JPS5829684B2 - Electric vehicle control system - Google Patents

Electric vehicle control system

Info

Publication number
JPS5829684B2
JPS5829684B2 JP52015832A JP1583277A JPS5829684B2 JP S5829684 B2 JPS5829684 B2 JP S5829684B2 JP 52015832 A JP52015832 A JP 52015832A JP 1583277 A JP1583277 A JP 1583277A JP S5829684 B2 JPS5829684 B2 JP S5829684B2
Authority
JP
Japan
Prior art keywords
electric
motor
field winding
field
chopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52015832A
Other languages
Japanese (ja)
Other versions
JPS53100422A (en
Inventor
昌司 成戸
幹雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP52015832A priority Critical patent/JPS5829684B2/en
Publication of JPS53100422A publication Critical patent/JPS53100422A/en
Publication of JPS5829684B2 publication Critical patent/JPS5829684B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Description

【発明の詳細な説明】 この発明は直流電動機で駆動される電気車のフレーキ時
の予備励磁電流の供給方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for supplying preliminary excitation current during flaking of an electric vehicle driven by a DC motor.

最近、電気車の消費電力量の低減、保守省力化が強く要
望され半導体技術の進歩から地下鉄を中心として回生ブ
レーキ付チョッパ制御電車の普及が急である。
Recently, there has been a strong demand for reduced power consumption and labor-saving maintenance for electric vehicles, and advances in semiconductor technology have led to the rapid spread of chopper-controlled trains with regenerative brakes, especially in subways.

この主回路方式としては、第1図a。bに示すように従
来の直流直巻電動機を制御するもの、第2図a、bに示
すように2つの界磁巻線を持った直流電動機を制御する
自動可変界磁方式などが採用されている。
This main circuit system is shown in Figure 1a. As shown in Fig. 2b, a conventional DC series-wound motor is controlled, and as shown in Fig. 2a and b, an automatic variable field method is adopted to control a DC motor with two field windings. There is.

従来この各々のブレーキ回路では、第1図すや第2図す
のように主電動機の界磁巻線に電気車の補助電源から予
備励磁装置pEXDを経て予備励磁電流IEXをブレー
キ開始時に流し、主電動機電圧の誘起を円滑にしている
Conventionally, in each of these brake circuits, as shown in Figures 1 and 2, a pre-excitation current IEX is sent to the field winding of the main motor from the auxiliary power source of the electric vehicle through the pre-excitation device pEXD at the start of braking. Smoothly induces main motor voltage.

ここで第2図すの自動可変界磁チョッパ方式におけるブ
レーキ回路の動作は次のようにして行なわれる。
Here, the operation of the brake circuit in the automatic variable field chopper system shown in FIG. 2 is performed as follows.

すなわち、チョッパCHがオン状態になると、電磁子A
−界磁巻線F1−主平滑りアクドルMSL−チョッパC
H−界磁巻線F2−電機子Aの閉回路でブレーキ電流I
Bが流れる。
That is, when the chopper CH turns on, the electromagnetic element A
- Field winding F1 - Main flat sliding axle MSL - Chopper C
H - Field winding F2 - Brake current I in the closed circuit of armature A
B flows.

このとき電機子A、界磁巻線F1および界磁巻線F2は
直列になり同一電流IBが流れるので電動機の界磁率は
F1+F2の強め界磁となる。
At this time, the armature A, the field winding F1, and the field winding F2 are connected in series, and the same current IB flows through them, so that the field rate of the motor becomes a stronger field of F1+F2.

チョッパCHがオフ状態になると電機子A−界磁巻線F
1−主平滑りアクドルMSL−フリーホイリングダイオ
ードFWD−フィルタリアクトルFL−パンタグラフP
ANの回路によりMSL等に蓄えられたエネルギーが回
生電流IRとなって電車線(架線)Lを経て電源側に流
れ出る。
When chopper CH turns off, armature A - field winding F
1 - Main flat sliding axle MSL - Freewheeling diode FWD - Filter reactor FL - Pantograph P
The energy stored in the MSL etc. by the AN circuit becomes a regenerative current IR and flows out to the power source side via the overhead contact line (overhead line) L.

このとき界磁巻線F2にはCHオフのため電力が供給さ
れず、界磁率はFlのみの弱め界磁となる。
At this time, no power is supplied to the field winding F2 because the CH is off, and the field becomes weaker with only Fl.

この回路でチョッパCHがオン・オフをくり返すと主電
動機の界磁率はこのオン・オフの比率によって変化する
ことになる。
When the chopper CH is repeatedly turned on and off in this circuit, the field rate of the main motor changes depending on the on/off ratio.

すなわち、オンの比率が小さい高速域では弱界磁状態、
オンの比率が大きい低速域では強め界磁状態となる。
In other words, in the high-speed range where the on ratio is small, there is a weak field state,
In the low speed range where the ON ratio is large, the field becomes stronger.

また一方策2図aのカ行回路でも界磁巻線F2がフリー
ホイリングダイオードFWDと直列に入っているのでや
はり低速域で強め界磁、高速域で弱界磁となる。
Also, in the case of the circuit shown in FIG. 2a, the field winding F2 is connected in series with the freewheeling diode FWD, so the field is strong in the low speed range and weak in the high speed range.

さて、従来は第1図すや第2図すのブレーキ回路では、
ブレーキ電流IBが円滑に流れ始めるように、ブレーキ
指令時には主電動機界磁巻線に電気車の補助電源から予
備励磁装置PEXDを介して予備励磁電流IEXを流し
ているが、この場合界磁巻線が主回路であるため予備励
磁装置PEXDの内容としては第3図のような高圧の絶
縁処理を施した電源トランスTr、整流ブリッジRe、
コンデンサCと抵抗管Rから成るサージ吸収器および直
列や並列の抵抗管Rと高圧用予備励磁接触器EXKが必
要であった。
Now, conventionally, in the brake circuit shown in Figure 1 and Figure 2,
In order for the brake current IB to start flowing smoothly, a pre-excitation current IEX is sent to the traction motor field winding from the auxiliary power supply of the electric vehicle via the pre-excitation device PEXD when a brake command is issued. Since this is the main circuit, the contents of the pre-excitation device PEXD include a power transformer Tr with high voltage insulation treatment as shown in Figure 3, a rectifier bridge Re,
A surge absorber consisting of a capacitor C and a resistance tube R, a series or parallel resistance tube R, and a high-voltage pre-excitation contactor EXK were required.

しかも予備励磁電流IEXは数+Aの電流が必要である
ため、ブレーキ指令時にのみ使用するにも拘らず車両補
助電源容量をかなり大きくする必要があり、トランスや
整流器、抵抗管、コンデンサなども高圧用としてかなり
大形のものが必要であって価格的にも不利であった。
Moreover, since the pre-excitation current IEX requires a current of several + A, the capacity of the vehicle auxiliary power supply must be considerably large even though it is only used when braking is commanded, and transformers, rectifiers, resistance tubes, capacitors, etc. must also be used for high voltage. This required a fairly large product, which was disadvantageous in terms of price.

この発明はこのような実情を鑑みてなされたもので、電
車線から直接簡単な回路で予備励磁電流を流すことが出
来るものである。
This invention was made in view of these circumstances, and allows a preliminary excitation current to flow directly from the overhead contact line using a simple circuit.

以下この発明の一実施例を図にもとづいて説明する。An embodiment of the present invention will be described below based on the drawings.

第4図にこの発明による自動可変界磁方式のブレーキ主
回路を示す。
FIG. 4 shows the automatic variable field type brake main circuit according to the present invention.

なお、第2図a、bと同一符号は同一のものを示してい
るが、この発明のものには、予備励磁接触器EXKと直
列抵抗器REXの直列体がフリーホイリングダイオード
FWDのパンタグラフPAN側と界磁巻線F2のチョッ
パCH側に接続されている。
Note that the same reference numerals as in FIGS. 2a and 2b indicate the same parts, but in this invention, the series body of the pre-excitation contactor EXK and the series resistor REX is a pantograph PAN in which the freewheeling diode FWD is used. and the chopper CH side of the field winding F2.

すなわち自動可変界磁方式では、主電動機の一方の界磁
巻線F2はチョッパCHと直列に接続され、しかも片端
は接地側に接続されているので、電車線りから直列抵抗
器REXと予備励磁接触器EXKだゆで予備励磁電流I
EXが簡単に流すことが出来る。
In other words, in the automatic variable field system, one field winding F2 of the traction motor is connected in series with the chopper CH, and one end is connected to the ground side, so the series resistor REX and pre-excitation are connected from the overhead contact line to the series resistor REX. Contactor EXK boiled pre-excitation current I
EX can be easily flowed.

なお、回生ブレーキ作用については第2図すの場合と同
様の動作をなすので説明を省略する。
Note that the regenerative braking operation is the same as that shown in FIG. 2, so a description thereof will be omitted.

このようにこの発明によれば、少な(とも2つの界磁巻
線を有する直流直巻電動機を用いて自動可変界磁方式の
チョッパ制御を行なう電気車において、予備励磁接触器
と直列抵抗器だけを設けることによって電車線から簡単
に電動機界磁巻線へ予備励磁電流を流すことが出来、従
来の予備励磁方式のように高圧処理を施した電源トラン
スや整流ブリッジおよびコンデンサと抵抗管から成るサ
ージ吸収器を不要にして予備励磁装置の軽量小形化と低
価格化を実現出来ることになる。
As described above, according to the present invention, in an electric vehicle that performs automatic variable field type chopper control using a DC series motor having two field windings, only a pre-excitation contactor and a series resistor are required. By providing a pre-excitation current, it is possible to easily flow the pre-excitation current from the overhead contact line to the motor field winding, and unlike the conventional pre-excitation method, it is possible to easily flow the pre-excitation current from the contact line to the motor field winding. By eliminating the need for an absorber, the pre-excitation device can be made lighter, smaller, and lower in price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびbは一般の直列直巻電動機を制御するチ
ョッパ制御車のカ行および回生ブレーキの主回路接続図
、第2図aおよびbは2つの界磁巻線を有する直流直巻
電動機を制御する自動可変界磁方式チョッパ制御車のカ
行および回生ブレーキの主回路接続図、第3図は従来の
予備励磁装置の標準的な構成を示す回路接続図、第4図
は本発明による一実施例である自動可変界磁方式チョッ
パ制御車の回生ブレーキ主回路接続図である。 なお、図中同一符号は同一もしくは相当部分を示す。 図中、Aは電機子、Fl、F2は界磁巻線、CHはチョ
ッパ、FWDはフリーホイリングダイオードPANはパ
ンタグラフ、Lは電車線、EXKは予備励磁接触器、R
EXは直列抵抗器である。
Figures 1a and b are main circuit connection diagrams of the power and regenerative brakes of a chopper control vehicle that controls a general series-series motor, and Figures 2a and b are a DC series-wound motor with two field windings. Fig. 3 is a circuit connection diagram showing the standard configuration of a conventional preliminary excitation device, and Fig. 4 is a circuit connection diagram according to the present invention. FIG. 2 is a regenerative brake main circuit connection diagram of an automatically variable field type chopper control vehicle according to an embodiment. Note that the same reference numerals in the figures indicate the same or corresponding parts. In the figure, A is the armature, Fl, F2 are the field windings, CH is the chopper, FWD is the freewheeling diode, PAN is the pantograph, L is the contact line, EXK is the preliminary excitation contactor, R
EX is a series resistor.

Claims (1)

【特許請求の範囲】 1 少な(とも2つの界磁巻線を有した直流直巻電動機
の一方の界磁巻線への給電状態をチョッパにて制御する
ことによって両売磁巻線における界磁率が制御され、電
圧制御と界磁率制御が同時に行なわれる電気車において
、上記電動機の電機子、この電動機の第1の界磁巻線、
フリーホイリングダイオードが直列に接続され、ブレー
キ運転時に上記フリーホイリングダイオードを通して回
生電流が電気線を経て電源側に流れる第1の電路と、上
記電動機の電機子および第1の界磁巻線に対して並列に
接続され且つチョッパおよび上記電動機の第2の界磁巻
線が直列に接続された第2の電路、上記フリーホイリン
グダイオードの上記電車線側と上記第2の界磁巻線のチ
ョッパ側とを接続した第3の電路が設けられ、ブレーキ
指令時には上記第3の電路を通して上記電車線の主電源
から上記第2の界磁巻線に対して予備励磁電流を供給す
るようにしたことを特徴とする電気車制御方式。 2 第1の電路および上記第2の電路において、上記第
1の界磁巻線と上記チョッパは上記フリーホイリングダ
イオードを介して上記電車線側に接。 続され、且つ上記電動機の電機子と上記第2の界磁巻線
は接地点側に接続されていることを特徴とする特許請求
の範囲第1項記載の電気車制御方式。 3 第3の電路には接触器と抵抗器が直列に接続されて
いることを特徴とする特許請求の範囲第1項記載の電気
車制御方式。
[Claims] 1. The field rate in both selling field windings is reduced by controlling the power supply state to one field winding of a DC series motor having two field windings with a chopper. In an electric vehicle in which voltage control and field rate control are performed simultaneously, an armature of the motor, a first field winding of the motor,
Freewheeling diodes are connected in series, and a regenerative current flows through the freewheeling diode to the power supply side through the electric wire during braking operation, and the armature and the first field winding of the motor. a second electric line connected in parallel to the chopper and a second field winding of the motor; A third electric line connected to the chopper side is provided, and when a brake command is issued, a preliminary excitation current is supplied from the main power source of the overhead contact line to the second field winding through the third electric line. An electric vehicle control system characterized by: 2. In the first electric circuit and the second electric circuit, the first field winding and the chopper are connected to the contact line side via the freewheeling diode. 2. The electric vehicle control system according to claim 1, wherein the armature of the electric motor and the second field winding are connected to a ground point side. 3. The electric vehicle control system according to claim 1, wherein a contactor and a resistor are connected in series to the third electric path.
JP52015832A 1977-02-15 1977-02-15 Electric vehicle control system Expired JPS5829684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52015832A JPS5829684B2 (en) 1977-02-15 1977-02-15 Electric vehicle control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52015832A JPS5829684B2 (en) 1977-02-15 1977-02-15 Electric vehicle control system

Publications (2)

Publication Number Publication Date
JPS53100422A JPS53100422A (en) 1978-09-01
JPS5829684B2 true JPS5829684B2 (en) 1983-06-24

Family

ID=11899807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52015832A Expired JPS5829684B2 (en) 1977-02-15 1977-02-15 Electric vehicle control system

Country Status (1)

Country Link
JP (1) JPS5829684B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152225A (en) * 1974-05-31 1975-12-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152225A (en) * 1974-05-31 1975-12-08

Also Published As

Publication number Publication date
JPS53100422A (en) 1978-09-01

Similar Documents

Publication Publication Date Title
US4264846A (en) Speed control and braking circuit for a series connected DC machine
US4380724A (en) Shunt field control apparatus and method
JPS58198193A (en) Dc motor controller
CN110546878B (en) Traction converter of AC locomotive in traction and regenerative braking modes
JPS5829684B2 (en) Electric vehicle control system
JPS5924602B2 (en) Electric vehicle control system
JPH11286229A (en) Power regenerative inverter device
SU1449387A1 (en) Arrangement for controlling vehicle linear electric drive
US3525027A (en) Regulated dynamic braking circuit
GB2086157A (en) Dc motor shunt field control apparatus and method
JPS58165605A (en) Regenerating brake controller for ac electric motor vehicle
JPS588202B2 (en) Electric vehicle control device
JPH0453124Y2 (en)
US4395666A (en) D.C. Series excited traction motor capable of operating with a continuous current power supply
JPS5928802A (en) Control device for electric motor coach
DE627160C (en) Circuit for electrically operated vehicles
JPS6022721Y2 (en) Electric car motor generator
JPS6198101A (en) Controller for electric railcar
JPS6082093A (en) Field control circuit of series motor
GB1585577A (en) Method of switching in an energising circuit for a pair of dc traction motors from either an ac or a dc system and a power supply circuit for such traction motors
RU2006168C1 (en) Device for electric braking of traction motor on direct-current train
SU403590A1 (en) DEVICE FOR REGULATING THE ELECTRIC TRAIN RATE
SU1068304A1 (en) Apparatus for power supply of railway car
JPS609431B2 (en) Electric vehicle control system
JPS62105874A (en) Controller for winding drum type elevator