermentation apparatus of the present invention is completely new with these characteristics, and its advantages include the following.

(1)多孔質分離板を高流速で気体を通過させることに
よって、 (a) 気液の接触がはげしくなって発酵促進作が非
常に大きい。
(1) By passing gas through the porous separation plate at a high flow rate, (a) contact between gas and liquid becomes intense, greatly promoting fermentation.

(b) 多孔質分離板下に気体層が形成されるため、
気体のみ(但し、多孔質分離板の下部の気体層に含まれ
る微量の液体は同伴される)が多孔質分離板を通過する
(b) Since a gas layer is formed under the porous separator,
Only gas (however, a trace amount of liquid contained in the gas layer below the porous separator is entrained) passes through the porous separator.

(2)連通管により多孔質分離板で区切られた上下の槽
(空間)を連絡し、培養液の移送ができる。
(2) A communication tube connects the upper and lower tanks (spaces) separated by a porous separation plate, allowing the transfer of the culture solution.

(3)槽(空間)と槽(空間)を管路で連続して槽(空
間)群を形成させることによって、 (a) 異なった液質をもつ槽(空間)の数を少なく
でき、設備および運転の面で経済性がよくなる。
(3) By connecting tanks (spaces) and tanks (spaces) with conduits to form a tank (space) group, (a) the number of tanks (spaces) with different liquid qualities can be reduced, and equipment and more economical in terms of operation.

(b) この管路内に冷却器を設けることができ、発
酵熱の除去に都合がよい。
(b) A cooler can be provided in this conduit, which is convenient for removing fermentation heat.

(C) 培養槽本体内とこの管路内の見かけ密度差を
、槽(空間)郡の液の混合をよくするための循環流の促
進に利用できる。
(C) The apparent density difference between the culture tank body and this conduit can be used to promote circulation flow to improve the mixing of liquids in the tank (space) group.

(4)培養槽本体内で微生物濃度分布をもたせ、底部の
方を高濃度にすることによって、 (a) 従来の培養槽にくらべ微生物濃度の高い培養
液を流出させることができる。
(4) By creating a microbial concentration distribution within the culture tank body and increasing the concentration at the bottom, (a) it is possible to flow out a culture solution with a higher microbial concentration than in conventional culture tanks;

(q) 下部で利用された気体が上部の槽(空間)で
順次利用されるため、気体の利用効率がよい。
(q) Since the gas used in the lower part is sequentially used in the upper tank (space), the gas usage efficiency is good.

(C) 上部における方が微生物濃度が低いため、酸
素要求量も少なく、液質がより酸素吸収抵抗が小さくな
っているため、下部で利用され酸素濃度が小さくなった
気体でも十分に発酵に利用できる。
(C) Since the concentration of microorganisms is lower in the upper part, the oxygen demand is also lower, and the liquid quality has lower oxygen absorption resistance, so the gas used in the lower part and with a lower oxygen concentration can be fully utilized for fermentation. can.

本発明の発酵装置を用いた微生物蛋白質の発酵例を実施
例として下記に示すが、これらの実施例は、なんら本発
明を制限するものではない。
Examples of fermentation of microbial proteins using the fermentation apparatus of the present invention are shown below as examples, but these examples are not intended to limit the present invention in any way.

実施例 1 第4図に示す構造を有する内径50CrIL1高さ30
0crrL1容量7007,5段の開孔比率0.55%
の多孔質分離板を設け、さらにポンプTの吐出側をポン
プ10の吐出側に接続する管路を新たに設け、ポンプ7
の全吐出量を塔底部に送入させるようにした培養装置を
用いて、これにメタノール1.5%(容量)、尿素0.
10%(重量、以下同じ)、硫安0.30%、リン酸2
カリウム0.70%、リン酸1カリウム0,20%、硫
酸マグネシウム0.05%、硫酸第1鉄0.003%、
硫酸マンガン0.004%、食塩0.01%、塩化カル
シウム0.01%、酵母エキス0.05%、pH7,0
の初発培養液5007を入れ、メタノール資化性微生物
アエロモナス・メタノフイラム(Ae r O:m O
n a smethanophilumR−1014、
微工研歯寄第2808号)を接種した。
Example 1 Having the structure shown in Fig. 4, inner diameter 50CrIL1 height 30
0crrL1 capacity 7007, 5-stage opening ratio 0.55%
A porous separation plate is provided, and a new pipe line is provided to connect the discharge side of the pump T to the discharge side of the pump 10.
1.5% (by volume) of methanol and 0.0% of urea were added to the culture device using a culture device in which the entire discharge amount of 1.5% (volume) was sent to the bottom of the column.
10% (weight, same below), ammonium sulfate 0.30%, phosphoric acid 2
Potassium 0.70%, monopotassium phosphate 0.20%, magnesium sulfate 0.05%, ferrous sulfate 0.003%,
Manganese sulfate 0.004%, salt 0.01%, calcium chloride 0.01%, yeast extract 0.05%, pH 7.0
Add the initial culture solution 5007 of methanol-assimilating microorganism Aeromonas methanophilum (Ae r O: m O
na smethanophilum R-1014,
(Feikoken Toyori No. 2808) was inoculated.

槽底のリング状スパージャ−から通気線速25 Crr
L/Secで空気を通気して培養を開始した。
Ventilation line speed 25 Crr from the ring-shaped sparger at the bottom of the tank
Culture was started by aerating air at L/Sec.

温度は外部に設けた熱交換器で35℃±0.7℃に保ち
、培養液のpHはアンモニアによって6.8±0.2に
維持しつ′>20時間培養を行なった。
The temperature was maintained at 35°C±0.7°C using an external heat exchanger, and the pH of the culture solution was maintained at 6.8±0.2 with ammonia, and the culture was carried out for >20 hours.

メタノールは初発培地には1,5%(容量)を添加した
が、培養が進行するにつれて遂次メタノールを添加し、
培養終了までに6.3%(容量)を添加した。
Methanol was added at 1.5% (volume) to the initial medium, but as the culture progressed, methanol was added successively.
6.3% (volume) was added by the end of the culture.

培養終了液中の苗木濃度は26.89/IJであった。The seedling concentration in the culture solution was 26.89/IJ.

実施例 2 実施例1で用いた培養装置に、糖蜜6%(重量)、尿素
0.15%、硫安0.3%、リン酸1カリウム0.2%
、硫酸マグネシウム0.05%、pH6,0の初発培養
液5001を入れ、トルラ酵母(Cand 1daut
ilis)を接種した。
Example 2 Into the culture apparatus used in Example 1, 6% molasses (by weight), 0.15% urea, 0.3% ammonium sulfate, and 0.2% monopotassium phosphate were added.
, 0.05% magnesium sulfate, pH 6.0 initial culture solution 5001 was added, and Torula yeast (Cand 1dout
ilis) was inoculated.

槽底のリングスパージャ−から通気線速21cm/se
cで空気を通気して培養を開始した。
Linear velocity of ventilation from the ring sparger at the bottom of the tank: 21cm/se
Culture was started by aerating air at step c.

温度は外部に設けた熱交換器で30℃±0.7℃に保ち
、培養液のpHはアンモニアによって5.5±0.2に
維持しつ′>14時間培養を行なったところ、培養終了
液中の菌体濃度は15.4g/13になった。
The temperature was maintained at 30°C ± 0.7°C with an external heat exchanger, and the pH of the culture solution was maintained at 5.5 ± 0.2 with ammonia. After culturing for >14 hours, the culture was completed. The bacterial cell concentration in the liquid was 15.4 g/13.

実施例 3 実施例1と全く同じようにしてメタノール資化性微生物
アエロモナス・メタノフイラムR−1014を16時間
培養し、菌体濃度22.1g/lの培養系を得た。
Example 3 The methanol-assimilating microorganism Aeromonas methanophyllum R-1014 was cultured for 16 hours in exactly the same manner as in Example 1 to obtain a culture system with a bacterial cell concentration of 22.1 g/l.

これにメタノール5.0%(容量)、硫安0.1%(重
量、以下同じ)、リン酸2カリウム0.70%、リン酸
1カリウム0.20%、硫酸マグネシウム0.05%、
硫酸第1鉄0.003%、硫酸マンガン0.004%、
食塩o、oi%、塩化カルシウム0.01%、酵母エキ
ス0.05%、pH7,0の連続供給培地を塔上部より
連続的に供給し、塔底部より培養液を流出させた。
To this, methanol 5.0% (volume), ammonium sulfate 0.1% (weight, same below), dipotassium phosphate 0.70%, monopotassium phosphate 0.20%, magnesium sulfate 0.05%,
Ferrous sulfate 0.003%, manganese sulfate 0.004%,
A continuous supply medium containing O.O.I.% sodium chloride, 0.01% calcium chloride, 0.05% yeast extract, and pH 7.0 was continuously supplied from the top of the tower, and the culture solution was allowed to flow out from the bottom of the tower.

供給培地の平均滞留時間は5時間に設定して連続培養を
継続したところ、連続培養開始後15時間目ごろより、
菌濃度21±0.69/73の安定した培養液が流出し
、以降10日間にわたり安定した培養であった。
When continuous culture was continued with the average residence time of the supply medium set to 5 hours, from around 15 hours after the start of continuous culture,
A stable culture solution with a bacterial concentration of 21±0.69/73 was flowed out, and the culture remained stable for 10 days thereafter.

実施例 4 実施例3をそのま\継続し、ポンプ7の吐出側とポンプ
10の吐出側を接続する管路を閉じ、本発明に示すよう
に、一つの培養槽において異なった菌体濃度をもつ部分
を二つ形成できるようにした。
Example 4 Example 3 was continued as it was, the pipe connecting the discharge side of pump 7 and the discharge side of pump 10 was closed, and as shown in the present invention, different bacterial cell concentrations were obtained in one culture tank. It is now possible to form two parts.

供給培地はメタノール濃度を2.5%(容量)に変更し
、他の濃度は実施例3と同じとして、塔頂部より連続的
に供給し、その平均滞留時間が6時間になるように設定
した。
The feeding medium was set so that the methanol concentration was changed to 2.5% (volume) and the other concentrations were the same as in Example 3, and the medium was continuously fed from the top of the column, and the average residence time was 6 hours. .

さらに塔底部には純メタノールを毎分14.!i2の流
量で供給した。
Furthermore, pure methanol is fed to the bottom of the column at a rate of 14% per minute. ! It was supplied at a flow rate of i2.

培養液のpHと温度は、実施例3と同じ方法により同じ
値に維持したが、塔頂部と塔底部は分離しているので別
々に制御した。
The pH and temperature of the culture solution were maintained at the same values by the same method as in Example 3, but the top and bottom of the column were separated and therefore controlled separately.

このようにして連続培養を継続したところ、20時間目
ごろより塔頂部および塔底部の菌濃度は、それぞれ11
±0.5fl/11および25±1.0g/lに安定し
、本培養装置より菌濃度が25±Log/13の安定し
た培養液が流出した。
When continuous culture was continued in this way, from around 20 hours onwards, the bacterial concentrations at the top and bottom of the tower decreased to 11.
The bacteria concentration stabilized at ±0.5fl/11 and 25±1.0g/l, and a stable culture solution with a bacterial concentration of 25±Log/13 flowed out from the main culture device.

以降7日間連続培養を継続したが、その間培養は安定し
ていた。
Continuous culture was continued for 7 days after that, and the culture remained stable during that time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の通気撹拌槽の説明図、第2図は従来の通
気のみによる単純な気泡塔式培養槽の説明図、第3図は
従来の多孔板を設けた気泡塔式培養槽の説明図、第4図
は本発明の実施の一例を示す装置の側面図゛、第5図は
多孔質分離板の平面図である。 1・・・・・・培養槽本体、2・・・・・・多孔質分離
板、3・・・・・・連通管、4・・・・・・孔、5,8
・・・・・・気液分離器、11・・・・・・通気設備、
12・・・・・・培地の供給管、16・・・・・・通気
管、17,18,19,20,21 。 22・・・・・・管路。
Figure 1 is an explanatory diagram of a conventional aeration stirring tank, Figure 2 is an explanatory diagram of a conventional simple bubble column culture tank with only aeration, and Figure 3 is an illustration of a conventional bubble column culture tank equipped with a perforated plate. FIG. 4 is a side view of an apparatus showing an example of the implementation of the present invention, and FIG. 5 is a plan view of a porous separator plate. 1... Culture tank body, 2... Porous separation plate, 3... Communication pipe, 4... Hole, 5, 8
...gas-liquid separator, 11...ventilation equipment,
12... Culture medium supply pipe, 16... Ventilation pipe, 17, 18, 19, 20, 21. 22... Conduit.

Claims (1)

【特許請求の範囲】 1 一つの培養槽において異なった菌体濃度をもつ部分
を二つ以上形成させ、その最上部に培地を供給し、その
最下部に酸素を含む気体を供給して両者を向流接触せし
め、培養槽内にあらかじめ混入された微生物を好気的に
培養することを特徴とする連続式発酵方法。 2 培養液を通過させるための連通管と酸素を含む気体
を高速度で通過させる孔とを有する分離板を数段に配設
し、上下方向に二つ以上の空間を形成した培養槽の最上
部に培地の供給管を設け、また最下部に酸素を含む気体
の供給管を設けて戎る発酵装置。 3 培養液を通過させるための連通管と酸素を含む気体
を高速度で通過させる孔とを有する分離板を数段に配設
し、上下方向に二つ以上の空間を形成した培養槽の最上
部に培地の供給管を設け、また最下部に酸素を含む気体
の供給管を設け、さらに培養槽外側に二つの空間あるい
はこれらの空間の間にある空間の培養液を循環せしめる
管路を形成して成る発酵装置。
[Scope of Claims] 1. Two or more parts with different bacterial cell concentrations are formed in one culture tank, and a culture medium is supplied to the top of the tank, and a gas containing oxygen is supplied to the bottom of the tank to separate both parts. A continuous fermentation method characterized by countercurrent contact and aerobic cultivation of microorganisms mixed in advance in a culture tank. 2. The topmost part of a culture tank, which has several stages of separation plates having communication pipes for passing the culture solution and holes for passing oxygen-containing gas at high speed, and two or more spaces in the vertical direction. A fermentation device with a culture medium supply pipe at the top and an oxygen-containing gas supply pipe at the bottom. 3. The topmost part of a culture tank that is equipped with several stages of separation plates having communication pipes for passing the culture solution and holes for passing oxygen-containing gas at high speed, and forming two or more spaces in the vertical direction. A culture medium supply pipe is provided at the top, a gas supply pipe containing oxygen is provided at the bottom, and a pipe is formed outside the culture tank to circulate the culture medium between the two spaces or the space between these spaces. A fermentation device made of
JP7037476A 1976-06-17 1976-06-17 Fermentation method and fermentation equipment Expired JPS5830030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7037476A JPS5830030B2 (en) 1976-06-17 1976-06-17 Fermentation method and fermentation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7037476A JPS5830030B2 (en) 1976-06-17 1976-06-17 Fermentation method and fermentation equipment

Publications (2)

Publication Number Publication Date
JPS52154583A JPS52154583A (en) 1977-12-22
JPS5830030B2 true JPS5830030B2 (en) 1983-06-27

Family

ID=13429591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7037476A Expired JPS5830030B2 (en) 1976-06-17 1976-06-17 Fermentation method and fermentation equipment

Country Status (1)

Country Link
JP (1) JPS5830030B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220225A (en) * 1984-04-17 1985-11-02 Ntn Toyo Bearing Co Ltd Isochronous universal joint
JPH033807B2 (en) * 1983-03-24 1991-01-21 Toyota Motor Co Ltd

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583053B2 (en) * 1979-05-11 1983-01-19 株式会社豊田自動織機製作所 How to stop and start an open-end spinning machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033807B2 (en) * 1983-03-24 1991-01-21 Toyota Motor Co Ltd
JPS60220225A (en) * 1984-04-17 1985-11-02 Ntn Toyo Bearing Co Ltd Isochronous universal joint

Also Published As

Publication number Publication date
JPS52154583A (en) 1977-12-22

Similar Documents

Publication Publication Date Title
JPS62186783A (en) Fermentation apparatus
US3910826A (en) Cultivation apparatus for micro-organisms
RU2607782C1 (en) Bioreactor for growing methane-recycling microorganisms
US3743582A (en) Method of fermentation utilizing a multi-stage fermenting device
RU2580646C1 (en) Fermentation apparatus for methane-assimilating microorganisms
US4036699A (en) Fermentation apparatus and method
CN105600927A (en) Wastewater simultaneous nitrification and denitrification denitrifying method and device
US3969190A (en) Apparatus and method for microbial fermentation in a zero gravity environment
CN106434284A (en) Modular microalgae culture system with rapid algal species expanding culture device
SU967278A3 (en) Method and apparatus for contacting gas and liquid
US3984286A (en) Apparatus and method for conducting fermentation
RU2728193C1 (en) Fermenter and fermentation unit for continuous cultivation of microorganisms
CN103215179A (en) Internal-circulation airlift type reactor adopting membrane tube aeration
JPS5830030B2 (en) Fermentation method and fermentation equipment
CN217921629U (en) Quick-separating sewage treatment system
US3705841A (en) Fermentation processes and apparatus
RU2743581C1 (en) Fermentation plant for cultivation of methane-oxidizing bacteria methylococcus capsulatus
US3801468A (en) Fermentation apparatus
Faust et al. Methanol as carbon source for biomass production in a loop reactor
CN207313242U (en) A kind of split reflux declines oxygen denitrification reactor
RU2585666C1 (en) Device for cultivation of methane-oxidising microorganisms
US4808534A (en) Method and apparatus for the microbiological production of single-cell protein
CN106630152B (en) Intermittent integrated denitrification reactor
CN103224876A (en) Stirring reactor adopting film tube aeration
CN208684537U (en) The processing unit of sewage