JP2010210302A - Vacuum gauge for low-temperature apparatus - Google Patents

Vacuum gauge for low-temperature apparatus Download PDF

Info

Publication number
JP2010210302A
JP2010210302A JP2009054451A JP2009054451A JP2010210302A JP 2010210302 A JP2010210302 A JP 2010210302A JP 2009054451 A JP2009054451 A JP 2009054451A JP 2009054451 A JP2009054451 A JP 2009054451A JP 2010210302 A JP2010210302 A JP 2010210302A
Authority
JP
Japan
Prior art keywords
temperature
heat
low
heat receiving
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009054451A
Other languages
Japanese (ja)
Inventor
Yoshichika Tanaka
芳親 田中
Hiroshi Kiyono
寛 清野
Yoshiki Miyazaki
佳樹 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2009054451A priority Critical patent/JP2010210302A/en
Publication of JP2010210302A publication Critical patent/JP2010210302A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum gauge for low-temperature apparatus which is capable of performing measurement even when its measuring range is a region other than a molecular flow region, has improved the vibration-proof property and durability of the conventional vacuum gauge, is suitable for measuring, monitoring, etc., the degree of vacuum of a low-temperature apparatus to which impulses and vibration are applied, is hard to fail even if the pressure of a measuring object increases, and has a wide measuring range. <P>SOLUTION: This vacuum gauge for low-temperature apparatus includes: a low temperature heat source 1 arranged inside a vacuum heat-insulating section, a plurality of heat receiving plates 2, 3, and 4 arranged so as to face this low-temperature source 1 with separations s, m, and L between them; a temperature sensor 5 for measuring the temperature of the low-temperature source 1, a plurality of thermometer sensors 6, 7, and 8 for measuring the respective temperatures of the plurality of heat receiving plates 2, 3, and 4; and a temperature sensor 10 for measuring the temperature of a thermal shield plate or partitions 9. A pressure range inside the vacuum heat-insulating section is detected from the temperature of the low-temperature source 1, the temperature of the shield plate or partitions 9, and respective temperature distributions of the heat receiving plates 2, 3, and 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、極低温機器における断熱箇所など真空を必要とする箇所の圧力を、監視できる真空計に係り、特に、測定範囲が分子流領域以外の領域でも測定可能であり、かつ衝撃・振動のある環境下での使用に耐え、耐久性を向上させた真空計に関するものである。   The present invention relates to a vacuum gauge capable of monitoring the pressure of a place requiring a vacuum such as a heat insulation place in a cryogenic device, and in particular, the measurement range can be measured in a region other than the molecular flow region, and the impact and vibration can be measured. The present invention relates to a vacuum gauge that can withstand use in a certain environment and has improved durability.

従来、一般に利用されているピラニ真空計や熱電対真空計などは、衝撃や振動が加わったり測定範囲より高い圧力で測定すると、故障しやすいという問題があった。この中で、熱伝導真空測定装置(下記特許文献1参照)は、細いフィラメントを使用しないため、振動・衝撃や想定外の高い圧力の測定に対する耐久性が確保できると考えられる。しかし、この熱伝導真空測定装置は、気体分子の平均自由工程が離隔以上となる低い圧力域(分子流領域)のみの測定に限定される。   Conventionally, Pirani vacuum gauges, thermocouple vacuum gauges, and the like that are generally used have a problem that they are likely to fail when subjected to impact or vibration or measured at a pressure higher than the measurement range. Among these, since the heat conduction vacuum measuring device (see Patent Document 1 below) does not use a thin filament, it is considered that durability against vibration / impact and unexpected high pressure measurement can be secured. However, this heat conduction vacuum measuring device is limited to measurement only in a low pressure region (molecular flow region) in which the mean free path of gas molecules is more than a distance.

また、伝熱特性を利用しない水晶摩擦方式の耐振性の高い真空計を、開発中であるという事例がある(下記非特許文献1参照)。   In addition, there is a case in which a quartz friction type vacuum gauge with high vibration resistance that does not use heat transfer characteristics is under development (see Non-Patent Document 1 below).

特公平6−040046号公報Japanese Patent Publication No. 6-040046 特願2008−115173号Japanese Patent Application No. 2008-115173

栗原純一,村田功,佐藤薫,冨川喜弘,阿部琢美,「水晶気圧計の性能実証試験」, 宇宙航空研究開発機構 平成19年度大気球シンポジウム V.地球物理,4Junichi Kurihara, Isao Murata, Kei Sato, Yoshihiro Kajikawa, Tomomi Abe, “Performance Test of Quartz Barometer”, Japan Aerospace Exploration Agency 2007 Air Ball Symposium Geophysics, 4

上記したように、従来の真空計は、測定範囲が分子流領域以外の領域では測定ができず、かつ耐振性や耐久性の面で解決すべき種々の問題があった。   As described above, the conventional vacuum gauge cannot measure in a region other than the molecular flow region, and has various problems to be solved in terms of vibration resistance and durability.

本発明は、上記状況に鑑みて、測定範囲が分子流領域以外の領域でも測定可能であり、かつ従来の真空計の耐振性や耐久性を改善し、衝撃や振動の加わる低温機器の真空度測定や監視などに好適であり、測定範囲以上の圧力に上昇しても故障し難く、測定範囲の広い低温機器用真空計を提供することを目的とする。   In view of the above situation, the present invention is capable of measuring in a region other than the molecular flow region, and improves the vibration resistance and durability of a conventional vacuum gauge, and the degree of vacuum of a low-temperature device to which impact or vibration is applied. An object of the present invention is to provide a vacuum gauge for low-temperature equipment that is suitable for measurement and monitoring, and that does not easily fail even when the pressure rises above the measurement range.

本発明は、上記目的を達成するために、
〔1〕低温機器用真空計において、真空断熱部内に配置される低温源と、この低温源から異なった離隔をとって対向するように配置される複数の受熱板と、前記低温源の温度を測定する温度センサと、前記複数の受熱板のそれぞれの温度を測定する複数の温度センサと、熱シールド板または隔壁の温度を測定する温度センサとを具備し、前記低温源の温度および前記熱シールド板または隔壁の温度と前記複数の各受熱板それぞれの温度分布から前記真空断熱部内の圧力域を検出することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a vacuum gauge for low-temperature equipment, a low-temperature source disposed in the vacuum heat insulating portion, a plurality of heat receiving plates disposed to be opposed to each other at different distances from the low-temperature source, and the temperature of the low-temperature source A temperature sensor for measuring, a plurality of temperature sensors for measuring the temperature of each of the plurality of heat receiving plates, and a temperature sensor for measuring the temperature of the heat shield plate or the partition wall, and the temperature of the low temperature source and the heat shield The pressure region in the vacuum heat insulating part is detected from the temperature of the plate or partition and the temperature distribution of each of the plurality of heat receiving plates.

〔2〕上記〔1〕記載の低温機器用真空計において、前記低温源の温度と前記熱シールド板または隔壁の温度と前記複数の受熱板それぞれの前記低温源からの離隔に対する温度分布の関係から、前記低温源と前記複数の受熱板との離隔が気体分子平均自由行程より小さいときに生じる分子流領域と、前記離隔が気体分子平均自由行程より大きいときに生じる粘性流領域、及びこれらの移行領域である中間流領域のそれぞれの特性のうちどの領域かを判定し、これらの組み合わせに応じて前記真空断熱部内の圧力域を検出することを特徴とする。   [2] In the vacuum gauge for low temperature equipment according to [1] above, from the relationship between the temperature of the low temperature source, the temperature of the heat shield plate or the partition, and the temperature distribution with respect to the separation of the plurality of heat receiving plates from the low temperature source. A molecular flow region that occurs when the separation between the low-temperature source and the plurality of heat receiving plates is smaller than the gas molecule mean free path, a viscous flow region that occurs when the separation is greater than the gas molecule mean free path, and their transition It is characterized by determining which one of the characteristics of the intermediate flow region, which is a region, and detecting the pressure region in the vacuum heat insulating portion according to the combination thereof.

〔3〕上記〔1〕記載の低温機器用真空計において、前記低温源と前記複数の受熱板との離隔、前記低温源と前記複数の受熱板が対向する面の面積、前記受熱板の比熱および質量、前記真空断熱部の隔壁から前記真空断熱部内の前記複数の受熱板への熱侵入量と、前記低温源と前記複数の受熱板の間の熱伝達率に基づいて前記低温源と前記複数の受熱板の間の伝熱量または熱伝達率を求め、この低温源と複数の受熱板の間の伝熱量または熱伝達率の関係から、前記低温源と前記複数の受熱板それぞれの離隔に応じ分子流領域と粘性流領域および中間流領域の特性のうちそれぞれどの領域の特性により熱伝達されるかを判断し、これらの組み合わせに応じて前記真空断熱部内の圧力域を検出することを特徴とする。   [3] The vacuum gauge for low-temperature equipment according to [1] above, the separation between the low-temperature source and the plurality of heat receiving plates, the area of the surface where the low-temperature source and the plurality of heat receiving plates are opposed, the specific heat of the heat receiving plate And the mass, the amount of heat penetration from the partition wall of the vacuum heat insulating portion into the plurality of heat receiving plates in the vacuum heat insulating portion, and the heat transfer coefficient between the low temperature source and the plurality of heat receiving plates, and the low temperature source and the plurality of heat receiving plates The amount of heat transfer or heat transfer coefficient between the heat receiving plates is obtained, and from the relationship between the heat transfer amount or heat transfer coefficient between the low temperature source and the plurality of heat receiving plates, the molecular flow region and the viscosity are determined according to the separation between the low temperature source and the plurality of heat receiving plates. It is characterized by determining which of the characteristics of the flow region and the intermediate flow region the heat transfer is based on, and detecting the pressure region in the vacuum heat insulating portion according to the combination thereof.

すなわち、低温機器への適用を前提として低温機器の持つ低温源を熱源とし、従来技術で断線し易かったフィラメントを利用せずに圧力を測定する。低温源は温度が固定されている液体ヘリウム系、冷凍機コールドヘッドなどを利用する。低温源にはある離隔を変えた複数の受熱板を対向させて配置することにより、受熱板から低温源への熱伝達率は距離に応じて異なるが、それぞれの熱伝達特性は圧力に応じて変化する。これらの特性の違いを利用することにより、各受熱板の温度を測定し、それぞれの関係から圧力を換算する。   That is, on the premise of application to low-temperature equipment, the low-temperature equipment has a low-temperature source as a heat source, and the pressure is measured without using a filament that was easily broken by the conventional technology. The low-temperature source uses a liquid helium system, a refrigerator cold head, or the like whose temperature is fixed. The heat transfer coefficient from the heat receiving plate to the low temperature source differs depending on the distance by arranging a plurality of heat receiving plates with different separations facing each other in the low temperature source, but each heat transfer characteristic depends on the pressure Change. By utilizing the difference in these characteristics, the temperature of each heat receiving plate is measured, and the pressure is converted from each relationship.

本発明によれば、低温源を持つ低温機器に対し、耐振性・耐久性を向上させた、測定範囲外の圧力でも破損し難く、より測定範囲を拡大させた真空計を提供することができ、衝撃や振動を受ける低温機器の真空度測定、監視、制御を可能にすることができる。   According to the present invention, it is possible to provide a vacuum gauge that has improved vibration resistance and durability, is not easily damaged even by pressure outside the measurement range, and has an expanded measurement range for low-temperature equipment having a low-temperature source. It is possible to measure, monitor and control the degree of vacuum of low-temperature equipment subjected to shock and vibration.

本発明の原理を示す低温機器用真空計の模式図である。It is a schematic diagram of the vacuum gauge for low temperature equipment which shows the principle of this invention. 本発明の原理を示す伝熱距離に伴う伝熱特性の変化を示す図である。It is a figure which shows the change of the heat transfer characteristic with the heat transfer distance which shows the principle of this invention. 本発明の実施例を示す低温機器用真空計の模式図である。It is a schematic diagram of the vacuum gauge for low temperature equipment which shows the Example of this invention. 本発明の実施例における伝熱距離と伝熱量の関係を示す図である。It is a figure which shows the relationship between the heat transfer distance and the amount of heat transfers in the Example of this invention.

本発明の低温機器用真空計は、真空断熱部内に配置される低温源と、この低温源から異なった離隔をとって対向するように配置される複数の受熱板と、前記低温源の温度を測定する温度センサと、前記複数の受熱板のそれぞれの温度を測定する複数の温度センサと、熱シールド板または隔壁の温度を測定する温度センサとを具備し、前記低温源の温度および前記熱シールド板または隔壁の温度と前記複数の受熱板それぞれの温度分布から前記真空断熱部内の圧力域を検出する。   The vacuum gauge for low-temperature equipment according to the present invention includes a low-temperature source disposed in the vacuum heat insulating portion, a plurality of heat receiving plates disposed to face each other at different distances from the low-temperature source, and the temperature of the low-temperature source. A temperature sensor for measuring, a plurality of temperature sensors for measuring the temperature of each of the plurality of heat receiving plates, and a temperature sensor for measuring the temperature of the heat shield plate or the partition wall, and the temperature of the low temperature source and the heat shield The pressure region in the vacuum heat insulating part is detected from the temperature of the plate or partition and the temperature distribution of each of the plurality of heat receiving plates.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の原理を示す低温機器用真空計の模式図、図2はその伝熱距離に伴う伝熱特性の変化を示す図である。   FIG. 1 is a schematic diagram of a vacuum gauge for low-temperature equipment showing the principle of the present invention, and FIG. 2 is a diagram showing changes in heat transfer characteristics with the heat transfer distance.

これらの図において、1は低温源、2,3,4は低温源1に対して異なる距離(離隔)をとった複数の受熱板、5は低温源1の温度を測定する第1の温度センサ、6は受熱板2の温度を測定する第2の温度センサ、7は受熱板3の温度を測定する第3の温度センサ、8は受熱板4の温度を測定する第4の温度センサ、9は隔壁または熱シールド板、10は隔壁または熱シールド板9の温度を測定する第5の温度センサ、11,12,13は複数の受熱板2,3,4をそれぞれ隔壁または熱シールド板9に固定するための受熱板固定部材である。   In these drawings, 1 is a low temperature source, 2, 3 and 4 are a plurality of heat receiving plates which are at different distances (separations) from the low temperature source 1, and 5 is a first temperature sensor for measuring the temperature of the low temperature source 1. , 6 is a second temperature sensor for measuring the temperature of the heat receiving plate 2, 7 is a third temperature sensor for measuring the temperature of the heat receiving plate 3, 8 is a fourth temperature sensor for measuring the temperature of the heat receiving plate 4, 9 Is a fifth temperature sensor for measuring the temperature of the partition wall or the heat shield plate 9, and 11, 12, and 13 are a plurality of heat receiving plates 2, 3, and 4, respectively. A heat receiving plate fixing member for fixing.

図1に示すように、低温源1に対し異なる距離の離隔を持った受熱板2,3,4を対向させて設置する。低温源1は第1の温度センサ5で、受熱板2,3,4は第2の温度センサ6,第3の温度センサ7及び第4の温度センサ8で、隔壁または熱シールド板9は第5の温度センサ10でそれぞれ温度を測定する。あらかじめ把握している低温源1と各受熱板2,3,4との距離(離隔)s,m,L、低温源1と受熱板2,3,4が対向する面の面積、受熱板2,3,4の比熱及び質量、隔壁または熱シールド板9から受熱板2,3,4への熱侵入量と、圧力に応じて変化する低温源1と各受熱源2,3,4の間の熱伝達率から、低温源1と各受熱板2,3,4の間の伝熱量を求めることができる。このため、低温源1と各受熱板2,3,4および隔壁または熱シールド板9の平衡温度を測定し、この測定結果およびそれらの関係から測定対象の圧力に換算することができる。   As shown in FIG. 1, the heat receiving plates 2, 3, 4 having a different distance from the low temperature source 1 are installed facing each other. The low temperature source 1 is the first temperature sensor 5, the heat receiving plates 2, 3, 4 are the second temperature sensor 6, the third temperature sensor 7 and the fourth temperature sensor 8, and the partition wall or the heat shield plate 9 is the first temperature sensor 5. The temperature is measured by each of the five temperature sensors 10. Distances (separations) s, m, L between the low temperature source 1 and the heat receiving plates 2, 3, 4, the area of the surface where the low temperature source 1 and the heat receiving plates 2, 3, 4 face each other, the heat receiving plate 2 , 3 and 4, the amount of heat penetration from the partition wall or heat shield plate 9 to the heat receiving plates 2, 3, 4, and between the low temperature source 1 and each heat receiving source 2, 3, 4 which changes according to the pressure From the heat transfer coefficient, the amount of heat transfer between the low temperature source 1 and each of the heat receiving plates 2, 3, 4 can be obtained. For this reason, the equilibrium temperature of the low-temperature source 1, the heat receiving plates 2, 3, 4 and the partition wall or the heat shield plate 9 can be measured and converted into the pressure to be measured from this measurement result and their relationship.

希薄ガス(真空)中における圧力に応じた伝熱量と距離の関係は、一般に図2のような特性を持っている。伝熱特性には、伝熱距離(離隔)が気体分子平均自由行程より小さいときに生じる分子流領域の特性と、伝熱距離が気体分子平均自由行程より大きいときに生じる粘性流領域、およびこれらの移行領域である中間流領域の特性がある。これらの特性は、圧力が一定の場合、伝熱距離が短いときは分子流領域の特性に応じて伝熱距離が長くなるにつれ熱伝達率は低下していくが、ある距離からその低下率が減少する中間流領域の特性に移行する。さらに伝熱距離を長くしていくと、再び熱伝達率の低下率が大きな粘性流領域の特性に移行する。この伝熱特性における領域特性の移行は圧力に応じて異なり、圧力が高いほど短い伝熱距離で、圧力が低くなるにつれて長い伝熱距離で移行する。   The relationship between the heat transfer amount and the distance according to the pressure in a rare gas (vacuum) generally has the characteristics shown in FIG. The heat transfer characteristics include the characteristics of the molecular flow region that occurs when the heat transfer distance (separation) is smaller than the gas molecule mean free path, the viscous flow region that occurs when the heat transfer distance is greater than the gas molecule mean free path, and these There is a characteristic of the intermediate flow region, which is the transition region. As for these characteristics, when the pressure is constant and the heat transfer distance is short, the heat transfer coefficient decreases as the heat transfer distance increases according to the characteristics of the molecular flow region. Transition to the characteristics of the decreasing intermediate flow region. When the heat transfer distance is further increased, the characteristics of the viscous flow region where the rate of decrease in the heat transfer coefficient is large again are transferred. The transition of the region characteristics in the heat transfer characteristics varies depending on the pressure. The higher the pressure, the shorter the heat transfer distance, and the longer the heat transfer distance, the lower the pressure.

本発明では、低温源1からそれぞれ異なる距離をもって離隔した各受熱板2,3,4の温度の測定結果から、各受熱板2,3,4と低温源1の離隔に対応する伝熱の領域特性を照合し、これらの組み合わせに応じて圧力域を段階的に特定することができる。低温源からそれぞれの受熱板への伝熱特性の組み合わせと圧力域の関係は、例えば受熱板が3枚の構成の場合、表1の通りとなる。   In the present invention, based on the measurement results of the temperatures of the heat receiving plates 2, 3, 4 separated from the low temperature source 1 by different distances, the heat transfer regions corresponding to the separation of the heat receiving plates 2, 3, 4 and the low temperature source 1 are used. The characteristics can be collated, and the pressure range can be specified stepwise according to the combination of these. The relationship between the combination of heat transfer characteristics from the low-temperature source to each heat receiving plate and the pressure range is as shown in Table 1 when the structure includes three heat receiving plates, for example.

図2および表1に示した分子流領域、中間流領域、粘性流領域それぞれにおける熱伝達率は大きく異なるため、それぞれの領域における受熱板の平衡温度は大きく異なることになる。このため、各受熱板の平衡温度からそれぞれの受熱板がどの領域の特性で伝熱されているかを容易に判断することができ、各受熱板の伝熱の領域特性の組み合わせを把握することによって、測定対象の圧力を求めることができる。 Since the heat transfer coefficients in the molecular flow region, the intermediate flow region, and the viscous flow region shown in FIG. 2 and Table 1 are greatly different, the equilibrium temperature of the heat receiving plate in each region is greatly different. For this reason, it is possible to easily determine in which region characteristics the respective heat receiving plates are transferring heat from the equilibrium temperature of each heat receiving plate, and by grasping the combination of the heat transfer region characteristics of each heat receiving plate. The pressure of the measurement object can be obtained.

図3は本発明の実施例を示す低温機器用真空計の模式図、図4はこの実施例における伝熱距離と伝熱量の関係を示す図である。   FIG. 3 is a schematic diagram of a vacuum gauge for low-temperature equipment showing an embodiment of the present invention, and FIG. 4 is a diagram showing a relationship between a heat transfer distance and a heat transfer amount in this embodiment.

図3において、21は低温源、22,23,24は低温源21に対して異なる距離(離隔)をとって配置された複数の受熱板、25は低温源21の温度を測定する第1の温度センサ、26は受熱板22の温度を測定する第2の温度センサ、27は受熱板23の温度を測定する第3の温度センサ、28は受熱板24の温度を測定する第4の温度センサ、29は熱シールド板、30,31,32は受熱板固定部材、33は熱シールド板29の温度を測定する第5の温度センサ、34は真空断熱容器、35は真空断熱容器34と熱シールド板29間に配置される断熱部材、36は低温源21を冷却する冷凍機である。   In FIG. 3, reference numeral 21 denotes a low-temperature source, reference numerals 22, 23, and 24 denote a plurality of heat receiving plates arranged at different distances (separations) from the low-temperature source 21, and reference numeral 25 denotes a first temperature for measuring the temperature of the low-temperature source 21. The temperature sensor 26 is a second temperature sensor that measures the temperature of the heat receiving plate 22, 27 is a third temperature sensor that measures the temperature of the heat receiving plate 23, and 28 is a fourth temperature sensor that measures the temperature of the heat receiving plate 24. , 29 is a heat shield plate, 30, 31 and 32 are heat receiving plate fixing members, 33 is a fifth temperature sensor for measuring the temperature of the heat shield plate 29, 34 is a vacuum heat insulation container, and 35 is a heat insulation plate with the vacuum heat insulation container 34. A heat insulating member 36 disposed between the plates 29 is a refrigerator that cools the low temperature source 21.

冷凍機36で冷却される低温源21を利用した真空計は図3に示すように構成される。40[K]程度の低温源21を持った低温機器において、真空断熱容器34内は希薄ヘリウムガスの雰囲気となっており、1[Pa]程度の内部圧力を測定・監視する。この条件において、3枚の受熱板22,23,24を低温源21に対し3mm、10mm、30mmの離隔を持って対向させて配置する。各受熱板22,23,24は0.01[m2 ]の正方形で、77[K]の熱シールド板29に受熱板固定部材30,31,32を介して固定されている。 The vacuum gauge using the low temperature source 21 cooled by the refrigerator 36 is configured as shown in FIG. In the low temperature apparatus having the low temperature source 21 of about 40 [K], the inside of the vacuum heat insulating container 34 is an atmosphere of dilute helium gas, and the internal pressure of about 1 [Pa] is measured and monitored. Under this condition, the three heat receiving plates 22, 23, and 24 are arranged facing the low temperature source 21 with a separation of 3 mm, 10 mm, and 30 mm. Each of the heat receiving plates 22, 23, and 24 is a square of 0.01 [m 2 ], and is fixed to a heat shield plate 29 of 77 [K] via the heat receiving plate fixing members 30, 31, and 32.

低温源21と受熱板22,23,24の間の伝熱距離とその時の伝熱量の関係を、上記特許文献2に記述した理論〔式(1)〜(4)〕と実験結果に基づいて解析した。解析の結果、各圧力における伝熱量と低温源−受熱板間の距離の関係は、図4のようになった。なお、この特性を解析した際の条件は表2の通りである。   The relationship between the heat transfer distance between the low-temperature source 21 and the heat receiving plates 22, 23, 24 and the amount of heat transferred at that time is based on the theory described in Patent Document 2 [Equations (1) to (4)] and experimental results. Analyzed. As a result of the analysis, the relationship between the amount of heat transfer at each pressure and the distance between the low temperature source and the heat receiving plate is as shown in FIG. The conditions when this characteristic is analyzed are as shown in Table 2.

図4の伝熱量と圧力の関係を基に、図3に示す実施例における3枚の受熱板の平衡温度を、以下のように解析的に求めた。 Based on the relationship between the amount of heat transfer and the pressure in FIG. 4, the equilibrium temperature of the three heat receiving plates in the embodiment shown in FIG. 3 was analytically determined as follows.

受熱板から低温源への伝熱量は下記式(1)となる。   The amount of heat transferred from the heat receiving plate to the low temperature source is expressed by the following formula (1).

1 =ηA(T−40) …(1)
ここで、Tは受熱板温度、ηは受熱板面積、伝熱距離と圧力、ガス種等より決定される。
Q 1 = ηA (T−40) (1)
Here, T is determined by the heat receiving plate temperature, η is determined by the heat receiving plate area, the heat transfer distance and pressure, the gas type, and the like.

熱シールド板から受熱板への伝熱量は下記式(2)となる。   The amount of heat transfer from the heat shield plate to the heat receiving plate is represented by the following formula (2).

2 =(k0 0 /l)・(77−T) …(2)
(k0 :受熱板固定部材の熱伝達率、A0 :受熱板固定部材の断面積、l:受熱板固定部材の長さ)
受熱板の温度変化に必要な熱量は下記式(3)となる。
Q 2 = (k 0 A 0 / l) · (77−T) (2)
(K 0 : heat transfer coefficient of heat receiving plate fixing member, A 0 : cross sectional area of heat receiving plate fixing member, l: length of heat receiving plate fixing member)
The amount of heat necessary for temperature change of the heat receiving plate is represented by the following formula (3).

Q=Cm(dT/dt) …(3)
(C:受熱板比熱、m:受熱板質量、T:受熱板温度)
受熱板の短時間での温度変化は下記式(4)で表される。
Q = Cm (dT / dt) (3)
(C: heat receiving plate specific heat, m: heat receiving plate mass, T: heat receiving plate temperature)
The temperature change of the heat receiving plate in a short time is represented by the following formula (4).

この式(4)を解くことにより、本実施例の条件における各受熱板平衡温度を計算することができ、圧力に応じてηが変化するため、圧力に応じた平衡温度を算出することができる。実施例の諸条件のうち、表2で示した以外については表3に示す。 By solving this equation (4), each heat receiving plate equilibrium temperature under the conditions of the present embodiment can be calculated, and since η changes according to the pressure, the equilibrium temperature according to the pressure can be calculated. . Of the various conditions of the examples, those other than those shown in Table 2 are shown in Table 3.

また、求めた各受熱板の平衡温度は、表4のようになる。 Further, Table 4 shows the obtained equilibrium temperature of each heat receiving plate.

圧力が極めて低いときは3枚の受熱板とも低い温度で平衡し、圧力の上昇に応じても平衡温度はほとんど上昇しないが、さらに圧力が高くなると離隔の大きな受熱板から平衡温度が上昇し、離隔の小さな受熱板の平衡温度も順次上昇し始める。また、さらに圧力が高くなると、離隔の大きな受熱板から高い温度で平衡し、離隔の小さな受熱板も順次高い温度で平衡する。その後は、圧力が上昇しても受熱板の平衡温度はほとんど上昇しなくなる。よって、各受熱板の温度測定結果を表4の特性と比較対照することで、測定対象の圧力を把握することができる。 When the pressure is extremely low, the three heat receiving plates equilibrate at a low temperature, and the equilibrium temperature hardly rises as the pressure increases, but when the pressure increases further, the equilibrium temperature rises from the heat receiving plate with a large separation, The equilibrium temperature of the heat receiving plate with a small separation also starts to rise sequentially. Further, when the pressure is further increased, the heat receiving plate having a large separation is equilibrated at a high temperature, and the heat receiving plates having a small separation are also sequentially balanced at a high temperature. Thereafter, even if the pressure increases, the equilibrium temperature of the heat receiving plate hardly increases. Therefore, the pressure of the measurement object can be grasped by comparing and comparing the temperature measurement result of each heat receiving plate with the characteristics shown in Table 4.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の低温機器用真空計は、測定範囲が分子流領域以外の領域でも測定可能であり、衝撃・振動の加わる環境下でも低温機器の真空度を測定することができ、かつ測定範囲の広い真空計として利用可能である。   The vacuum gauge for low-temperature equipment of the present invention can be measured in a region other than the molecular flow region, can measure the degree of vacuum of a low-temperature device even in an environment where impact and vibration are applied, and has a wide measurement range. It can be used as a vacuum gauge.

1,21 低温源
2,3,4,22,23,24 受熱板
5,25 第1の温度センサ
6,26 第2の温度センサ
7,27 第3の温度センサ
8,28 第4の温度センサ
9 隔壁または熱シールド板
10,33 第5の温度センサ
11,12,13,30,31,32 受熱板固定部材
29 熱シールド板
34 真空断熱容器
35 断熱部材
36 冷凍機
1,21 Low temperature source 2,3,4,22,23,24 Heat receiving plate 5,25 First temperature sensor 6,26 Second temperature sensor 7,27 Third temperature sensor 8,28 Fourth temperature sensor 9 Bulkhead or heat shield plate 10, 33 Fifth temperature sensor 11, 12, 13, 30, 31, 32 Heat receiving plate fixing member 29 Heat shield plate 34 Vacuum heat insulating container 35 Heat insulating member 36 Refrigerator

Claims (3)

真空断熱部内に配置される低温源と、該低温源から異なった離隔をとって対向するように配置される複数の受熱板と、前記低温源の温度を測定する温度センサと、前記複数の受熱板のそれぞれの温度を測定する複数の温度センサと、熱シールド板または隔壁の温度を測定する温度センサとを具備し、前記低温源の温度および前記熱シールド板または隔壁の温度と前記複数の受熱板それぞれの温度分布から前記真空断熱部内の圧力域を検出することを特徴とする低温機器用真空計。   A low-temperature source disposed in the vacuum heat insulating section, a plurality of heat receiving plates disposed to face each other at different distances from the low-temperature source, a temperature sensor for measuring the temperature of the low-temperature source, and the plurality of heat receiving units A plurality of temperature sensors for measuring the temperature of each of the plates, and a temperature sensor for measuring the temperature of the heat shield plate or the partition wall, and the temperature of the low temperature source, the temperature of the heat shield plate or the partition wall, and the plurality of heat receiving units. A vacuum gauge for low-temperature equipment, wherein a pressure region in the vacuum heat insulating portion is detected from a temperature distribution of each plate. 請求項1記載の低温機器用真空計において、前記低温源の温度と前記熱シールド板または隔壁の温度と前記複数の受熱板それぞれの前記低温源からの離隔に対する温度分布の関係から、前記低温源と前記複数の受熱板との離隔が気体分子平均自由行程より小さいときに生じる分子流領域と、前記離隔が気体分子平均自由行程より大きいときに生じる粘性流領域、及びこれらの移行領域である中間流領域のそれぞれの特性のうちどの領域かを判定し、これらの組み合わせに応じて前記真空断熱部内の圧力域を検出することを特徴とする低温機器用真空計。   2. The vacuum gauge for low temperature equipment according to claim 1, wherein the low temperature source is calculated from the relationship between the temperature of the low temperature source, the temperature of the heat shield plate or the partition wall, and the temperature distribution of each of the plurality of heat receiving plates from the low temperature source. A molecular flow region that occurs when the separation between the plurality of heat receiving plates is smaller than the gas molecule mean free path, a viscous flow region that occurs when the separation is greater than the gas molecule mean free path, and an intermediate between these transition regions A vacuum gauge for low-temperature equipment, characterized by determining which one of the characteristics of the flow region is a region and detecting the pressure region in the vacuum heat insulating portion according to a combination thereof. 請求項1記載の低温機器用真空計において、前記低温源と前記複数の受熱板との離隔、前記低温源と前記複数の受熱板が対向する面の面積、前記受熱板の比熱および質量、前記真空断熱部の隔壁から前記真空断熱部内の前記複数の受熱板への熱侵入量と、前記低温源と前記複数の受熱板の間の熱伝達率に基づいて前記低温源と前記複数の受熱板の間の伝熱量または熱伝達率を求め、該低温源と複数の受熱板の間の伝熱量または熱伝達率の関係から、前記低温源と前記複数の受熱板それぞれの離隔に応じ分子流領域と粘性流領域および中間流領域の特性のうちそれぞれどの領域の特性により熱伝達されるかを判断し、これらの組み合わせに応じて前記真空断熱部内の圧力域を検出することを特徴とする低温機器用真空計。   The vacuum gauge for low temperature equipment according to claim 1, wherein the low temperature source and the plurality of heat receiving plates are separated, the area of the surface where the low temperature source and the plurality of heat receiving plates are opposed, the specific heat and mass of the heat receiving plate, Transfer of heat between the low temperature source and the plurality of heat receiving plates based on the amount of heat penetration from the partition of the vacuum heat insulating unit to the plurality of heat receiving plates in the vacuum heat insulating unit and the heat transfer coefficient between the low temperature source and the plurality of heat receiving plates. The amount of heat or heat transfer coefficient is obtained, and from the relationship between the heat transfer amount or heat transfer coefficient between the low temperature source and the plurality of heat receiving plates, the molecular flow region, the viscous flow region, and the intermediate according to the separation of the low temperature source and the plurality of heat receiving plates, respectively. A vacuum gauge for low-temperature equipment, characterized by determining which of the characteristics of the flow region is responsible for heat transfer, and detecting the pressure region in the vacuum heat insulating portion according to a combination thereof.
JP2009054451A 2009-03-09 2009-03-09 Vacuum gauge for low-temperature apparatus Withdrawn JP2010210302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054451A JP2010210302A (en) 2009-03-09 2009-03-09 Vacuum gauge for low-temperature apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054451A JP2010210302A (en) 2009-03-09 2009-03-09 Vacuum gauge for low-temperature apparatus

Publications (1)

Publication Number Publication Date
JP2010210302A true JP2010210302A (en) 2010-09-24

Family

ID=42970643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054451A Withdrawn JP2010210302A (en) 2009-03-09 2009-03-09 Vacuum gauge for low-temperature apparatus

Country Status (1)

Country Link
JP (1) JP2010210302A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027022A (en) * 2012-07-24 2014-02-06 Toshiba Corp Extremely low temperature retaining component accommodation device and refrigeration cable used for the device
CN111044212A (en) * 2019-12-31 2020-04-21 嘉兴学院 External digital display sensor for vacuum pressure detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027022A (en) * 2012-07-24 2014-02-06 Toshiba Corp Extremely low temperature retaining component accommodation device and refrigeration cable used for the device
CN111044212A (en) * 2019-12-31 2020-04-21 嘉兴学院 External digital display sensor for vacuum pressure detection
CN111044212B (en) * 2019-12-31 2021-10-15 嘉兴南湖学院 External digital display sensor for vacuum pressure detection

Similar Documents

Publication Publication Date Title
US20070153869A1 (en) Dynamic heat flow meter for measuring thermal properties of insulation or the like, and corresponding method
Kess et al. Investigation of operational and environmental variability effects on damage detection algorithms in a woven composite plate
CN105044147A (en) Near-phase change zone frozen soil thermal conductivity coefficient determination device and method
Ling et al. Stability analysis for inverse heat conduction problems
Tutak Application of strain gauges in measurements of strain distribution in complex objects
CN106441472A (en) Method for temperature drift inhibition of constant power type thermal type gas flowmeter
Nie et al. Dew point and relative humidity measurement using a quartz resonant sensor
Yi et al. Measurement error of surface-mounted fiber Bragg grating temperature sensor
Burgass et al. Development of a new method for measurement of the water dew/frost point of gas
JP2010210302A (en) Vacuum gauge for low-temperature apparatus
KR20100045719A (en) Stiffness measurement apparatus of super conductor bearing
KR101694993B1 (en) Apparatus and method for measuring thermal property of test piece using cryogenic refrigerator
JP2012083206A (en) Dew point meter, hygrometer, dew point derivation apparatus, humidity derivation apparatus, dew point measuring method and humidity measuring method
White et al. The hysteresis characteristics of some industrial PRTs
Li et al. A QCM dew point sensor with active temperature control using thermally conductive electrodes
CN104132963B (en) Thermal contact resistance detection device when a kind of microstress
US20190293533A1 (en) Noise reduction for strain-controlled testing
Schiwietz et al. Temperature dependence of quality factors at high frequencies in mems gyroscopes
Li et al. Structure optimization and performance evaluation of dew point sensors based on quartz crystal microbalance
JP2010210301A (en) Vacuum gauge for low-temperature apparatus
JP2009281910A (en) Measuring instrument of thermophysical properties
US20220365245A1 (en) Output method for electronic wbgt meter, and electronic wbgt meter
US20060056483A1 (en) Device for determining changes in dimension due to temperature fluctuation
CN103675343A (en) Acceleration sensor
CN102778476B (en) Method for measuring heat conduction coefficient by using positive and negative bidirectional heat flow method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605