JPS5828199Y2 - Self-cooling strain detection device - Google Patents

Self-cooling strain detection device

Info

Publication number
JPS5828199Y2
JPS5828199Y2 JP15723476U JP15723476U JPS5828199Y2 JP S5828199 Y2 JPS5828199 Y2 JP S5828199Y2 JP 15723476 U JP15723476 U JP 15723476U JP 15723476 U JP15723476 U JP 15723476U JP S5828199 Y2 JPS5828199 Y2 JP S5828199Y2
Authority
JP
Japan
Prior art keywords
inner cylinder
temperature
pressure
expansion chamber
detection rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15723476U
Other languages
Japanese (ja)
Other versions
JPS5374270U (en
Inventor
功 光高
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP15723476U priority Critical patent/JPS5828199Y2/en
Publication of JPS5374270U publication Critical patent/JPS5374270U/ja
Application granted granted Critical
Publication of JPS5828199Y2 publication Critical patent/JPS5828199Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)

Description

【考案の詳細な説明】 本考案は、構造物などに荷重が加えられた時に生・しる
応力を測定する荷重検出装置に関し、特に、飽和蒸気の
ような高温高圧の雰囲気下での測定にも耐え得るように
したものである。
[Detailed description of the invention] The present invention relates to a load detection device that measures the stress generated when a load is applied to a structure, etc., and is particularly suitable for measurement in high temperature and high pressure atmospheres such as saturated steam. It is also made to withstand.

尚、本考案に係る荷重検出装置は、荷重測定の他、被測
定物の応力や変位を測定する装置、或いは圧力計、振動
計、加速度計などにも応用して利用し得る。
In addition to measuring loads, the load detection device according to the present invention can also be applied to devices that measure stress and displacement of objects to be measured, or to pressure gauges, vibration meters, accelerometers, and the like.

機械や構造物などに加わる荷重、応力およびこれらに基
づく変位などを測定するには、抵抗線ひずみ計などのひ
ずみ計によっていた。
To measure loads and stresses applied to machines and structures, as well as displacements based on these, strain gauges such as resistance wire strain gauges have been used.

しかし、これら従来のひずみ計のゲージ(ひずみ検出部
)の最高使用温度は、その精度を考えると200℃が限
界であり、200℃以上の雰囲気下における使用には困
難であった。
However, the maximum operating temperature of the gauges (strain detection parts) of these conventional strain meters is 200° C., considering its accuracy, and it has been difficult to use them in an atmosphere of 200° C. or higher.

また、外圧が作用する場合には、このひずみ計の肉厚を
厚くしなくてはならないために、測定物に加えられる荷
重の一部をケースが負担し荷重検出棒に正しい値が伝達
されない虞がある。
In addition, when external pressure is applied, the wall thickness of this strain gauge must be increased, so there is a risk that the case will bear part of the load applied to the object to be measured, and the correct value will not be transmitted to the load detection rod. There is.

高温の雰囲気下であっても低圧であれば、水や空気等の
強制循環冷却方式によってゲージ部分の温度を下げるこ
とができるが、ボイラの伝熱管破断実験などのように、
高温高圧の飽和蒸気(例えば、60ata、274℃の
水蒸気)下で伝熱管の破断によるスラスト力を測定しよ
うとする場合には使用することができなかった。
Even in a high-temperature atmosphere, if the pressure is low, the temperature of the gauge part can be lowered by using forced circulation cooling methods such as water or air.
It could not be used when attempting to measure the thrust force caused by fracture of a heat exchanger tube under high temperature, high pressure saturated steam (for example, 60 ata, 274° C. steam).

しかし、ボイラの安全強度を正確に測定するには、実際
の使用状態における伝熱管応力などを静的にあるいは動
的に測定する必要があり、このような高温高圧の雰囲気
下で使用できる荷重検出装置が強く車重れていた。
However, in order to accurately measure the safety strength of a boiler, it is necessary to statically or dynamically measure heat exchanger tube stress under actual operating conditions. The equipment was strong and weighed down the car.

本考案は上述の要望に応えるもので、悪環境の高温高圧
の雰囲気下で被測定物が受けている荷重等を精度良く測
定し得る自己冷却型荷重検出装置を提供することを目的
とする。
The present invention is in response to the above-mentioned needs, and aims to provide a self-cooling type load detection device that can accurately measure the load, etc., being applied to an object to be measured under a high temperature and high pressure atmosphere in an adverse environment.

斯かる目的を達成する本考案の構成は、検出子を備える
検出棒の両端に荷重受板をそれぞれ摩り付け、この両端
の荷重受板のいずれか一方に前記検出棒の検出子を囲繞
する内筒を設けると共に前記内筒との間に軸方向の相対
摺動移動を可能とするように前記内筒を囲繞する外筒な
他方の荷重受板に設け、相対的に摺動移動し得るように
嵌合された前記内筒と外筒とで外部の高温高圧雰囲気か
ら前記検出棒を隔離するほぼ密閉状の減圧膨張室を形成
する一方、前記減圧膨張室を大気中に開放し、外筒と内
筒との間の隙間より流入してくる高温高圧の流体を減圧
膨張室内で断熱的に減圧膨張させて熱降下させ。
The configuration of the present invention to achieve such an object is to attach a load receiving plate to each end of a detection rod equipped with a detector, and attach a load receiving plate to one of the load receiving plates at both ends to surround the detector of the detection rod. A cylinder is provided on the other load receiving plate of the outer cylinder surrounding the inner cylinder so as to enable relative sliding movement in the axial direction between the cylinder and the inner cylinder. The inner cylinder and outer cylinder fitted together form a nearly hermetic vacuum expansion chamber that isolates the detection rod from an external high-temperature, high-pressure atmosphere, while the vacuum expansion chamber is opened to the atmosphere and the outer cylinder The high-temperature, high-pressure fluid that flows in from the gap between the inner cylinder and the inner cylinder is adiabatically expanded under reduced pressure in the reduced-pressure expansion chamber to reduce heat.

得られた低温低圧の流体で検出子および検出棒を冷却す
るようにしたことを特徴とする。
It is characterized in that the detector and the detection rod are cooled with the obtained low-temperature, low-pressure fluid.

以下において、本考案の構成を図面に示す具体例の一つ
に基づいて説明する。
The configuration of the present invention will be explained below based on one specific example shown in the drawings.

検出子である抵抗線ひずみゲージ11が中央部に貼着さ
れた検出棒12の両端には1図示しない被測定物に連結
される荷重受板13.14がそれぞれ摩り付けられてい
る。
Load receiving plates 13 and 14 connected to an object to be measured (not shown) are respectively attached to both ends of a detection rod 12 to which a resistance wire strain gauge 11 serving as a detector is affixed to the center.

この検出棒12と荷重受板13.14との接合は、ねじ
接合によって行なわれた上に検出棒12の端面に突起が
形成され、検出棒12の端面と荷重受板13.14とが
締結時にその全面において接触しないように設けられて
いる。
The detection rod 12 and the load receiving plate 13.14 are connected by screw connection, and a protrusion is formed on the end surface of the detection rod 12, so that the end surface of the detection rod 12 and the load receiving plate 13.14 are fastened together. Sometimes, the entire surface is provided so that it does not touch.

すなわち、検出棒12と荷重受板13゜14との間に空
気層を介在させることで熱伝導による検出棒12の温度
上昇が緩和されるように配慮されている。
That is, by interposing an air layer between the detection rod 12 and the load receiving plates 13 and 14, consideration is given to reducing the temperature rise of the detection rod 12 due to heat conduction.

捷た、両端の荷重受板13.14の間には、外部から侵
入してくる高温高圧の流体が直接に抵抗線ひずみゲージ
11に触れるのを防止するために前記抵抗線ひずみゲー
ジ11を囲繞する内筒15が上側の荷重受板13に突出
形成される一方、下側の荷重受板14に、前記内筒15
を囲繞する外筒16が前記内筒15との間に軸方向の相
対摺動移動を可能とするように設けられ、この相対的に
摺動移動する前記内筒15と外筒16とで外部の高温高
圧の雰囲気から前記検出棒12をほぼ密閉状に隔離する
減圧膨張室17が形成されている。
Between the twisted load receiving plates 13 and 14 at both ends, there is a plate surrounding the resistance wire strain gauge 11 in order to prevent high-temperature, high-pressure fluid entering from the outside from directly touching the resistance wire strain gauge 11. An inner cylinder 15 is formed protrudingly on the upper load receiving plate 13, while an inner cylinder 15 is formed on the lower load receiving plate 14.
An outer cylinder 16 surrounding the inner cylinder 15 is provided to enable relative sliding movement in the axial direction, and the inner cylinder 15 and the outer cylinder 16 that slide relative to each other allow the outer cylinder 16 to move outwardly. A reduced pressure expansion chamber 17 is formed which isolates the detection rod 12 from the high temperature and high pressure atmosphere in a substantially hermetically sealed manner.

更に、前記減圧膨張室17には、大気中に開口した連通
管18が接続され、邑該減圧膨張室17を大気に向けて
開放するように設けられている。
Further, a communication pipe 18 opened to the atmosphere is connected to the decompression expansion chamber 17, and is provided so as to open the depressurization expansion chamber 17 to the atmosphere.

したがって、この減圧膨張室17は、おおむね1 at
aの圧力が常時保持されている。
Therefore, this decompression expansion chamber 17 is approximately 1 at
The pressure a is maintained at all times.

勿論、大気以外にも、例えば更に低圧の低圧源に接続す
ることもできる。
Of course, it is also possible to connect to a low pressure source other than the atmosphere, for example a lower pressure source.

19は抵抗線ひずみゲージ11のリード線を外部へ増り
出すためのリード線増出管である。
19 is a lead wire extension tube for extending the lead wire of the resistance wire strain gauge 11 to the outside.

このリード線は、言う昔でもなく抵抗線ひずみゲージ1
1の信号に基づいて荷重受板13.14から受けている
荷重を割り出す装置に接続される。
This lead wire is a resistance wire strain gauge 1.
It is connected to a device that determines the load being received from the load receiving plate 13, 14 based on the signal of 1.

筐た、前記内筒15とこれに接する外筒16の周縁との
間には、隙間20があけられ、前記減圧膨張室17と外
筒16の外部の高温高圧雰囲気とが連通させられるよう
に設けられている。
A gap 20 is provided between the inner cylinder 15 and the peripheral edge of the outer cylinder 16 in contact with the inner cylinder 15 so that the reduced pressure expansion chamber 17 and the high temperature and high pressure atmosphere outside the outer cylinder 16 are communicated with each other. It is provided.

そして、この隙間20の大きさは次の二つの要因から主
に決定される。
The size of this gap 20 is mainly determined by the following two factors.

一つには、内筒15と外筒16とが、外部からの荷重を
受けて伸縮する検出棒12と共に相互に軸方向移動する
際に、互いに軸方向移動を拘束し合わないように摺動可
能とすることを確保するためのものであること。
For one thing, when the inner cylinder 15 and the outer cylinder 16 mutually move in the axial direction together with the detection rod 12 which expands and contracts in response to an external load, they slide so as not to restrict each other's axial movement. The objective is to ensure that it is possible.

もう一つには、内筒15と外筒16とを自由に軸方向移
動させるには、この内筒15と外筒16の間の隙間20
を大きくしてもか捷わないのであるが、あ捷りこの隙間
20を大きくすれば、高温高圧の流体が大量に減圧膨張
室17内に流入するために抵抗線ひずみゲージ11の周
囲も外部と内じく高温高圧の雰囲気となってしすい精度
の良い荷重測定が不可能となるので、この高温高圧の流
体の流入を最小限に絞って低圧の減圧膨張室17に流入
させることにより、この流体を断熱的に減圧膨張させ、
熱降下を起こさせるためのものである。
On the other hand, in order to freely move the inner cylinder 15 and the outer cylinder 16 in the axial direction, there is a gap 20 between the inner cylinder 15 and the outer cylinder 16.
However, if the gap 20 is made larger, a large amount of high-temperature, high-pressure fluid will flow into the decompression expansion chamber 17, and the area around the resistance wire strain gauge 11 will also be exposed to the outside. This naturally creates a high-temperature, high-pressure atmosphere, making it impossible to measure the load with high accuracy. Therefore, by minimizing the inflow of this high-temperature, high-pressure fluid and allowing it to flow into the low-pressure decompression expansion chamber 17, This fluid is expanded adiabatically under reduced pressure,
This is to cause heat to drop.

したがって、外筒16と内筒15との間が相互に摺動移
動し得る程度の隙間が設けられてかり、しかも、外部の
高温高圧流体の大量の流入を防ぐ程度の大きさの隙間で
なければならない。
Therefore, a gap must be provided to allow mutual sliding movement between the outer cylinder 16 and the inner cylinder 15, and the gap must also be large enough to prevent a large amount of external high-temperature, high-pressure fluid from flowing in. Must be.

依って、第3〜5図に示すように、一定間隔毎に大きさ
の異なる隙間20を設ける必要性は1つたくない。
Therefore, as shown in FIGS. 3 to 5, there is no need to provide gaps 20 of different sizes at regular intervals.

このように構成されるのは、摺動移動のための微小隙間
と、高温高圧の流体の流入量制御のための隙間とを別々
にしたためである。
The reason for this configuration is that the minute gap for sliding movement and the gap for controlling the inflow amount of high-temperature, high-pressure fluid are made separate.

均一な隙間を全周にわたって形成することも任意である
It is also optional to form a uniform gap over the entire circumference.

尚、前記内筒15と外筒16とは、円筒形状は勿論、四
角形状や三角形状などの角筒形状も含むものである。
Note that the inner tube 15 and the outer tube 16 include not only cylindrical shapes but also rectangular tube shapes such as square shapes and triangular shapes.

次に、第6図に示す温度−エントロピ(T、S)線図に
基づいて、圧力60atat温度274℃(絶対温度5
47°K)の飽和蒸気を外部の高温高圧流体としたボイ
ラの伝熱管破断実験で本装置の自己冷却原理および作用
を説明する。
Next, based on the temperature-entropy (T, S) diagram shown in FIG.
The self-cooling principle and operation of this device will be explained using a boiler heat exchanger tube rupture experiment using saturated steam (47°K) as the external high-temperature, high-pressure fluid.

ただし、この線図においては可逆断熱変化は垂直線で表
わされる。
However, in this diagram, reversible adiabatic changes are represented by vertical lines.

本考案の自己冷却型荷重検出装置は、例えば2つある荷
重受板13,14のうち一方を前記伝熱管に連結して他
方を試験機に連結し、この試験機によって伝熱管に加え
られる荷重を検出棒12に生じるひずみを検出すること
によって測定する場合に使用されるものであるが、前述
したように前記伝熱管の筐わりの環境を飽和蒸気雰囲気
とした場合、この飽和蒸気は、本装置の隙間20から圧
力の低い減圧膨張室17内に流入する。
In the self-cooling load detection device of the present invention, for example, one of the two load receiving plates 13 and 14 is connected to the heat exchanger tube and the other is connected to a testing machine, and the load applied to the heat exchanger tube by this testing machine is This is used when measuring by detecting the strain that occurs in the detection rod 12, but as mentioned above, when the environment of the heat transfer tube casing is a saturated steam atmosphere, this saturated steam is It flows from the gap 20 of the device into the reduced pressure expansion chamber 17 where the pressure is low.

抵抗ひずみゲージ11の冷却作用は、この飽和蒸気が減
圧膨張室17に流入した際に断熱的に減圧ないし膨張す
る時に起こる熱降下現象を利用したものである。
The cooling effect of the resistance strain gauge 11 utilizes the heat drop phenomenon that occurs when the saturated steam flows into the decompression expansion chamber 17 and is adiabatically reduced in pressure or expanded.

第6図において、0−6−l−8−2−10は圧力1
ataの等圧線図、0−5−7−3−9−4は圧力60
ataの等圧線図である。
In Figure 6, 0-6-l-8-2-10 is pressure 1
isobar diagram of ata, 0-5-7-3-9-4 is pressure 60
It is an isobars diagram of ata.

前記減圧膨張室17は連通管18によって大気と連絡さ
れているので、その室内圧力はほぼ1 ataを保持す
る。
Since the decompression expansion chamber 17 is connected to the atmosphere through the communication pipe 18, the pressure within the chamber is maintained at approximately 1 ata.

今、高圧流体が低温の場合は、点5から点6への断熱減
圧のみで熱降下はほとんど起こらない。
Now, if the high-pressure fluid is at a low temperature, only adiabatic decompression from point 5 to point 6 causes almost no heat drop.

しかし、測定精度に支障をきたすものではない。However, this does not affect measurement accuracy.

なぜならば、本装置は200℃以上の高温における使用
を目的としており、200℃以下の低温域における使用
では従来のゲージで十分に測定することができるので引
き下げる必要性がないからである。
This is because this device is intended for use at high temperatures of 200° C. or higher, and when used at low temperatures of 200° C. or lower, it is not necessary to lower the gauge because it can be adequately measured with a conventional gauge.

次に、流体が高温の場合である。この場合には、その状
態によって熱降下程度が異なる。
Next is the case where the fluid is at high temperature. In this case, the degree of heat drop differs depending on the state.

(イ)サブクール水ないし高湿り水蒸気の場合、点7か
ら点8(又は点γ′から点8′)へ断熱的に減圧膨張す
るために熱降下は大きく、減圧膨張室17の雰囲気温度
は100℃になる。
(a) In the case of subcooled water or highly humid steam, the heat drop is large because it expands under reduced pressure from point 7 to point 8 (or from point γ' to point 8') in an adiabatic manner, and the atmospheric temperature of the reduced pressure expansion chamber 17 is 100 It becomes ℃.

0)高乾き水蒸気の場合 高乾き水蒸気の場合は等エンメルピ変化をしやすいので
(点9→9′−+2→10へと状態変化をする)、膨張
後の流体は過熱蒸気となり100℃以上に昇温するため
に熱降下が悪くなる。
0) In the case of highly dry steam In the case of highly dry steam, it is easy to undergo an isoenergetic change (the state changes from point 9 → 9'-+2 → 10), so the fluid after expansion becomes superheated steam and reaches 100℃ or more. Heat drop worsens as the temperature rises.

しかし、減圧膨張室17の雰囲気温度が200℃以下で
あれば精度的にも保証された測定ができる。
However, if the atmospheric temperature of the depressurized expansion chamber 17 is 200° C. or lower, measurement can be performed with guaranteed accuracy.

以上本考案によれば、外部が高温・高圧雰囲気であって
も断熱的状態変化における熱降下現象によって内部の検
出子(抵抗線ひずみゲージ)を囲繞する減圧膨張室内の
雰囲気を100℃前後の安定した温度に引き下げること
ができるので、この検出子を用いた被測定物が受ける荷
重等の測定が高精度に行える。
As described above, according to the present invention, even if the outside is in a high-temperature, high-pressure atmosphere, the atmosphere inside the vacuum expansion chamber surrounding the internal detector (resistance wire strain gauge) can be stabilized at around 100 degrees Celsius due to the heat drop phenomenon caused by adiabatic state changes. Since the temperature can be lowered to a certain temperature, the load applied to the object to be measured can be measured with high precision using this detector.

しかも、検出子の周囲の雰囲気温度を=定温度に安定さ
せることができるので、温度補償も容易に行なえる。
Furthermore, since the ambient temperature around the detector can be stabilized at a constant temperature, temperature compensation can be easily performed.

また、減圧膨張室を構成する円筒と外筒とが互いに軸方
向に摺動移動し得るように設けられているので、上側の
荷重受板に加えられる荷重の全てが検出棒に伝えられ正
確な測定が期待できる。
In addition, since the cylinder and outer cylinder that make up the decompression expansion chamber are installed so that they can slide relative to each other in the axial direction, all of the load applied to the upper load receiving plate is transmitted to the detection rod, allowing accurate measurement. We can expect measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の自己冷却型荷重検出装置の−具体例を
示す中央縦断面図、第2図はその底面図、第3図は第1
図に示すX−X線矢視断面図、第4図は第1図に示すA
部拡大断面図、第5図は外筒に設けられた隙間部分を示
す斜視図、第6図は1ataと60 ataの等圧線図
を示す温度−エントロピ線図である。 図面中、11は検出子である抵抗線ひずみゲージ、12
は検出棒、13.14は荷重受板、15は内筒、16は
外筒、11は減圧膨張室、18は大気と減圧膨張室を連
絡する連通管、20は内筒との摺動を可能とする隙間で
ある。
Fig. 1 is a central vertical cross-sectional view showing a specific example of the self-cooling type load detection device of the present invention, Fig. 2 is a bottom view thereof, and Fig. 3 is the first
A sectional view taken along the line X-X shown in the figure, Figure 4 is A shown in Figure 1.
FIG. 5 is a perspective view showing a gap provided in the outer cylinder, and FIG. 6 is a temperature-entropy diagram showing isobar diagrams of 1 ata and 60 ata. In the drawing, 11 is a resistance wire strain gauge which is a detector, 12
13 and 14 are the detection rods, 13 and 14 are the load receiving plates, 15 is the inner cylinder, 16 is the outer cylinder, 11 is the reduced pressure expansion chamber, 18 is the communication pipe that connects the atmosphere and the reduced pressure expansion chamber, and 20 is the sliding part with the inner cylinder. It is a gap that makes it possible.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 検出子を備える検出棒の両端に荷重受板をそれぞれ取り
付け、この両端の荷重受板のいずれか一方に前記検出棒
の検出子を囲繞する内筒を設けると共に前記内筒との間
に軸方向の相対摺動移動を可能とするように前記内筒を
囲繞する外筒な他方の荷重受板に設け、相対的に摺動移
動し得るように嵌合された前記内筒と外筒とで外部の高
温高圧雰囲気から前記検出棒を隔離するほぼ密閉状の減
圧膨張室を形成する一方、前記減圧膨張室を大気中に開
放し、外筒と内筒との間の隙間より流入してくる高温高
圧の流体を減圧膨張室内で断熱的に減圧膨張させて熱降
下させ、得られた低温低圧の流体で検出子および検出棒
を冷却するようにしたことを特徴とする自己冷却荷重検
出装置。
A load receiving plate is attached to both ends of a detection rod provided with a detector, and an inner cylinder is provided on one of the load receiving plates at both ends to surround the detector of the detection rod, and an axial direction is provided between the inner cylinder and the inner cylinder. The inner cylinder and the outer cylinder are provided on the other load receiving plate of the outer cylinder surrounding the inner cylinder so as to enable relative sliding movement, and the inner cylinder and the outer cylinder are fitted so as to be able to move relative to each other. A nearly hermetically sealed reduced pressure expansion chamber is formed to isolate the detection rod from an external high temperature and high pressure atmosphere, while the reduced pressure expansion chamber is opened to the atmosphere, and the air flows in through the gap between the outer cylinder and the inner cylinder. A self-cooling load detection device characterized in that a high-temperature, high-pressure fluid is adiabatically expanded under reduced pressure in a reduced-pressure expansion chamber to reduce heat, and a detector and a detection rod are cooled with the obtained low-temperature, low-pressure fluid.
JP15723476U 1976-11-24 1976-11-24 Self-cooling strain detection device Expired JPS5828199Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15723476U JPS5828199Y2 (en) 1976-11-24 1976-11-24 Self-cooling strain detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15723476U JPS5828199Y2 (en) 1976-11-24 1976-11-24 Self-cooling strain detection device

Publications (2)

Publication Number Publication Date
JPS5374270U JPS5374270U (en) 1978-06-21
JPS5828199Y2 true JPS5828199Y2 (en) 1983-06-20

Family

ID=28765270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15723476U Expired JPS5828199Y2 (en) 1976-11-24 1976-11-24 Self-cooling strain detection device

Country Status (1)

Country Link
JP (1) JPS5828199Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239639A (en) * 1984-05-15 1985-11-28 Kubota Ltd Pressure resistant explosionproof type load cell
US7430926B2 (en) * 2006-02-13 2008-10-07 General Electric Company Apparatus for measuring bearing thrust load

Also Published As

Publication number Publication date
JPS5374270U (en) 1978-06-21

Similar Documents

Publication Publication Date Title
JP2005090513A (en) Method for measuring piping force acting on turbine casing
BR102015006125B1 (en) Method for monitoring condition of a shock absorber, and, condition monitoring system of a shock absorber
BR102020000254A2 (en) METHOD FOR MONITORING A SHOCK ABSORBER, AND, SHOCK ABSORBER MONITORING SYSTEM
JPS5828199Y2 (en) Self-cooling strain detection device
CN111780914A (en) Early warning formula bellows of two-way flexible inflation
US2442938A (en) Fluid pressure responsive apparatus
CN206450343U (en) International temperature comparing device using refrigerator as cold source
CN103575450B (en) Liquid pressure measurement diaphragm closure means, mechanical indicating pointer tensimeter and pressure unit
US3270565A (en) Omnidirectional acceleration device
CN107367338B (en) The device measured to pipeline lateral stress
US9021855B2 (en) Torsional flow sensor
CN109630906A (en) A kind of detachable pipeline leakage testing device and its detection method
US3407652A (en) Double acting fluid load cell
JPH0617067Y2 (en) Thermal stress monitoring device for thick-walled tubular structures
JP2010210302A (en) Vacuum gauge for low-temperature apparatus
CN109187219A (en) Aircraft Special-Shaped Surface structural capacity heat test roof pressing type anti-deflection loading device
CN209197975U (en) A kind of high-precision pressure gauge based on thermal insulation principle
US20060072643A1 (en) Pressure-thermometer in same time
JPH0569368B2 (en)
Lee et al. Time resolved mass flow measurement for a reciprocating compressor
CN206258195U (en) A kind of adjustable pressure thermometer
US3805620A (en) Depth pressure gauge
SU419771A1 (en) METHOD FOR DETERMINING MASS DOWN
Murdock et al. Measurement of Temperatures in High-Velocity Steam
CN205483329U (en) Shock absorber temperature -detecting device