JPS5828336B2 - Contact materials for vacuum shields and disconnectors - Google Patents

Contact materials for vacuum shields and disconnectors

Info

Publication number
JPS5828336B2
JPS5828336B2 JP52062359A JP6235977A JPS5828336B2 JP S5828336 B2 JPS5828336 B2 JP S5828336B2 JP 52062359 A JP52062359 A JP 52062359A JP 6235977 A JP6235977 A JP 6235977A JP S5828336 B2 JPS5828336 B2 JP S5828336B2
Authority
JP
Japan
Prior art keywords
average particle
particle size
vacuum
sintering
contact materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52062359A
Other languages
Japanese (ja)
Other versions
JPS53146905A (en
Inventor
勝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP52062359A priority Critical patent/JPS5828336B2/en
Priority to DE2822956A priority patent/DE2822956C2/en
Priority to FR7815733A priority patent/FR2392481A1/en
Priority to GB24072/78A priority patent/GB1597999A/en
Publication of JPS53146905A publication Critical patent/JPS53146905A/en
Priority to US06/192,842 priority patent/US4419551A/en
Publication of JPS5828336B2 publication Critical patent/JPS5828336B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Description

【発明の詳細な説明】 この発明は高耐圧用として優れた真空しゃ断器用接点材
料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a contact material for a vacuum breaker which is excellent for use with high voltage resistance.

真空しゃ断器の接点材料が満足すべき特性として次のも
のがある。
The following characteristics should be satisfied by the contact material of a vacuum breaker:

1)シゃ断性能が大きいこと。1) High cutting performance.

2)耐圧が高いこと。2) High pressure resistance.

3)接触抵抗が小さいこと。4)溶着力が小さいこと。3) Low contact resistance. 4) Low welding force.

5)さい断値が小さいこと。6)消耗が小さいこと。5) The cutoff value is small. 6) Less wear and tear.

しかし、実際の接点材料でこれらの特性を全て満足させ
ることは困難であり一般に用途に応じて特に重要な特性
を満足させ他の特性を幾分犠牲にした材料を使用してい
る。
However, it is difficult to satisfy all of these characteristics with an actual contact material, and in general, materials are used that satisfy particularly important characteristics depending on the application, while sacrificing other characteristics to some extent.

我々の考えによれば電圧の高いしかも電流容量の大きい
回路で使用されるしゃ断器用の接点材料としては上の特
性のうち特に1) 、 2) 、 3)が重要である。
According to our thinking, among the above characteristics, 1), 2), and 3) are particularly important for contact materials for circuit breakers used in circuits with high voltage and large current capacity.

本発明はそのような接点材料を提供するものである。The present invention provides such a contact material.

従来しゃ断器用接点材料としては主としてCuB1が用
いられて来たが、我々の経験によればCuB1中に1%
以以下型れるBiによって真空しゃ断器の耐圧が相当低
下する。
Conventionally, CuB1 has been mainly used as a contact material for circuit breakers, but according to our experience, 1% of CuB1
The withstand pressure of the vacuum breaker is considerably lowered by the Bi formed therein.

我々は高電圧の場合に有利な接点としてCrに着目した
We focused on Cr as an advantageous contact in the case of high voltage.

Crの真空中での耐圧が高いことは公知であるが、一方
耐熱性金属であるので熱電子放射特性が強くそれ単独で
は大きなしゃ断性能を期待出来ない。
It is well known that Cr has a high breakdown voltage in a vacuum, but since it is a heat-resistant metal, it has strong thermionic emission characteristics and cannot be expected to have great breaking performance by itself.

また導電率が小さく、接触抵抗が大きいのでそのままで
は大電流容量のしゃ断器には温度上昇の面から使用出来
ない。
Furthermore, since the conductivity is low and the contact resistance is high, it cannot be used as it is in a circuit breaker with a large current capacity due to the temperature rise.

我々の第2の着目点はこれらのCrの弱点をCuを添加
することにより補うことにある。
Our second point of interest is to compensate for these weaknesses of Cr by adding Cu.

我々の第3の着目点はこのようなCuとCrの合金を粉
末冶金法によって製造することにある。
Our third point of interest is to produce such an alloy of Cu and Cr by powder metallurgy.

粉末冶金法によればCuのマ) IJクス中にCrが均
一に分散したCuCr合金を容易に得ることが出来る。
According to the powder metallurgy method, a CuCr alloy in which Cr is uniformly dispersed in a Cu matrix can be easily obtained.

従来このような接点材料は鋳造法によっていたが、鋳造
法によると上のような均一に分散したCuCr合金を得
難い。
Conventionally, such contact materials have been produced by casting, but by casting, it is difficult to obtain a uniformly dispersed CuCr alloy as described above.

我々の第4の着目点は平均粒径5μ以上のCuを使用す
ることにある。
Our fourth point of interest is the use of Cu with an average particle size of 5 μm or more.

このようなCuは例えば平均粒径3μ程度のCuと比較
すると水素還元減量及び低沸点不純物のいづれもより少
ない。
Such Cu has less hydrogen reduction loss and lower boiling point impurities than, for example, Cu having an average particle size of about 3 μm.

従ってこのようなCuを使用すると酸素含有量及び低沸
点不純物含有量のいづれもより少ない接点材料を得るこ
とが出来る。
Therefore, when such Cu is used, it is possible to obtain a contact material with a lower content of both oxygen and low-boiling point impurities.

かような接点材料が高電圧大電流用として優れているこ
とはいうまでもない。
Needless to say, such contact materials are excellent for high voltage and large current applications.

なお、実際接点を製造する場合金属粉塵が人体その他に
与える影響を防止する必要があるが、平均粒径3μ程度
のCuと比較すると平均粒径5μ以上のCuを使用する
ほうがより浮遊飛散し難いので金属粉塵対策上も有利で
ある。
In addition, when actually manufacturing contacts, it is necessary to prevent metal dust from affecting the human body and others, but compared to Cu with an average particle size of about 3 μm, using Cu with an average particle size of 5 μm or more is more difficult to cause floating and scattering. Therefore, it is also advantageous in terms of measures against metal dust.

従来はCuCr合金に限らず平均粒径3μ程度のCuを
使用する接点材料は上に説明した理由で酸素含有量、低
沸点不純物含有量、金属粉塵対策等の面で難点があった
Conventionally, contact materials using not only CuCr alloy but also Cu with an average particle size of about 3 μm have had difficulties in terms of oxygen content, low boiling point impurity content, metal dust countermeasures, etc. for the reasons explained above.

従って高温真空雰囲気中で焼結することによって酸化物
を解離除去し低沸点不純物をも蒸発飛散させることが必
要であり、他の製造法例えば水素焼結法では困難とされ
ていた。
Therefore, it is necessary to dissociate and remove oxides and evaporate and scatter low-boiling point impurities by sintering in a high-temperature vacuum atmosphere, which is difficult to do with other manufacturing methods such as hydrogen sintering.

しかしながら真空焼結炉は公知の通り本質的に運転効率
が低く、均熱化が困難であることから結果的に接点材料
として高価となっていた。
However, as is well known, vacuum sintering furnaces inherently have low operational efficiency and are difficult to equalize, resulting in expensive contact materials.

いうまでもなく金属粉塵対策上の難点は焼結雰囲気とは
無関係に残る。
Needless to say, difficulties in dealing with metal dust remain regardless of the sintering atmosphere.

我々の第5の着目点は平均粒径100μ以下のCr粉末
を使用することにある。
Our fifth point is to use Cr powder with an average particle size of 100 μm or less.

我々は上の通りCrに高耐圧材料としての性能を期待し
た。
As mentioned above, we expected Cr to have performance as a high-voltage material.

従ってCuマトリクス中にCrが均一に分散することが
必要であり、その意味でCr粒径はより小さいことが望
ましい。
Therefore, it is necessary that Cr be uniformly dispersed in the Cu matrix, and in that sense it is desirable that the Cr particle size be smaller.

我々は上のCuに対する考察と同様の観点にたってCr
の平均粒径の上限はいか程かを耐電圧、しゃ断性能等の
面から検証したが平均粒径100μ以下であればよいこ
とが明らかとなった。
We consider Cr from the same viewpoint as the above consideration for Cu.
The upper limit of the average particle size was examined from the viewpoint of withstand voltage, breaking performance, etc., and it became clear that the average particle size should be 100 μm or less.

我々の第6の着目点はこのようなCuCr合金を上に示
唆した通り水素雰囲気中で焼結することによって得るこ
とにある。
Our sixth point of interest is to obtain such a CuCr alloy by sintering in a hydrogen atmosphere as suggested above.

Crは優れた高耐圧材料である一方非常に酸化し易い弱
点があり一般の鋳造法による場合は使用困難であるが強
力な還元能力を持つ水素雰囲気中で焼結することによっ
て酸化を防止出来るので良好な接点材料が得られる。
Although Cr is an excellent high-pressure material, it has the weakness of being easily oxidized, making it difficult to use with general casting methods, but oxidation can be prevented by sintering in a hydrogen atmosphere, which has a strong reducing ability. A good contact material can be obtained.

我々の実験によれば同様に良好なCuCr合金を真空焼
結法でも得られたがこの場合特にCuについては上のよ
うな難点をもたらす平均粒径3μ程度のCuを使用した
According to our experiments, similarly good CuCr alloys were obtained by vacuum sintering, but in this case, we used Cu with an average grain size of about 3 μm, which causes the above-mentioned difficulties.

同様に平均粒径3μ程度のCμを使用し水素焼結法を試
みたが酸素含有量、低沸点不純物含有量の面で難点があ
った。
Similarly, hydrogen sintering was attempted using Cμ with an average particle size of about 3μ, but there were difficulties in terms of oxygen content and low boiling point impurity content.

しかしながら平均粒径5μ以上のCuを使用すると水素
焼結によっても同様に良好なCuCr合金を得ることが
出来た。
However, when Cu with an average grain size of 5 μm or more was used, a similarly good CuCr alloy could be obtained by hydrogen sintering.

なを真空焼結法と比較した場合水素焼結法が持つ利点は
上の通りである。
The advantages of the hydrogen sintering method compared to the vacuum sintering method are as described above.

以下に本発明の一実施例について述べる。An embodiment of the present invention will be described below.

第1図にCu%と導電率との関係を示す。FIG. 1 shows the relationship between Cu% and electrical conductivity.

これからCuCrの導電率はCu%と共に大きくなるこ
とがわかる。
It can be seen from this that the conductivity of CuCr increases with Cu%.

第2図にCu%と耐電圧との関係を示す。FIG. 2 shows the relationship between Cu% and withstand voltage.

これから耐電圧はCu%と共に低下することがわかる。It can be seen from this that the withstand voltage decreases as the Cu% increases.

これは直径約30mmの接点を使用したモデル管で得ら
れた管で得られたデータである。
This is data obtained with a model tube using contacts with a diameter of approximately 30 mm.

第3図にCu%と溶着特性の関係を示す。FIG. 3 shows the relationship between Cu% and welding properties.

このデータはモデル管の接点に20 kgの一定の加圧
力を与えておき、電流を1秒間流してのち100kgの
力で引き離した時に接点間が開いた最大電流値を示す。
This data shows the maximum current value at which the contacts open when a constant pressure of 20 kg is applied to the contacts of the model tube, a current is passed for 1 second, and then the contacts are pulled apart with a force of 100 kg.

第4図にCuの平均粒径と水素還元減量及び純度特にp
b含有量との関係を示す。
Figure 4 shows the average particle diameter of Cu, hydrogen reduction loss, and purity, especially p.
The relationship with b content is shown.

平均粒径3μ程度のCuの水素還元減量と比較すると平
均粒径5μ程度のそれは50%以下に減少する。
Compared to the hydrogen reduction loss of Cu with an average particle size of about 3 μm, the weight loss with an average particle size of about 5 μm decreases to 50% or less.

同様にpb含有量について比較すると10%以下となる
Similarly, the Pb content is 10% or less.

我々は他の特性例えばCu%と表面硬度、接触抵抗、さ
い断電流、25 KArms L/や断時のアーク時間
の関係についても検証したがいづれも優れた特性を示し
た。
We also verified the relationship between other properties, such as Cu%, surface hardness, contact resistance, breaking current, 25 KArms L/, and arc time at break, and all showed excellent properties.

以上の緒特性から我々は高圧大電流用の真空しゃ断器用
接点材料として、平均粒径5μ以上のCu及び平均粒径
100μ以下のCrからなり水素雰囲気中で焼結して得
るCuCr合金が非常に優れたものであることを確認し
た。
Based on the above characteristics, we found that a CuCr alloy made of Cu with an average grain size of 5μ or more and Cr with an average grain size of 100μ or less, obtained by sintering in a hydrogen atmosphere, is very suitable as a contact material for vacuum breakers for high voltage and large current. I confirmed that it was excellent.

以上で述べた本発明によれば、高耐圧用として優れた真
空しゃ断器用接点材料を得ることができる。
According to the present invention described above, it is possible to obtain a contact material for a vacuum breaker that is excellent for use with high voltage resistance.

【図面の簡単な説明】 第1図はCu%と真電率との関係を示す特性図、第2図
はCu%と耐電圧との関係を示す特性図、第3図はCu
%と溶着特性との関係を示す特性図、第4図はCuの平
均粒径と水素還元量、pb含有量の関係を示す特性図で
ある。
[Brief explanation of the drawings] Figure 1 is a characteristic diagram showing the relationship between Cu% and true electric rate, Figure 2 is a characteristic diagram showing the relationship between Cu% and withstand voltage, and Figure 3 is a characteristic diagram showing the relationship between Cu% and withstand voltage.
% and the welding properties, and FIG. 4 is a characteristic diagram showing the relationship between the average particle diameter of Cu, the amount of hydrogen reduction, and the PB content.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径5μ以上のCuと平均粒径100μ以下の
Crから成り水素雰囲気中で焼結して得ることを特徴と
する真空しゃ断器用接点材料。
1. A contact material for a vacuum breaker, comprising Cu having an average particle size of 5 μm or more and Cr having an average particle size of 100 μm or less, and obtained by sintering in a hydrogen atmosphere.
JP52062359A 1977-05-27 1977-05-27 Contact materials for vacuum shields and disconnectors Expired JPS5828336B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP52062359A JPS5828336B2 (en) 1977-05-27 1977-05-27 Contact materials for vacuum shields and disconnectors
DE2822956A DE2822956C2 (en) 1977-05-27 1978-05-26 Process for the production of switching contacts for a vacuum switch
FR7815733A FR2392481A1 (en) 1977-05-27 1978-05-26 VACUUM CIRCUIT SWITCH AND PRODUCTION PROCESS
GB24072/78A GB1597999A (en) 1977-05-27 1978-05-30 Electrode contact and method of producing the same
US06/192,842 US4419551A (en) 1977-05-27 1980-10-01 Vacuum circuit interrupter and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52062359A JPS5828336B2 (en) 1977-05-27 1977-05-27 Contact materials for vacuum shields and disconnectors

Publications (2)

Publication Number Publication Date
JPS53146905A JPS53146905A (en) 1978-12-21
JPS5828336B2 true JPS5828336B2 (en) 1983-06-15

Family

ID=13197833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52062359A Expired JPS5828336B2 (en) 1977-05-27 1977-05-27 Contact materials for vacuum shields and disconnectors

Country Status (1)

Country Link
JP (1) JPS5828336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777479B2 (en) * 1990-11-30 1998-07-16 株式会社日立製作所 Electrode material for vacuum circuit breaker and vacuum circuit breaker

Also Published As

Publication number Publication date
JPS53146905A (en) 1978-12-21

Similar Documents

Publication Publication Date Title
US3818163A (en) Vacuum type circuit interrupting device with contacts of infiltrated matrix material
US2975256A (en) Vacuum type circuit interrupter
US3246979A (en) Vacuum circuit interrupter contacts
US4419551A (en) Vacuum circuit interrupter and method of producing the same
US3385677A (en) Sintered composition material
US3821505A (en) Vacuum type electric circuit interrupting devices
US4299889A (en) Contact for vacuum interrupter
JP2908071B2 (en) Contact material for vacuum valve
US4501941A (en) Vacuum interrupter contact material
JPS6359217B2 (en)
JPS5828336B2 (en) Contact materials for vacuum shields and disconnectors
US2490214A (en) Electrical contacting element
JPS6141091B2 (en)
KR820000166B1 (en) Vaccume breacker
JPH1150177A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
Lindmayer et al. The effect of unsymmetrical material combination on the contact and switching behavior
JP3751327B2 (en) Silver-oxide based electrical contact element
JPH0510782B2 (en)
JP2911594B2 (en) Vacuum valve
JPH0813065A (en) Sintered material for electrical contact and production thereof
KR820000167B1 (en) Method of manufacture for a vaccume breacker
JP3150516B2 (en) Contact material for vacuum valve
US3663775A (en) Vacuum interrupter with contacts containing a minor percentage of aluminum
JPH04132127A (en) Contact point for vacuum bulb
JPS635846B2 (en)