JPS5829023A - Absorption type refrigerator - Google Patents
Absorption type refrigeratorInfo
- Publication number
- JPS5829023A JPS5829023A JP56127168A JP12716881A JPS5829023A JP S5829023 A JPS5829023 A JP S5829023A JP 56127168 A JP56127168 A JP 56127168A JP 12716881 A JP12716881 A JP 12716881A JP S5829023 A JPS5829023 A JP S5829023A
- Authority
- JP
- Japan
- Prior art keywords
- heat source
- temperature
- potentiometer
- auxiliary heat
- auxiliary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
- F25B27/02—Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Control Of Temperature (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は吸収式冷凍機に関し、特EZ系統の熱源のう
ち、補助熱源の供給量を、冷水又は温水の温度に比例し
て制御させると共にその制御信号を主熱源の温度に逆比
例して調整できるよう構成することによって、補助熱源
の消費量を少なくし、効率の良い運転を可能にするもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption refrigerating machine, which controls the supply amount of an auxiliary heat source among the heat sources of the special EZ system in proportion to the temperature of cold water or hot water, and transmits the control signal to the main heat source. By configuring the system so that it can be adjusted in inverse proportion to the temperature, the amount of consumption of the auxiliary heat source can be reduced and efficient operation can be achieved.
冷水又は温水C以下冷水等と称す)を得るために吸収式
冷凍機が多く採用されるが、この吸収式冷凍機の熱源と
して2系統の熱源を用いることがある。Absorption refrigerators are often used to obtain cold water or hot water (hereinafter referred to as cold water, etc.), and two systems of heat sources are sometimes used as the heat source for this absorption refrigerator.
例えば、!系統の熱源として、安価な工場の排ガス温水
と高価な高温蒸気を用いる場合は、高温蒸気の使用をで
舎るだけ減らしたいという要求が強い。for example,! When using inexpensive factory exhaust gas hot water and expensive high-temperature steam as heat sources for a system, there is a strong desire to reduce the use of high-temperature steam as much as possible.
この発明は、主としてこれらの事情に艦みなされたもの
であり、その具体的構成は、2系統の熱源を備え、一方
の主熱源のallに対する信号変換ポテンシヨメータと
、このポテンショメータに直列に接続された冷水又は温
水の温度に対する信号変換ポテンショメータと、補助熱
源の供給量−こ対する信号変換フィードバックポテンシ
日メータと、バランシングリレーとによりブリッジ回路
を構成し、補助熱源の供給量を、冷水又は温水の温度に
比例して制御させると共にその制御信号を主1jM!t
の温度に逆比例して調節できるよう構成してなる吸収式
冷凍機である。This invention was mainly made based on these circumstances, and its specific configuration includes two heat sources, a signal conversion potentiometer for all of one of the main heat sources, and a signal conversion potentiometer connected in series to this potentiometer. A bridge circuit is constituted by a signal conversion potentiometer for the temperature of cold water or hot water, a signal conversion feedback potentiometer for the supply amount of the auxiliary heat source, and a balancing relay. It is controlled in proportion to the temperature and the control signal is mainly 1jM! t
This is an absorption refrigerator configured so that the temperature can be adjusted in inverse proportion to the temperature of the refrigerator.
すなわち、この発明は、主熱源の温度信号及び冷水等の
温度信号を、バランシングリレーを用いたブリッジ回路
に入力し、補助熱源の供給量制御信号をフィードバッタ
信号として出力させ、その供給量を冷水等の温度に比例
して制御させると共にその制−信号を主熱源の温度に反
比例して調整できるよう構成することによって、補助f
b#jAの浪費を少なくし、冷水等の安定供給を行なう
と共に動力費の軽減を可能にするものである。That is, this invention inputs the temperature signal of the main heat source and the temperature signal of cold water, etc. to a bridge circuit using a balancing relay, outputs the supply amount control signal of the auxiliary heat source as a feed batter signal, and controls the supply amount of the cold water. The auxiliary f
This reduces waste of b#jA, provides a stable supply of cold water, etc., and reduces power costs.
以下図に示す実施例に基づいてこの発明を詳述する。な
お、これによってこの発明が限定を受けるものではない
。The present invention will be described in detail below based on embodiments shown in the figures. Note that this invention is not limited by this.
まず第1図において、吸収式冷凍機(1)は、通常1冷
水機“と称されるもので、発生器(2)、凝縮器(3)
、蒸発器(4)、吸収器(5)などから主として構成さ
発生器(2)は、主発生器部(6)と補助発生器部(7
)とからなり、前者は排ガス温水配管(8)の温水(t
R価)によって、後者は蒸気配!(9)の高温蒸fi(
高価)によって、それぞれ加熱され、溶液から高温高圧
冷媒Xfiを分離発生させることができる。ところで主
発生器部(6)の溶液は、後述する吸収器(5)から吸
収液ポンプαυを備えた溶液管0を通じて供給され、一
方補助発生器部(9)の溶液は、主発生器部(6)から
落差で供給される。なお、冷媒蒸気の発生を終えた濃溶
液は溶液管@を通じて吸収器体)へ送られる。First, in Figure 1, an absorption chiller (1) is usually referred to as a 1-chilled water machine, with a generator (2), a condenser (3)
, an evaporator (4), an absorber (5), etc. The generator (2) is composed of a main generator section (6) and an auxiliary generator section (7).
), and the former is the hot water (t) of the exhaust gas hot water pipe (8)
R value), the latter is steam distributed! (9) High temperature steaming fi (
The high-temperature, high-pressure refrigerant Xfi can be separated and generated from the solution. By the way, the solution in the main generator section (6) is supplied from an absorber (5), which will be described later, through a solution pipe 0 equipped with an absorption liquid pump αυ, while the solution in the auxiliary generator section (9) is supplied to the main generator section. It is supplied by head from (6). The concentrated solution after generating refrigerant vapor is sent to the absorber body through the solution pipe.
#縮機(3)は、発生器C!)で発生した冷媒蒸気を冷
却配管(至)によって冷却し液化させる。# The compressor (3) is the generator C! The refrigerant vapor generated in ) is cooled and liquefied by the cooling piping (to).
蒸発器(4)は、凝縮器(3)より配管(ロ)で供給さ
れた液冷媒と、蒸発器低部に溜っている冷媒とを冷媒ポ
ンプ(至)て圧送し、散布ノズル(2)から蒸発器内の
冷水配管α力に散布する。かくして冷媒は、冷房装置の
ファンコイルユニットの負荷へ向かう冷水を所定温度に
冷却して蒸発する。The evaporator (4) pumps the liquid refrigerant supplied from the condenser (3) through the pipe (b) and the refrigerant accumulated in the lower part of the evaporator using a refrigerant pump, and sends the liquid refrigerant to the spray nozzle (2). Spray from the cold water pipe inside the evaporator to the α force. In this way, the refrigerant cools the cold water heading toward the load of the fan coil unit of the cooling device to a predetermined temperature and evaporates.
吸収器(5)は、補助発生器(7)より供給される濃溶
液を散布ノズA/(至)によって冷却配管0に散布し、
この吸収器に隣接する蒸発器(4)で蒸発した冷媒を吸
収する。The absorber (5) sprays the concentrated solution supplied from the auxiliary generator (7) onto the cooling pipe 0 using the spray nozzle A/(to).
An evaporator (4) adjacent to this absorber absorbs the evaporated refrigerant.
次に以上の構成からなる吸収式冷凍機(1)の作動を説
明する。Next, the operation of the absorption refrigerator (1) having the above configuration will be explained.
鵞ず蒸発器(4)で蒸発した冷媒は、吸収器(5)で溶
液に吸収され、溶液管Iを介して発生器(2)へ向かう
。The refrigerant evaporated in the evaporator (4) is absorbed into a solution in the absorber (5), and is directed to the generator (2) via the solution pipe I.
この発生器では、主発生器部(6)で排ガス温水により
加熱され溶液から冷媒が分離蒸発する。伐った溶液は補
助発生器部(1)で高温蒸気によって加熱され伐った冷
媒を分離蒸発する。このようにして発生器C11)で発
生した冷媒蒸気は%JIkl器(3)で冷却されて液化
し蒸発器(4)へ向かい、そこで冷水を冷やして蒸発す
る。In this generator, the refrigerant is separated and evaporated from the solution by being heated by the exhaust gas hot water in the main generator section (6). The cut solution is heated by high temperature steam in the auxiliary generator section (1) to separate and evaporate the cut refrigerant. The refrigerant vapor thus generated in the generator C11) is cooled and liquefied in the %JIkl unit (3) and heads to the evaporator (4), where it cools and evaporates the cold water.
一方冷媒を分離した溶液は吸収器(5)へ向かい蒸発し
た冷媒を吸収する。以下これをくり返す。On the other hand, the solution from which the refrigerant has been separated heads to the absorber (5) and absorbs the evaporated refrigerant. Repeat this below.
まず冷房能力制御弁(至)が、吸収器(51と溶液管a
])の溶液ポンプαOの出口側とを結ぶバイパス管翰に
芥装され、冷水出口温度により制御されている。First, the cooling capacity control valve (to) is connected to the absorber (51 and solution pipe a).
) is connected to the outlet side of the solution pump αO, and is controlled by the cold water outlet temperature.
すなわち、冷房能力制御弁(至)の制御は、冷水配管Q
7)の出口側に設置された冷水温度検出端3υから冷水
温度信号を比例式温度調節器(2)に送り、この温度調
節器を介し制御モータにより行なわれる。In other words, the cooling capacity control valve (to) is controlled by the chilled water pipe Q.
A cold water temperature signal is sent from the cold water temperature detection end 3υ installed on the outlet side of the temperature controller 7) to the proportional temperature controller (2), and the control motor is controlled via this temperature controller.
次に補助熱源制御弁(ハ)が蒸気配管(9)に設けられ
、前記冷房能力制御弁(2)及び主熱源の排ガス温水温
度の各信号によって制御されている。すなわち、この補
助熱源制御弁@の制御は、電子式バランシングリレーを
使用したブリッジ回路を含む制@回路員によって主とし
て行なわれ、そのブリッジ回路が不平衡となって生じた
不平衡電圧により電子バランシングリレーを作動させ、
このリレーの機械式接点により補助熱源制御弁の制御モ
ータを作動させて、その作動を不平衡電圧が零になるま
で続けることによって行なわれる。な詔、(至)は主熱
源の温度検出端、に)は湿度調節器である。Next, an auxiliary heat source control valve (c) is provided in the steam pipe (9) and is controlled by the cooling capacity control valve (2) and each signal of the exhaust gas hot water temperature of the main heat source. In other words, the control of this auxiliary heat source control valve @ is mainly carried out by a control @ circuit member including a bridge circuit using an electronic balancing relay, and the unbalanced voltage generated when the bridge circuit becomes unbalanced causes the electronic balancing relay to be activated. operate the
This is accomplished by operating the control motor of the auxiliary heat source control valve using the mechanical contacts of this relay, and continuing the operation until the unbalanced voltage becomes zero. (to) is the temperature detection end of the main heat source, and (to) is the humidity regulator.
まず第2図において、囚は冷房能力制御弁α呻を作動さ
せる制御モータに設けた補助ポテンショメータで、制御
モータによる開・閉作動に対応してワイパー■がBP−
WP側へそれぞれ移動できるよう構成されている。First, in Fig. 2, the driver is an auxiliary potentiometer installed in the control motor that operates the cooling capacity control valve α, and the wiper
It is configured so that each can be moved to the WP side.
■は、補助熱源制御弁(2)を作動させる制御モータ0
に設けられたフィードバックポテンショメータて、その
ワイパー−もこの制御モータfD)′″ee作動る。な
お、補助熱源制御弁(ホ)の開・閉作動に対応するワイ
パー員の移動方向はBM−RM側である。■ is the control motor 0 that operates the auxiliary heat source control valve (2)
The wiper is also operated by the feedback potentiometer installed in the control motor fD)''ee.The direction of movement of the wiper member corresponding to the opening/closing operation of the auxiliary heat source control valve (E) is on the BM-RM side. It is.
口は電子式バランシングリレーで、相対向する端子(B
P)・(BM)間及び(WP)(WM)間を短絡すると
共に端子(RP)(RM)間に不平衡電圧の検出要素(
C1)を接続している。この検出要素(C1)は二つの
npn型トランジスタ(TR0)(TR,)の各ベース
を端子(RP)(RM)に接続すると共にエミッタを互
いに接続し、且つ各コレクタには直流電源(Rec寞)
の+側をパワーリレー(X、)(X、)を介してそれぞ
れ接続し、更にトランジスタ(TR,)(TR,)
の各エミッタとベース間にエミッタからベース方向にの
み通電可能なダイオード(Fo)(F、) をそれぞ
れ接続している。な怠、直流電源(Recl)は+側を
端子(BM)(BP)間に接続されている。The opening is an electronic balancing relay, with opposing terminals (B
Short-circuit between P) and (BM) and between (WP) and (WM), and connect an unbalanced voltage detection element (
C1) is connected. This detection element (C1) connects the respective bases of two npn type transistors (TR0) (TR,) to the terminals (RP) (RM) and connects the emitters to each other, and also connects each collector to a DC power supply (Rec). )
The + side of each is connected through a power relay (X,) (X,), and further a transistor (TR,) (TR,)
A diode (Fo) (F, ), which can conduct current only from the emitter to the base, is connected between each emitter and base. By the way, the + side of the DC power supply (Recl) is connected between the terminals (BM) and (BP).
[F]は、主熱源の排ガス温水入口温度信号に対応する
信号変換ポテンショメータで、温度検出端(2)で得ら
れた温度信号に基づき温度調節器員を介して制御モータ
を作動させワイパー四を移動できるよう構成されている
。そして前記フィードバックポテンショメータ(6)に
直列に接続されている。[F] is a signal conversion potentiometer that corresponds to the exhaust gas hot water inlet temperature signal of the main heat source, and operates the control motor via the temperature controller based on the temperature signal obtained at the temperature detection end (2) to operate the wiper 4. It is configured to be mobile. And it is connected in series to the feedback potentiometer (6).
以上のような構成の電子式バランシングリレー〇と各ポ
テンショメータ(A)@鉛とを詰合せることによってブ
リッジ回路が形成される。A bridge circuit is formed by assembling the electronic balancing relay 〇 with the above configuration and each potentiometer (A)@lead.
このブリッジ回路の平衡条件は、補助ポテンショメータ
囚のワイパー■で分割される抵抗の端子(WP)側を抵
抗(R1)、端子(BP)側を抵抗(Rm)とし、フィ
ードバックポテンショメータ■のワイパー(2)で分割
される抵抗の端子(WM)側を抵抗(R1)、端子(B
M)側を抵抗(R4)とし、更にポテンショメータ(ト
)のワイパー翰で分割される抵抗の有効分を抵抗(R6
)、無効分を抵抗(R6)とすれば、
RIR4W R,(R,+ R,) であ!。The equilibrium condition of this bridge circuit is that the terminal (WP) side of the resistor divided by the wiper ■ of the auxiliary potentiometer is the resistor (R1), the terminal (BP) side is the resistor (Rm), and the wiper (2 ), connect the terminal (WM) side of the resistor to the resistor (R1) and the terminal (B
The M) side is the resistance (R4), and the effective part of the resistance divided by the wiper blade of the potentiometer (G) is the resistance (R6).
), and if the reactive part is the resistance (R6), then RIR4W R, (R, + R,)! .
ここで更にポテンショメータ(A)(5)(2)の各全
抵抗をいずれも等しく抵抗(Ro)に設定し、RIRz
x Rs + R45=R6+ R@zR@ (si
la60)としている。Further, all the resistances of the potentiometers (A), (5), and (2) are set to the same resistance (Ro), and RIRz
x Rs + R45=R6+ R@zR@ (si
la60).
ここで冷房能力制御弁aすの開度を1%、排ガス温水の
温度(E y %、補助熱源制御弁(2)の開度を2鴨
とし、
とすると
x(100−g)−z(100−x+y)従って
ξれをグラフに示すと第3図になる。Here, the opening degree of the cooling capacity control valve a is 1%, the temperature of the exhaust gas hot water (Ey%), the opening degree of the auxiliary heat source control valve (2) is 2%, and x(100-g)-z( 100-x+y) Therefore, when the ξ angle is shown in a graph, it becomes as shown in FIG.
但し、開度X%は、9−5℃で100−04と決め、温
度y鳴は85−75°Cで100−0%と決めている。However, the opening degree X% is determined to be 100-04 at 9-5°C, and the temperature y is determined to be 100-0% at 85-75°C.
。 .
すなわち、補助熱源制御弁(2)の開度は、冷水出口温
度に比例して制御されると共に、主1!l!Il#の温
度に逆比例してその制御量を更に変えられる。That is, the opening degree of the auxiliary heat source control valve (2) is controlled in proportion to the cold water outlet temperature, and the opening degree of the auxiliary heat source control valve (2) is controlled in proportion to the cold water outlet temperature. l! The controlled amount can be further changed in inverse proportion to the temperature of Il#.
従って補助熱源の効率的な利用が可能になり、特に2系
統熱源を採用するために起りがちな過大入力を防止でき
る。主#!に#とじて工場からの安価なS温水、太陽熱
温水又はエンジン冷却水などを、補助熱源として高価な
蒸気、ガス又はオイルなどをそれぞれ採用する場合は、
特に効果が着しい。Therefore, the auxiliary heat source can be used efficiently, and in particular, excessive input that tends to occur when two heat sources are used can be prevented. main#! When using inexpensive S hot water, solar hot water, or engine cooling water from the factory as an auxiliary heat source, use expensive steam, gas, or oil as an auxiliary heat source.
Especially effective.
補助ポテンショメータ(2)のワイパー(2)の作動、
更に信号変換ポテンシヨメータηのワイパー四の作動は
、温度によって作動するベローズなどによって行なって
もよい。activation of the wiper (2) of the auxiliary potentiometer (2);
Furthermore, the wiper 4 of the signal conversion potentiometer η may be operated by a bellows that is activated by temperature.
なお、以上の実施例は、冷水機の場合であるが、温水機
又は冷温水機でも同様適用できる。In addition, although the above embodiment is a case of a cold water machine, it can be similarly applied to a hot water machine or a cold/hot water machine.
マタバランシングリレーとしては、sli!施例の電千
成バランシングリレーのほか、1モジユトロールモータ
“の使用が可能である(特−t@61−10954号公
報参照)。As a mata balancing relay, sli! In addition to the Densenari balancing relay in the example, it is possible to use a 1-module troll motor (see Japanese Patent No. 61-10954).
第1図はこの発明に係る吸収式冷凍機の一実施例を示す
機能説明図、第2図はその制御回路図、第8図はそこで
得られる補Jjlllllik源制御弁開度と冷水出口
温度との関係グラフである。
(1)・・・吸収式冷凍機、 (!)−発生器、(8
)・・・排ガス温水配管、 (9)−・・蒸気配管、α
η・・・冷水配管、 OI・・・冷房能力制御弁
、(ハ)−・補助熱源制御弁、 −一・制御回路、(ハ
)・−主熱源の温度検出端、
(2)・・・補助ポテンショメータ、
■・・・フィードバックポテンシ1メータ、0・・・電
子式バランシングリレー、
0・・・信号変換ポテンショメータ。FIG. 1 is a functional explanatory diagram showing an embodiment of an absorption chiller according to the present invention, FIG. 2 is a control circuit diagram thereof, and FIG. This is a relationship graph. (1)...Absorption refrigerator, (!)-generator, (8
)...Exhaust gas hot water piping, (9)-...Steam piping, α
η...chilled water piping, OI...cooling capacity control valve, (c)--auxiliary heat source control valve, -1-control circuit, (c)--main heat source temperature detection end, (2)... Auxiliary potentiometer, ■...Feedback potentiometer 1 meter, 0...Electronic balancing relay, 0...Signal conversion potentiometer.
Claims (1)
号変換ポテンシヨメータと、このポテンシヨメータに直
列に接続された冷水又は温水の温度に対する信号変換ポ
テンシヨメータと、補助熱源の供給量に対する信号変換
フイードパツタポテンシ■メータと、バランシングリレ
ーとによりブリッジ回路を構成し、補助熱源の供給量を
、冷水又は温水の温度に比例して制御させると共にその
制御信号を主熱源の温度に逆比例して調節できるよう構
成してなる吸収式冷凍機。A 1 m system of heat sources is provided, with a signal conversion potentiometer for the temperature of one of the main heat sources, a signal conversion potentiometer for the temperature of cold or hot water connected in series with this potentiometer, and the supply amount of the auxiliary heat source. A bridge circuit is constructed by a signal conversion feed potentimeter and a balancing relay, and the supply amount of the auxiliary heat source is controlled in proportion to the temperature of cold water or hot water, and the control signal is changed to the temperature of the main heat source. An absorption chiller configured to be adjusted in inverse proportion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56127168A JPS5829023A (en) | 1981-08-12 | 1981-08-12 | Absorption type refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56127168A JPS5829023A (en) | 1981-08-12 | 1981-08-12 | Absorption type refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5829023A true JPS5829023A (en) | 1983-02-21 |
Family
ID=14953335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56127168A Pending JPS5829023A (en) | 1981-08-12 | 1981-08-12 | Absorption type refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5829023A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63126330A (en) * | 1986-11-17 | 1988-05-30 | Nec Corp | Echo eliminating device |
CN101893506A (en) * | 2010-07-26 | 2010-11-24 | 中国电子科技集团公司第十八研究所 | Device for temperature test |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5659170A (en) * | 1979-10-19 | 1981-05-22 | Sanyo Electric Co | Singleedouble effect absorption refrigerating machine |
-
1981
- 1981-08-12 JP JP56127168A patent/JPS5829023A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5659170A (en) * | 1979-10-19 | 1981-05-22 | Sanyo Electric Co | Singleedouble effect absorption refrigerating machine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63126330A (en) * | 1986-11-17 | 1988-05-30 | Nec Corp | Echo eliminating device |
CN101893506A (en) * | 2010-07-26 | 2010-11-24 | 中国电子科技集团公司第十八研究所 | Device for temperature test |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970006054B1 (en) | Airconditioner | |
US11927358B2 (en) | HVAC unit fan control systems and methods | |
US3293876A (en) | Refrigeration system including control arrangement for maintaining head pressure | |
JPS5829023A (en) | Absorption type refrigerator | |
US2257915A (en) | Air conditioning system | |
JP2000111125A (en) | Control device for air-conditioner refrigeration cycle | |
CN211918314U (en) | Air conditioning system and vehicle | |
JPS5829024A (en) | Absorption type refrigerator | |
US3623333A (en) | Absorption cooling system | |
JPH10226225A (en) | Air conditioner for vehicle | |
KR100330922B1 (en) | Compressor auxiliary starter and method of air conditioner | |
JPS6340758Y2 (en) | ||
JPS6137522A (en) | Intake cooling and air conditioning device of engine for car | |
JPS631150Y2 (en) | ||
JPS6021696Y2 (en) | air conditioner | |
JP4026991B2 (en) | Gas heat pump type air conditioner | |
JPS58179754A (en) | Air conditioner | |
JPS6142046Y2 (en) | ||
JPS6333107Y2 (en) | ||
JPS6320931Y2 (en) | ||
JPS6311569Y2 (en) | ||
JPH08121893A (en) | Heat pump | |
JPS5815791Y2 (en) | Kuukichiyouwaki | |
JPS6160346B2 (en) | ||
JPS6025708B2 (en) | absorption refrigeration equipment |