JPS582971B2 - Shinkiyo Ion Kokanmaku Oyobi Sonoseizouhouhou - Google Patents

Shinkiyo Ion Kokanmaku Oyobi Sonoseizouhouhou

Info

Publication number
JPS582971B2
JPS582971B2 JP50085243A JP8524375A JPS582971B2 JP S582971 B2 JPS582971 B2 JP S582971B2 JP 50085243 A JP50085243 A JP 50085243A JP 8524375 A JP8524375 A JP 8524375A JP S582971 B2 JPS582971 B2 JP S582971B2
Authority
JP
Japan
Prior art keywords
exchange membrane
acid
membrane
ion
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50085243A
Other languages
Japanese (ja)
Other versions
JPS528997A (en
Inventor
阪上輝夫
村山直広
福田誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP50085243A priority Critical patent/JPS582971B2/en
Priority to SE7603539A priority patent/SE7603539L/en
Priority to GB11883/76A priority patent/GB1534359A/en
Priority to CA248,845A priority patent/CA1084874A/en
Priority to DE19762614058 priority patent/DE2614058C2/en
Priority to IT48797/76A priority patent/IT1057469B/en
Priority to FR7609347A priority patent/FR2306010A1/en
Publication of JPS528997A publication Critical patent/JPS528997A/en
Publication of JPS582971B2 publication Critical patent/JPS582971B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は陽イオン交換膜に不溶性の無機イオン交換体が
含有された新規なイオン交換膜及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel ion exchange membrane in which an insoluble inorganic ion exchanger is contained in a cation exchange membrane, and a method for producing the same.

イオン交換膜は、海水の淡水化、食塩の濃縮の如き電気
透析や各種塩類の電解等に用いられ、その工業的利用は
目を見張るものがある。
Ion-exchange membranes are used for desalination of seawater, electrodialysis such as concentration of common salt, electrolysis of various salts, etc., and their industrial applications are remarkable.

しかしながら、イオン交換膜として必要な選択透過性、
機械的強度、耐薬品性、電気抵抗の低いこと等の諸性質
を充分に兼ね備えることは容易なことではない。
However, the permselectivity required for an ion exchange membrane,
It is not easy to have sufficient properties such as mechanical strength, chemical resistance, and low electrical resistance.

従来イオン交換膜としては、例えばジビニルベンゼンー
アクリル酸コポリマー、ポリエチレン、ジビニルベンゼ
ンースチレンコポリマー、ポリビニルフルオルカーボン
エーテル等の高度に架橋結合した重合体の骨格上に、陽
イオン交換基として公知のスルホン酸、カルボン酸、リ
ン酸、亜リン酸、フェノール性水酸基、硫酸エステル、
リン酸エステル、チオール等を有する重合型膜、縮台型
膜が知られている。
Conventional ion-exchange membranes include, for example, divinylbenzene-acrylic acid copolymer, polyethylene, divinylbenzene-styrene copolymer, polyvinylfluorocarbon ether, and other highly crosslinked polymer skeletons, on which well-known sulfones are added as cation exchange groups. Acid, carboxylic acid, phosphoric acid, phosphorous acid, phenolic hydroxyl group, sulfuric acid ester,
Polymerization type membranes and condensation type membranes containing phosphoric acid esters, thiols, etc. are known.

又製造方法から分類すると含浸膜、インターポリマー膜
または塗布法、切削法による膜等が知られている。
Furthermore, classified according to the manufacturing method, impregnated films, interpolymer films, coating methods, cutting methods, etc. are known.

これ等の膜はそれぞれ目的に応じた種々の特性を有して
いるが、イオン交換膜が具備すべき全ての性質を満足す
ることは容易ではない。
These membranes each have various properties depending on their purpose, but it is not easy to satisfy all the properties that an ion exchange membrane should have.

特に、イオン交換膜に不町欠な異符号イオンの選択透過
性を向上させることは簡単ではない。
In particular, it is not easy to improve the selective permselectivity of ions of the opposite sign, which are lacking in ion exchange membranes.

通常陽イオン交換膜の、陰陽イオンの選択透過性を増す
手段として、膜内の固定陰イオン濃度を上昇させること
が知られている。
It is known that one way to increase the selective permeability of anions and cations in a cation exchange membrane is to increase the concentration of fixed anions within the membrane.

しかしながら、単に固定イオンを導入しても、それに伴
って膜の親水性も通常上昇し、水を多量含むことによっ
て、膜内の実質的な固定イオン濃度を上げることは容易
ではない。
However, even if fixed ions are simply introduced, the hydrophilicity of the membrane usually increases accordingly, and it is not easy to increase the substantial fixed ion concentration within the membrane by containing a large amount of water.

この水に対する膨潤性を改良するために、架橋結合を膜
母体重合体に高度に導入する工夫もなされているが、水
膨潤時の機械的強度が弱く、電気抵抗も大きくなり問題
が多い。
In order to improve this water swelling property, efforts have been made to introduce a high degree of cross-linking into the membrane matrix polymer, but this has many problems as the mechanical strength when swollen with water is weak and the electrical resistance is high.

本発明者等は、膜内の固定イオン濃度を上昇させる研究
を続けてきた結果、陽イオン交換膜に不溶性の無機イオ
ン交換体を含有させることによって、実質的な膜内の固
定陰イオン濃度を上昇させ、異符号イオンの選択透過性
(電流効率)を向上させ得て本発明に到った。
As a result of continuing research on increasing the fixed ion concentration within the membrane, the present inventors have found that by incorporating an insoluble inorganic ion exchanger into the cation exchange membrane, the substantial fixed anion concentration within the membrane can be increased. The present invention has been achieved by increasing the selective permeability (current efficiency) for ions of the opposite sign.

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明の特徴は、第一に陽イオン交換膜を高度に架橋結
合することなく、交換基濃度を増大させる点にある。
The first feature of the present invention is that the concentration of exchange groups is increased without highly cross-linking the cation exchange membrane.

即ち、陽イオン交換膜の内部に実質的に水に不溶性の通
常イオン交換膜よりも交換容量の大きな多塩基酸塩無機
イオン交換体を導入し、陽イオン交換膜の水に対する膨
潤部分の空間を埋めることを意味する。
That is, a polybasic acid salt inorganic ion exchanger having a larger exchange capacity than a normal ion exchange membrane that is substantially insoluble in water is introduced inside the cation exchange membrane, and the space of the swellable portion of the cation exchange membrane with respect to water is filled. means to fill.

第二は、導入された物質が、交換容量の大きな親水性の
イオン交換体であるので、導入された膜の電気抵抗は元
のそれより極度に増加することがない点である。
Second, since the introduced substance is a hydrophilic ion exchanger with a large exchange capacity, the electrical resistance of the introduced membrane does not increase significantly compared to the original one.

第三は、陽イオン交換膜に多塩基酸塩無機イオン交換体
を導入する際、不溶性の乾燥固化した交換体の導入は困
難なので、膜内で多塩基酸塩ゲルを作成し、後に乾燥さ
せる点である。
Third, when introducing a polybasic acid salt inorganic ion exchanger into a cation exchange membrane, it is difficult to introduce an insoluble dry solidified exchanger, so a polybasic salt gel is created within the membrane and then dried. It is a point.

本発明に用いる陽イオン交換膜の素材は、例えば上述の
ジビニルベンゼンーアクリル酸コポリマー、ポリエチレ
ン、ジビニルベンゼン−スチレンコポリマー、ポリビニ
ルフルオルカーボンエーテルコポリマー、ポリフツ化ビ
ニリテン、フツ化ビニリデン−テトラフルオルエチレン
コポリマー、フン化ビニリデンーテトラフルオルエチレ
ン−トリフロロモノクロロエチレン共重合体等が挙げら
れる。
Examples of materials for the cation exchange membrane used in the present invention include the above-mentioned divinylbenzene-acrylic acid copolymer, polyethylene, divinylbenzene-styrene copolymer, polyvinylfluorocarbon ether copolymer, polyvinylidene fluoride, and vinylidene fluoride-tetrafluoroethylene copolymer. , vinylidene fluoride-tetrafluoroethylene-trifluoromonochloroethylene copolymer, and the like.

これ等イオン交換膜は、一般に耐酸、耐アルカリ性を有
しているが,例えば、更に一層優れた耐酸、耐アルカリ
性が要求される場合があり、この様な特に耐薬品性に優
れたイオン交換膜として、E.I.デュポン社にて製造
販売されている商標名NAFION(パーフルオルスル
ホン酸)膜は、特に好ましいものである。
These ion exchange membranes generally have acid and alkali resistance, but there are cases where even better acid and alkali resistance is required, and such ion exchange membranes with particularly excellent chemical resistance are used. As E. I. Particularly preferred is the NAFION (perfluorosulfonic acid) membrane manufactured and sold by DuPont.

該膜は、下式の循環構造単位を有し、ペンダント型のス
ルホン酸基を有するフッ素化コポリマーからなる。
The membrane consists of a fluorinated copolymer with pendant sulfonic acid groups having cyclic structural units of the formula:

ここにRは−(OCR4R5−CR6R7)−mなる単
位を表わし、R1、R2、R3、R4、R5、R6およ
びR7はフッ素または炭素数1〜10個のパーフルオル
アルキル基、Yは炭素数1〜10個のパーフルオルアル
キレン基、m=O、1、2または3、n=oまたは1、
p=oまたは1、Xはフッ素、塩素、水素またはCF3
(CF2)Z,X1はCF3(CF2)zであり、2は
Oまたは1〜5の整数である。
Here, R represents the unit -(OCR4R5-CR6R7)-m, R1, R2, R3, R4, R5, R6 and R7 are fluorine or a perfluoroalkyl group having 1 to 10 carbon atoms, and Y is a carbon number 1 to 10 perfluoroalkylene groups, m=O, 1, 2 or 3, n=o or 1,
p=o or 1, X is fluorine, chlorine, hydrogen or CF3
(CF2)Z, X1 is CF3(CF2)z, and 2 is O or an integer from 1 to 5.

これ等のホモポリマー乃至は共重合体の骨格上に陽イオ
ン交換基が導入されたイオン交換膜に含有させる無機イ
オン交換体としては、耐薬品性、特に酸、アルカリに対
して容易に溶出しないことが好ましい。
The inorganic ion exchanger contained in the ion exchange membrane, which has a cation exchange group introduced into the skeleton of these homopolymers or copolymers, has chemical resistance, especially that it does not easily dissolve against acids and alkalis. It is preferable.

その意味から導入される無機イオン交換体としては、不
溶性の多塩基酸塩が好ましく、例えばリン酸、モリブデ
ン酸、タングステン酸等とチタン、トリウム、セリウム
、スズ等の金属塩が挙げられる。
In this sense, the inorganic ion exchanger introduced is preferably an insoluble polybasic acid salt, such as phosphoric acid, molybdic acid, tungstic acid, etc., and metal salts such as titanium, thorium, cerium, tin, etc.

これ等の塩は必らずしも化学量論的な組成を有している
とは限らないが、構造は金属酸化物ポリマー骨格のまわ
りに多塩基酸基が結合していると考えられている。
These salts do not necessarily have stoichiometric compositions, but their structure is thought to be that polybasic acid groups are bonded around a metal oxide polymer skeleton. There is.

本発明で用いる塩も酸基と金属との比率は特に限定され
ない。
The ratio of acid group to metal in the salt used in the present invention is not particularly limited.

陽イオン交換膜の表面乃至は内部への多塩基酸塩の導入
は、通常乾燥固化した多塩基酸塩のままでは困難なので
、交換膜中で多塩基酸塩ゲルを作成し乾燥する方法がと
られる。
Generally, it is difficult to introduce a polybasic acid salt into the surface or inside of a cation exchange membrane using a dry solidified polybasic acid salt, so a method is to create a polybasic acid salt gel in the exchange membrane and dry it. It will be done.

通常交換膜にリン酸、モリブデン酸、タングステン酸よ
り選ばれた多塩基酸及びこれ等のり溶件の塩溶液を塗布
もしくは含浸させ、後チタン、トリウム、セリウム、ス
ズより選ばれた町溶性の金属塩溶液と接触させる方法が
とられる。
Usually, the exchange membrane is coated or impregnated with a polybasic acid selected from phosphoric acid, molybdic acid, and tungstic acid, and a salt solution of these adhesives, and then a soluble metal selected from titanium, thorium, cerium, and tin is applied. A method of contacting with a salt solution is used.

また場合によっては不溶性の多塩基酸塩ゲルを予め作成
しておき、これをイオン交換膜に塗布するか、またはイ
オン交換膜を該ゲル中に浸漬することもできる。
In some cases, an insoluble polybasic acid salt gel may be prepared in advance and applied to the ion exchange membrane, or the ion exchange membrane may be immersed in the gel.

しかし、陽イオン交換膜表面もしくは内部でゲルを生成
させる方法の方が均一に含有されるので好ましい。
However, a method in which a gel is generated on or inside the cation exchange membrane is preferable because the gel is contained uniformly.

この様にしてイオン交換膜中に導入された不溶性の多塩
基酸塩ゲルは乾燥される。
The insoluble polybasic acid salt gel thus introduced into the ion exchange membrane is dried.

通常、高温で乾燥する程薬品に対しても、機械強度的に
も安定な塩が得られるが、イオン交換体としての交換容
量は減少する傾向を持つ。
Normally, the higher the drying temperature, the more stable the salt is against chemicals and mechanical strength, but the exchange capacity as an ion exchanger tends to decrease.

それ故、通常乾燥温度は30℃から200℃程度が適当
である。
Therefore, the appropriate drying temperature is usually about 30°C to 200°C.

陽イオン交換膜中に導入される多塩基酸塩無機イオン交
換体の量は、通常金属単位で、陽イオン交換膜100重
量部に対し、0.01乃至20重量部、好ましくは0.
1〜5重量部が用いられる。
The amount of the polybasic acid salt inorganic ion exchanger introduced into the cation exchange membrane is usually 0.01 to 20 parts by weight, preferably 0.01 to 20 parts by weight, per 100 parts by weight of the cation exchange membrane, in metal units.
1 to 5 parts by weight are used.

0.01重量部以下であると導入の目的である交換容量
の増量は望めない。
If it is less than 0.01 parts by weight, it is impossible to increase the exchange capacity, which is the purpose of introduction.

また20重量部以上であると、用いるイオン交換膜の種
類によっては、機械的強度の弱い膜になるばかりでなく
、電気抵抗が増大し、実用に向かない。
Moreover, if the amount is 20 parts by weight or more, depending on the type of ion exchange membrane used, not only will the membrane have weak mechanical strength, but also the electrical resistance will increase, making it unsuitable for practical use.

以上の方法により陽イオン交換膜内部もしくは表面に多
塩基酸塩無機イオン交換体を導入した本発明になる陽イ
オン交換膜は、交換体導入前の陽イオン交換膜に比べ、
含水率が減少するだけでなく、含有する水1g当りの交
換容量即ち膜内固定イオン濃度が増大し、電気抵抗も特
に大きく増大することもない極めて有用な膜である。
The cation exchange membrane of the present invention, in which a polybasic acid salt inorganic ion exchanger is introduced into the interior or surface of the cation exchange membrane by the above method, has a lower cation exchange membrane than the cation exchange membrane before introduction of the exchanger.
It is an extremely useful membrane that not only has a reduced water content, but also an increased exchange capacity per gram of water contained, that is, the concentration of fixed ions within the membrane, and does not have a particularly large increase in electrical resistance.

以下、本発明を実施例によって説明する。Hereinafter, the present invention will be explained by examples.

実施例I E,I,デュポン社製NAFION315膜を24%硫
酸チタン水溶液に浸漬し、10分間煮沸させた後、この
膜を120℃の85%リン酸中に投入し30分間保った
後、よく水洗後110℃で6時間乾燥させた。
Example I A NAFION 315 membrane manufactured by DuPont was immersed in a 24% titanium sulfate aqueous solution and boiled for 10 minutes.The membrane was then placed in 85% phosphoric acid at 120°C and kept for 30 minutes. After washing with water, it was dried at 110°C for 6 hours.

リン酸チタンの導入量は、秤量の結果約2重量%である
The amount of titanium phosphate introduced was approximately 2% by weight as a result of weighing.

チタンとしてイオン交換膜100重量部に対して0.5
6重量部に相当する。
0.5 as titanium per 100 parts by weight of ion exchange membrane
This corresponds to 6 parts by weight.

この膜を用いて食塩電解を行った。Salt electrolysis was performed using this membrane.

結果を第1表に示す。比較例としてリン酸チタン処理を
施していないNAFION315膜を同じ電解条件で通
電したところ、6規定NaOHにおける電流効率は、8
4%であった。
The results are shown in Table 1. As a comparative example, when a NAFION 315 membrane without titanium phosphate treatment was energized under the same electrolytic conditions, the current efficiency at 6N NaOH was 8.
It was 4%.

リン酸チタン処理膜が高い電流効率を維持する膜である
ことが判る。
It can be seen that the titanium phosphate treated film maintains high current efficiency.

実施例2 E.I,デュポン社製陽イオン交換膜NAFION11
0を硫酸第二セリウムCe(SO4)2・4H2010
gを脱イオン水100CCに溶解させた水溶液中に浸漬
させ、30分間煮沸させた。
Example 2 E. I, DuPont cation exchange membrane NAFION11
0 as ceric sulfate Ce(SO4)2.4H2010
g was immersed in an aqueous solution of 100 cc of deionized water and boiled for 30 minutes.

この硫酸第二セリウムを含有したNAFION110を
100℃の30%モリブデン酸ソーダ水溶液に30分間
浸し、モリブテン酸セリウムを導入した。
NAFION 110 containing this ceric sulfate was immersed in a 30% sodium molybdate aqueous solution at 100° C. for 30 minutes to introduce cerium molybdate.

膜内に白いモリブテン酸セリウムが沈着するのが判る。It can be seen that white cerium molybutate is deposited within the film.

この膜を水洗後110℃で2時間乾燥させた。This membrane was washed with water and then dried at 110°C for 2 hours.

モリブテン酸セリウムの導入量は秤量の結果1.8%で
あった。
The amount of cerium molybutate introduced was 1.8% as a result of weighing.

これはセリウムとしてイオン交換膜100重量部に対し
て0.56重量部に相当する。
This corresponds to 0.56 parts by weight of cerium per 100 parts by weight of the ion exchange membrane.

また膜内固定イオン濃度(CR)は2.9meq/gH
20と、モリブデン酸セリウム処理を施していないNA
FION110未処理膜と比較し、約13%増加してい
た。
In addition, the fixed ion concentration (CR) in the membrane is 2.9 meq/gH.
20 and NA without cerium molybdate treatment
It was increased by about 13% compared to the FION110 untreated membrane.

尚、CR測定時の含水率は、100℃で1時間熱水処理
後の値を採用した。
Note that the water content at the time of CR measurement was the value after hot water treatment at 100° C. for 1 hour.

実施例3 スチレン重合容器内に平滑ガラス板、および補強剤とし
てのテフロンメッシュを交互にサンドインチ状に置き、
ガラス板の間にスチレン65重量部、ジビニルベンゼン
35重量部、重合開始剤としてペンゾイルパーオキサイ
ト1重量部から113モノマー混液を入れ、窒素置換後
60℃で16時間重合を行わせた。
Example 3 Smooth glass plates and Teflon mesh as a reinforcing agent were alternately placed in a sandwich shape in a styrene polymerization container.
65 parts by weight of styrene, 35 parts by weight of divinylbenzene, and a mixture of 1 to 113 monomers of 1 part by weight of penzoyl peroxide as a polymerization initiator were placed between glass plates, and after the atmosphere was replaced with nitrogen, polymerization was carried out at 60° C. for 16 hours.

更にこれを80℃に昇温し、3時間保った後、取り出し
たスチレンージビニルベンゼン膜をエチレンジクロリド
に室温で3時間浸漬させ、膨潤させてから98%濃硫酸
中に40℃で60時間浸し、スルフオン化を行い陽イオ
ン交換膜を得た。
The temperature was further raised to 80°C and maintained for 3 hours, and then the taken out styrene-divinylbenzene membrane was immersed in ethylene dichloride at room temperature for 3 hours, allowed to swell, and then immersed in 98% concentrated sulfuric acid at 40°C for 60 hours. Then, sulfonation was performed to obtain a cation exchange membrane.

この膜の60℃における膜内固定イオン濃度(CR)は
3. 2 meq/gH20であった。
The fixed ion concentration (CR) of this membrane at 60°C is 3. It was 2 meq/gH20.

この膜を30%のモリブテン酸ソーダ水溶液に入れ30
分間煮沸後、100℃のIN塩酸に飽和させた塩化第二
スズ(SnCl4・5H20)水溶液中に30分間浸し
、モリブデン酸スズを導入した。
This membrane was placed in a 30% sodium molybutate aqueous solution for 30 minutes.
After boiling for a minute, it was immersed for 30 minutes in an aqueous solution of stannic chloride (SnCl4.5H20) saturated with IN hydrochloric acid at 100°C, and tin molybdate was introduced.

秤量の結果、導入されたモリブデン酸スズは約0.9%
であった。
As a result of weighing, the introduced tin molybdate was approximately 0.9%.
Met.

これはスズとしてイオン交換膜100重量部に対して0
.14重量部に相当する、膜内に淡黄色にモリブデン酸
スズが沈着するのが判る。
This is 0 parts per 100 parts by weight of the ion exchange membrane as tin.
.. It can be seen that tin molybdate corresponding to 14 parts by weight was deposited in the film in a pale yellow color.

この膜の60℃における膜内固定イオン濃度は、3.6
meq/gH20と、モリブデン酸スズ導入前に比べ増
加していることが理解される。
The fixed ion concentration within the membrane at 60°C is 3.6
It is understood that meq/gH20 has increased compared to before the introduction of tin molybdate.

Claims (1)

【特許請求の範囲】 1 陽イオン交換膜の表面乃至は内部に、チタン、トリ
ウム、セリウム、スズから選ばれた金属のリン酸乃至は
モリブデン酸、タングステン酸からなる多塩基酸塩無機
イオン交換体を、陽イオン交換膜100重量部に対し、
金属単位で0.01乃至20重量部含有したイオン交換
膜。 2 上記イオン交換膜を製造するにあたり、陽イオン交
換膜忙リン酸、モリブデン酸、タングステン酸より選ば
れた多塩基酸及びこれ等の可溶性塩溶液を塗布もしくは
含浸後、チタン、トリウム、セリウム、スズより選ばれ
た可溶性の金属塩溶液と接触させるか、逆に該金属塩溶
液を先に塗布もしくは含没後、該多塩基酸及びこれ等の
可溶性塩溶液と接触させることを特徴とするイオン交換
膜の製造方法。
[Claims] 1. A polybasic acid salt inorganic ion exchanger consisting of phosphoric acid, molybdic acid, or tungstic acid of a metal selected from titanium, thorium, cerium, and tin is provided on the surface or inside of the cation exchange membrane. , for 100 parts by weight of the cation exchange membrane,
An ion exchange membrane containing 0.01 to 20 parts by weight of metal units. 2. In manufacturing the above ion exchange membrane, the cation exchange membrane is coated or impregnated with a polybasic acid selected from phosphoric acid, molybdic acid, and tungstic acid, and a soluble salt solution thereof, and then titanium, thorium, cerium, and tin are added. An ion exchange membrane characterized in that it is brought into contact with a solution of a soluble metal salt selected from the above, or, conversely, it is first applied or impregnated with the metal salt solution and then brought into contact with a solution of the polybasic acid and a soluble salt thereof. manufacturing method.
JP50085243A 1975-03-31 1975-07-14 Shinkiyo Ion Kokanmaku Oyobi Sonoseizouhouhou Expired JPS582971B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP50085243A JPS582971B2 (en) 1975-07-14 1975-07-14 Shinkiyo Ion Kokanmaku Oyobi Sonoseizouhouhou
SE7603539A SE7603539L (en) 1975-03-31 1976-03-23 CATHION CHANGE MEMBRANE
GB11883/76A GB1534359A (en) 1975-03-31 1976-03-24 Cation-exchange element
CA248,845A CA1084874A (en) 1975-03-31 1976-03-25 Cation-exchanging membrane
DE19762614058 DE2614058C2 (en) 1975-03-31 1976-03-30 Cation exchange membrane
IT48797/76A IT1057469B (en) 1975-03-31 1976-03-31 CATIONI EXCHANGER MEMBRANE
FR7609347A FR2306010A1 (en) 1975-03-31 1976-03-31 CATIONIC EXCHANGE MEMBRANE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50085243A JPS582971B2 (en) 1975-07-14 1975-07-14 Shinkiyo Ion Kokanmaku Oyobi Sonoseizouhouhou

Publications (2)

Publication Number Publication Date
JPS528997A JPS528997A (en) 1977-01-24
JPS582971B2 true JPS582971B2 (en) 1983-01-19

Family

ID=13853112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50085243A Expired JPS582971B2 (en) 1975-03-31 1975-07-14 Shinkiyo Ion Kokanmaku Oyobi Sonoseizouhouhou

Country Status (1)

Country Link
JP (1) JPS582971B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105012A (en) * 1981-12-17 1983-06-22 Nec Corp Magnetic scale and manufacture thereof
JPS58179312A (en) * 1982-04-15 1983-10-20 Nec Corp Magnetic scale and its production
IT1154308B (en) * 1982-05-17 1987-01-21 Consiglio Nazionale Ricerche INORGANIC ION EXCHANGE FILMS CONSISTING OF INSOLUBLE ACID SALTS OF TETRAVALENT METALS WITH A LAYER STRUCTURE AND / OR THEIR DERIVATIVES AND RELATED PREPARATION PROCEDURE
JPS59109812A (en) * 1982-12-16 1984-06-25 Nec Corp Magnetic scale and its production
US7943249B2 (en) * 2004-06-22 2011-05-17 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells

Also Published As

Publication number Publication date
JPS528997A (en) 1977-01-24

Similar Documents

Publication Publication Date Title
US3546142A (en) Polyelectrolyte structures
DE2560187C2 (en) Electrolytic diaphragm
JPS6031860B2 (en) Single-film high-performance amphoteric membrane and its manufacturing method
US4246090A (en) Novel cationic membranes
US4073752A (en) High normality ion exchange membranes containing entrapped electrostatically bulky multicharged ions and method of production
CA1084874A (en) Cation-exchanging membrane
US2957206A (en) Production of ion selective permeable membrane and composition therefor
JPS5833886B2 (en) Cation exchange membrane and its manufacturing method
JPS582971B2 (en) Shinkiyo Ion Kokanmaku Oyobi Sonoseizouhouhou
KR101726658B1 (en) Vinylbenzene-styrene based anion exchange composite membranes with nitrile rubber and method for preparing the same
KR101888935B1 (en) Crosslinked cation exchange resin (CER)/ cation exchange polymer composite membrane by radiation and fabrication thereof
JPS6031862B2 (en) Manufacturing method of cation exchange membrane
US4148979A (en) Method of improving characteristics of cation-exchange membrane by swelling in water miscible organic solvent
JPS609053B2 (en) Manufacturing method of cation exchange membrane
KR101799996B1 (en) Styrene-based and tert-butylstyrene-based cation exchange composite membrane having polyvinylidene fluoride and method of preparing thereof
KR100447949B1 (en) Preparation of PVC/Polystyren base cation-exchange membrane
KR101681637B1 (en) Styrene-tert-butyl styrene based cation exchange composite membranes with nitrile rubber and method for preparing the same
US3770666A (en) Vinyl alcohol copolymer ion exchange membranes
US3723273A (en) Electrodialytic production of stannic oxide sol
JPH06145379A (en) Bipolar membrane
JPS54106088A (en) Production of improved cation exchange membrane
US3560424A (en) Shrink-proofing process
JPS609052B2 (en) Method for manufacturing cation exchanger
KR20040013627A (en) Preparation method of Polyethylene/Polystyrene cation-exchange membrane
JPS59258B2 (en) Method for producing perfluorocarbon cation exchanger