JPS5829198A - Josephson memory circuit - Google Patents

Josephson memory circuit

Info

Publication number
JPS5829198A
JPS5829198A JP56126983A JP12698381A JPS5829198A JP S5829198 A JPS5829198 A JP S5829198A JP 56126983 A JP56126983 A JP 56126983A JP 12698381 A JP12698381 A JP 12698381A JP S5829198 A JPS5829198 A JP S5829198A
Authority
JP
Japan
Prior art keywords
current
josephson
josephson junctions
closed loop
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56126983A
Other languages
Japanese (ja)
Inventor
Tetsuo Kokama
小蒲 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56126983A priority Critical patent/JPS5829198A/en
Publication of JPS5829198A publication Critical patent/JPS5829198A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/44Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using super-conductive elements, e.g. cryotron

Abstract

PURPOSE:To decrease the size of a gate and to make the entire memory cell small in size, by controlling the phase conditions of each junction through a control current directly injected to a super-condition closed loop including Josephson junctions via a gate and performing the switching operation. CONSTITUTION:A series connection of Josephson junctions 4A and 4B and a Josephson junction 4C connected in parallel are provided in a super-conduction closed loop 3, and at each middle point of the Josephson junctions 4A, 4C; 4A, 4B; 4B, 4C, a word current line 2A flowing an input current, a control current line 5 to a closed loop 3, a word current line 2B picking up and output current are respectively provided. A switching gate connected with a control current branching resistor 6 is provided on one point on the line 5. Thus, since the phase conditions of each junction are controlled with a control current directly injected to a closed loop 3 via one gate and switch operations made, the size of gates can be decreased and the entire memory can be made small in size.

Description

【発明の詳細な説明】 コノ発明は、超電導現象のひとつであるジョセフソン効
果を用いた計算機用素子からなるジョセフソン・メモリ
回―に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Josephson memory circuit consisting of a computer element that uses the Josephson effect, which is one of the superconducting phenomena.

従来、この種の回路には超電導体からなる閉ループ内に
、書込み用のゲートを1つまたは2つ、読出り用のゲー
トを1つ含むものがあり、そのゲートとしてはスクイド
(SQUID)と呼ばれる2つまたは3つのジョセフソ
ン接合と、インダクタンス噛ループからなる量子干渉型
ゲートか、単一の縦長のジョセフソン接合からなるゲー
トを用いるものがあった。
Conventionally, this type of circuit includes one or two write gates and one read gate in a closed loop made of superconductors, and these gates are called SQUIDs. Some used quantum interference gates consisting of two or three Josephson junctions and an inductance loop, or gates consisting of a single vertical Josephson junction.

しかしながら、この種のメモリ回路では、書込み、読出
し用のゲートを、インダクタンスを介して制御電流の生
じる磁場によりスイッチングさせるため、磁束の最小単
位である磁束量子Φ。(Φ。
However, in this type of memory circuit, the write and read gates are switched by a magnetic field generated by a control current via an inductance, so that a magnetic flux quantum Φ, which is the smallest unit of magnetic flux, is used. (Φ.

〜2X10−’畠wb )を少なくとも1つ以上ゲート
内に生じさせるだけのインダクタンスを特つ必要があり
、ゲート自体の小型化Kff理的な限界がある上、書込
み、読出しを別々のゲートで行わなければならないため
、メモリセル全体としても十分に小型化できないという
問題点があり、計算機用のメモリ回路としては高密度化
、高速化に原理的な限界があった。
It is necessary to provide a special inductance sufficient to generate at least one of the gates (~2X10-'Hatawb), and there is a logical limit to the miniaturization of the gate itself, and writing and reading are performed using separate gates. Therefore, there is a problem that the memory cell as a whole cannot be sufficiently miniaturized, and there is a theoretical limit to increasing the density and speed of memory circuits for computers.

この発明は、このような従来のメモリ回路の問題点を除
去するためになされたもので、書込み。
This invention was made in order to eliminate such problems with conventional memory circuits.

読出しの両方を、超電導閉ル−プ内に3つ、または4つ
のジョセフソン接合を含み、この閉ループに直接注入す
る制御電流によりインダクタンスを用いずに各接合の位
相条件をフン)R−ルしてスイッチ動作させるようにし
起ゲート1つで行わせるよ5Kしたもので、ゲートのス
イッチ動作のコントρ−ルにインダクタンスを介して生
ずる磁場を用いる必要がないため、従来のようなインダ
クタンスを利用したスイッチング・ゲートに比べてゲー
ト自体が大幅に小型化が可能であり、またゲートの数も
1つのメモリ・セルに対して1つです、むためメモリ・
セル全体が小型化でき、計算機用回路として高密度化、
高速化に適する。以下、図面に基づいてこの発明の詳細
な説明する。
Both readout methods include three or four Josephson junctions in a superconducting closed loop, and the phase condition of each junction is determined without using inductance by means of a control current injected directly into this closed loop. This is a 5K device that operates the switch with a single starting gate, and there is no need to use a magnetic field generated through an inductance to control the switch operation of the gate, so it is not necessary to use an inductance as in the conventional method. The gate itself can be made much smaller than a switching gate, and the number of gates is one per memory cell, so the memory
The entire cell can be miniaturized and can be used as a high-density computer circuit.
Suitable for high speed. Hereinafter, the present invention will be described in detail based on the drawings.

第1図はこの発明の一実施例を示す回路図で、1は永久
電流によりループ内に発生した磁束な媒体としてメモ゛
すな保存する超電導体からなるメモリ・ループ、2A、
2Bは前記メモリ・ループ1内に磁束を発生させるため
のワード電流I、を通ずるワード電流線路、3は前記メ
モリ・ループ1とワード電流線路2A、2Bとの2つの
結合点の中間点に設けられたスイッチング・ゲートを構
成する超電導閉ループ、4A、4B、4Cは前記超電導
閉ループ3内に設けられたジョセフソン接合、5は前記
ジョセフソン接合4A、4Bの中間点から、超電導閉ル
ープ3にビット電流IIs  またはセンス電流1.を
注入してゲートのスイッチングをフントロールするため
の制御電流線路、6は前記制御電流線路5の一部からジ
ョセフソン接合4Bが電圧状態に遷移したとき、ビット
電流■■またはセンス電流I3がバイパスして流れ込む
抵抗体である。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, in which 1 is a memory loop made of a superconductor that stores memory as a magnetic flux medium generated in the loop by a persistent current, 2A,
2B is a word current line through which a word current I for generating magnetic flux is generated in the memory loop 1; 3 is provided at the midpoint between the two coupling points of the memory loop 1 and the word current lines 2A and 2B; 4A, 4B, and 4C are Josephson junctions provided in the superconducting closed loop 3, and 5 is a bit current flowing into the superconducting closed loop 3 from an intermediate point between the Josephson junctions 4A and 4B. IIs or sense current 1. A control current line 6 is used to control gate switching by injecting the bit current ■■ or sense current I3 from a part of the control current line 5 when the Josephson junction 4B transitions to a voltage state. It is a resistor that flows in.

メモリーループ1への書込みは、ワード電流線路2A、
2Bからメモリ・ループ1にワード電流■1を、また、
制御電流線路5からビット電流Imを流し込んでメモリ
・ループ1内を流れる循環電流ILをフントロールする
ことKより行われ、読出しは制御電流線路5からセンス
電流■3を流し込んだとき、抵抗体6に電圧が発生する
か否かを検知し忙行われる。
Writing to memory loop 1 is performed using word current line 2A,
Word current ■1 from 2B to memory loop 1, and
Reading is performed by feeding the bit current Im from the control current line 5 to control the circulating current IL flowing in the memory loop 1. When the sense current 3 is fed from the control current line 5, the readout is performed by feeding the bit current Im from the control current line 5. It is used to detect whether voltage is generated or not.

第2図は第1図に示したスイッチング−ゲートの循環電
流1.とビット電流IIまたはセンス電流!、の関係を
示すしきい値特性にメそり動作における動作点を書き妬
えたものである・図中、しきい値曲線の実線で示した部
分を動作点が横切るときは、第1図の両ジョセフンン接
合4B、4Cが有限電圧状態に遷移するが、点線で示し
た部分を動作点が横切るときはジョセフソン接合4Bは
有限電圧に遷移するが、ジョセフソン接合4Aに発生す
る電圧がジョセフソン接合4Bの電圧と逆向きで大きさ
が等しいため、ジョセフソン接合4CKは電圧が発生し
ない。この2つの領域が存在することによりメモリの書
込みと非破壊の読出しが1つのゲートで可能となる。
FIG. 2 shows the circulating current 1 of the switching gate shown in FIG. and bit current II or sense current! I was able to write the operating point in mesori operation on the threshold characteristic that shows the relationship between . The Josephson junctions 4B and 4C transition to a finite voltage state, but when the operating point crosses the part indicated by the dotted line, the Josephson junction 4B transitions to a finite voltage state, but the voltage generated at the Josephson junction 4A is a Josephson junction state. Since the voltage at Josephson junction 4CK is opposite to and equal in magnitude to, no voltage is generated at Josephson junction 4CK. The existence of these two areas allows memory writing and non-destructive reading with one gate.

#!2図を用いて先ず書込みの動作について説明する0
便宜上、メモリ・ループ1を反時計回りの循環電流を正
のILに定め、第2図のIL点に相当する循環電流IL
の流れている状態をメモリの′″1−循環電流ILが0
点に相当するだけ流れている状態をメモリの”o″と定
義する。最初に′″1″が書き込まれていて10”を書
き込むにはワード電流 1wを流して循環電流ILを1
点からb点まで増加させ、次に、ビット電流■1を0点
に相当する大きさだけ流し込むと動作点はb点からd点
に移るが、このとき、動作点はしきい値曲線の実線の領
域を横切るためジョセフソン接合4Cが有限電圧状態に
遷移し、ワード電流Itはメモν・ループ1のゲートを
含まない分岐のみを流れるようになり、ワード電流 I
、が全部上記の分岐に移った彼はジョセフソン接合4C
は再び零電圧状態に戻る。この状態でワード電流■w、
ビット電流IIを切ればメモリ・ループ1内の磁束を保
存するため循環電流ILは0点に相当するだけ流れるよ
うになり、頴”が書き込まれたことになる。
#! First, we will explain the write operation using Figure 2.0
For convenience, the counterclockwise circulating current of memory loop 1 is defined as positive IL, and the circulating current IL corresponds to the IL point in FIG.
The flowing state of the memory is ``1-circulating current IL is 0''
The state where the flow corresponds to the point is defined as "o" of the memory. Initially, ``1'' is written, and to write 10'', a word current of 1W is applied and the circulating current IL is 1W.
If the bit current is increased from point b to point b, and then a bit current 1 corresponding to point 0 is injected, the operating point will move from point b to point d, but at this time, the operating point will be on the solid line of the threshold curve. The Josephson junction 4C transitions to a finite voltage state because it crosses the region of
, all moved to the above branch, he Josephson junction 4C
returns to zero voltage state again. In this state, the word current ■w,
If the bit current II is cut off, the circulating current IL will flow in an amount corresponding to the 0 point in order to preserve the magnetic flux in the memory loop 1, and this means that ``1'' has been written.

“】”を書き込むときには、ワード電流1胃、ビット電
流■1を上記の@O″の書込みと同じ大きさで逆向きに
流すととKより動作点はa −f −gと移り、この間
しきい値曲線を横切らないので、ゲートは零電圧状態の
ままであり、ワード電流Iw。
When writing “】”, if the word current 1 and the bit current 1 are made to flow in the same magnitude as the writing of @O” in the opposite direction, the operating point will shift from K to a - f - g, and during this time. Since the threshold curve is not crossed, the gate remains in a zero voltage state and the word current Iw.

ビット電流■−を切れば元のa点に戻り11′の状態を
保つ、最初に0”が書き込まれている場合も・上記と同
様の操作、動作原理により10″を書き込めば動作点は
@ −o f −m 6と移り、@ol″が保存される
が、@11を書き込むとe −h −1・と移り、ワー
ド電流Its  ビット電流Lmを切った後はa点に移
り、@1″が書き込まれる。
If the bit current ■- is turned off, it returns to the original point a and maintains the state of 11', even if 0" is written initially. If 10" is written using the same operation and operating principle as above, the operating point is @ -o f -m 6 and @ol'' is saved, but when @11 is written, it moves to e -h -1. After cutting off the word current Its bit current Lm, it moves to point a, and @1 ” is written.

読出しには制御電流線路5から1点に相当するだけのセ
ンス電流■、をメモリ・ループ1(流し込む、@1”が
メモリ・ループ1に書き込まれていれば、動作点はm−
+にと移り、この間、しきい値l!lIsの点線の部分
を横切るためのジョセフソン接合4Bは有限電圧状態に
遷移して抵抗体6にも電圧゛が発生するが、ジョセフソ
ン接合4Cは零電圧状1lilKとどまっているため、
センス電流I、を切った篭、循環電流I、は保存され、
再びa点に戻る。 @fが書き込まれていれば上記と同
じセンス電流I、を流すとe −a l・と移り、動作
小はしきい値曲線の内部にとどまるためすべてのジョセ
フソン接合4A〜4Cは零電圧のままで抵抗体6に電圧
は発生しない、このように、いずれを読出しても読出し
後には読出し前と全く同じ循環電流ILが保存されるの
で、この読出しは非破壊読出しである。
For reading, a sense current corresponding to one point from the control current line 5 flows into the memory loop 1 (if "@1" is written in the memory loop 1, the operating point is m-
+, and during this time the threshold value l! The Josephson junction 4B for crossing the dotted line portion of lIs transitions to a finite voltage state and a voltage ゛ is also generated in the resistor 6, but the Josephson junction 4C remains at zero voltage state 1liilK.
When the sense current I, is cut off, the circulating current I, is conserved,
Return to point a again. If @f is written, when the same sense current I as above is applied, it changes to e −a l・, and since the small operating voltage remains inside the threshold curve, all Josephson junctions 4A to 4C are at zero voltage. No voltage is generated in the resistor 6 as it is.In this way, no matter which one is read out, the same circulating current IL as before the readout is preserved after the readout, so this readout is a non-destructive readout.

以−上の説明に用いたワード電流Ifとビット電流II
sセンス電流Isのしきい値曲線およびジョセフソン接
合4Cが電圧遷移する領域としない領域の存在範囲は、
スイッチング・ゲートの各ジョセフソン接合のジョセフ
ソン電流の臨界値の比。
Word current If and bit current II used in the above explanation
The threshold curve of the s sense current Is and the range of the voltage transition region and the non-voltage transition region of the Josephson junction 4C are as follows:
The ratio of the critical values of the Josephson currents in each Josephson junction of the switching gate.

ジョセフソン接合のキャパシタンスの大きさ、また抵抗
体6の大きさにより制御することが可能であり、動作点
もメモリ・ループ1の左右の分割比に応じて広範囲の領
域に選択可能である。また上記の一実施例では、スイッ
チング・ゲートのメモリ・ループ1内に3つのジョセフ
ソン接合4A〜4Cを含むものについて説明したが、1
つのジョセフソン接合4Cの代りに2つのジョセフソン
接合を2つ直列にして挿入し、メモリ・ループ1内に合
計4つのジョセフソン接合を含むものをスイッチング・
ゲートとして用いても同等の効果が得られる。
It can be controlled by the size of the capacitance of the Josephson junction and the size of the resistor 6, and the operating point can also be selected in a wide range depending on the left and right division ratio of the memory loop 1. Further, in the above embodiment, the memory loop 1 of the switching gate includes three Josephson junctions 4A to 4C.
By inserting two Josephson junctions in series instead of one Josephson junction 4C, a total of four Josephson junctions are included in memory loop 1 for switching.
The same effect can be obtained even when used as a gate.

以上詳細に説明したようKこの発明によるジョセフソン
・メモリ回路は、書込み、読出しの両方を超電導閉ルー
プ内に3つ、または4つのジョセフソン接合を含み、こ
の閉ループに直接注入する制御電流により、インダクタ
ンスを用いずに各接合の位相条件をコントロールしてス
イッチ動作させるようKしたグー)1つで行わせるよう
にしたもので、ゲートのスイッチ動作のコントロールに
インダクタンスを介して生ずる磁場を用いる必要がない
ため、従来のようなインダクタンスを利用したスイッチ
ング・グー)K比べてゲート自体が大幅に小型化が可能
であり、またゲートの数も1つのメモリ・セルに対して
1つですむため、メモ
As described in detail above, the Josephson memory circuit according to the present invention includes three or four Josephson junctions in a superconducting closed loop for both writing and reading, and a control current directly injected into the closed loop reduces the inductance. The switch operation is performed by controlling the phase conditions of each junction without using a gate switch, and there is no need to use a magnetic field generated through an inductance to control the gate switch operation. Therefore, the gate itself can be significantly smaller than conventional switching methods using inductance, and the number of gates is only one per memory cell, making it easier to use memory cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す回路図、第2図は第
1図のスイッチング・ゲートの特性曲線および動作点を
示す図である。 図中、1はメモリ・ループ、2A、2Bはワード電流線
路、3は超電導閉ループ、4A、4B。 4Cはジョセフソン接合、5は制御電流線路、6は抵抗
体である。 代理人 葛 野信 −(外1名) 第1図 第2図 L 手続補正書(自発) 昭和57年1 月13日 1、事件の表示    特願昭 56−12698’l
1号2、発明の名称    ジ請セツンン・メそり回路
3、補正をする者 事件との関係   特許出願人 住 所     東5rC都丁・代田区丸の内二丁目2
番3号名 称(601)   三菱電機株式会社代表者
片山仁八部 4、代理人 住 所     □東京都千代田区丸の内二丁目2番3
号三菱電機株式会社内 5 補正の対象 明細書の特許請求の範囲の欄1発明の詳細な説明の欄お
よび図面 6、補正の内容 (1)  明細書の特許請求の範囲を別紙のように補正
する。 (2)明細書第2頁16行に「特つ」とあるのを。 「持つ」と補正する。 (3)同じく第3貞6行、第9頁8行に「この閉ループ
」とあるのを、それぞれ「超電導閉ループ」と補正する
。 (4)第2図を別紙のように補正する。 以上 2、− 特許請求の範囲 1つの超電導閉ループ内に第1と第2のジョセフソン接
合の直列体と、この直列体に並列に第3のジョセフソン
接合または第3と第4のジョセフソン接合の直列体を接
続したものを設け、前記第1と第3のジョセフソン接合
の中間点に入力電流を流すワード電流線路を設け、前記
第1と第2のジョセフソン接合の中間点に前記超電導閉
ループ制御電流を流し込む制御電流線路を設け、前記第
2と第3のジョセフソン接合の中間点または前記第2と
第4のジョセフソン接合の中間点から出力電流を取り出
すワード電流線路を設け、さらに制御電流線路上の一点
に制御電流の分岐を行う抵抗含んだことを特徴とするジ
ョセフソン・メモリ回路。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing the characteristic curve and operating point of the switching gate shown in FIG. In the figure, 1 is a memory loop, 2A, 2B are word current lines, 3 is a superconducting closed loop, 4A, 4B. 4C is a Josephson junction, 5 is a control current line, and 6 is a resistor. Agent Nobu Kuzuno - (1 other person) Figure 1 Figure 2 L Procedural amendment (voluntary) January 13, 1980 1, Indication of case Patent application 1982-12698'l
No. 1, No. 2, Title of the invention Jisho Setsun Mesori Circuit 3, Relationship to the case of the person making the amendment Patent applicant address Higashi 5rC Tocho, 2-2 Marunouchi, Daita-ku
No. 3 Name (601) Mitsubishi Electric Corporation Representative Hitoshi Katayama 4, Agent address □2-2-3 Marunouchi, Chiyoda-ku, Tokyo
No. Mitsubishi Electric Corporation 5 Claims column 1 Detailed explanation of the invention and drawings 6 of the specification to be amended Contents of the amendment (1) Amend the claims of the specification as shown in the attached sheet do. (2) On page 2, line 16 of the specification, it says "Special". Correct "to have". (3) Similarly, the words ``this closed loop'' in line 6 of page 3 and line 8 of page 9 are corrected to read ``superconducting closed loop.'' (4) Correct Figure 2 as shown in the attached sheet. Above 2. - Claims A series body of first and second Josephson junctions in one superconducting closed loop, and a third Josephson junction or third and fourth Josephson junctions in parallel to this series body. A word current line for passing an input current is provided at an intermediate point between the first and third Josephson junctions, and a word current line is provided at an intermediate point between the first and second Josephson junctions, and a word current line is provided at an intermediate point between the first and second Josephson junctions. A control current line is provided for flowing a closed loop control current, and a word current line is provided for taking out an output current from an intermediate point between the second and third Josephson junctions or an intermediate point between the second and fourth Josephson junctions, and further A Josephson memory circuit characterized by including a resistor for branching a control current at one point on a control current line.

Claims (1)

【特許請求の範囲】[Claims] 1つの超電導閉ループ内に第1と第2のジョセフソン接
合の直列体と、この直列体に並列にw3のジョセフソン
接合または第3と第4のジョセフソン接合の直列体を接
続したものを設け、前記第1と第3のジョセフソン接合
の中間点に入力電流を流すワード電流線路を設け、前記
第1と!2のジョセフソン接合の中間点に前記超電導閉
ループ制御電流を流し込む制御電流線路を設け、前記第
2と第3のジョセフソン接合の中間点または前記第2と
第4のジョセフソン接合の中間点から出力電流を取り出
すワード電流線路を設け、さらに制御電流線路上の一点
に制御電流の分岐を行う抵抗体を接続したことを特徴と
するジョセフソン・メモリ回路。
A series body of first and second Josephson junctions and a series body of w3 Josephson junctions or third and fourth Josephson junctions connected in parallel to this series body are provided in one superconducting closed loop. , a word current line for passing an input current is provided at an intermediate point between the first and third Josephson junctions, and the first and! A control current line through which the superconducting closed loop control current flows is provided at a midpoint between the second and third Josephson junctions, and from a midpoint between the second and third Josephson junctions or a midpoint between the second and fourth Josephson junctions. A Josephson memory circuit characterized in that a word current line for taking out an output current is provided, and a resistor for branching the control current is connected to one point on the control current line.
JP56126983A 1981-08-13 1981-08-13 Josephson memory circuit Pending JPS5829198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56126983A JPS5829198A (en) 1981-08-13 1981-08-13 Josephson memory circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56126983A JPS5829198A (en) 1981-08-13 1981-08-13 Josephson memory circuit

Publications (1)

Publication Number Publication Date
JPS5829198A true JPS5829198A (en) 1983-02-21

Family

ID=14948736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56126983A Pending JPS5829198A (en) 1981-08-13 1981-08-13 Josephson memory circuit

Country Status (1)

Country Link
JP (1) JPS5829198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228685A (en) * 1992-02-21 1993-09-07 Matsushita Electric Ind Co Ltd High-temperature solder
JPH08187590A (en) * 1994-11-02 1996-07-23 Mitsui Mining & Smelting Co Ltd Solder alloy containing non-lead

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228685A (en) * 1992-02-21 1993-09-07 Matsushita Electric Ind Co Ltd High-temperature solder
JPH08187590A (en) * 1994-11-02 1996-07-23 Mitsui Mining & Smelting Co Ltd Solder alloy containing non-lead

Similar Documents

Publication Publication Date Title
EP0045349B1 (en) Superconductive latch circuit
US4210921A (en) Polarity switch incorporating Josephson devices
JPH0226886B2 (en)
JPH0834061B2 (en) Josephson memory circuit
US5260264A (en) Josephson memory circuit
JPS5829198A (en) Josephson memory circuit
US10910544B2 (en) Using a magnetic Josephson junction device as a pi inverter
US4603265A (en) Josephson device
JP2723172B2 (en) Superconducting associative memory cell and superconducting associative memory using the same
JPH05225789A (en) Superconducting memory and sense circuit
JPH05799B2 (en)
JPH0334155B2 (en)
Beha High density NDRO SFQ Joshepson interferometer momory cell
Morisue et al. A high speed adder using Josephson elements
JP2625392B2 (en) Josephson latch circuit
JPH0413799B2 (en)
JPH07118199B2 (en) Josephson Destructive Read Memory Circuit
JPS63231796A (en) Josephson sense circuit
JPS6168799A (en) Superconduction storage circuit
JPS63276788A (en) Read method for memory content of superconductive memory loop
JP2006268928A (en) Dc power source drive type superconducting sense circuit
JPH0381240B2 (en)
JPH03194796A (en) Josephson memory
JPH07288466A (en) Superconductive logic circuit
JPH01296494A (en) Direct current driving type superconducting memory circuit