JPS5828038B2 - Friction welding method - Google Patents

Friction welding method

Info

Publication number
JPS5828038B2
JPS5828038B2 JP4229777A JP4229777A JPS5828038B2 JP S5828038 B2 JPS5828038 B2 JP S5828038B2 JP 4229777 A JP4229777 A JP 4229777A JP 4229777 A JP4229777 A JP 4229777A JP S5828038 B2 JPS5828038 B2 JP S5828038B2
Authority
JP
Japan
Prior art keywords
friction
temperature
outside
welding method
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4229777A
Other languages
Japanese (ja)
Other versions
JPS53127348A (en
Inventor
静男 河波
春雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4229777A priority Critical patent/JPS5828038B2/en
Publication of JPS53127348A publication Critical patent/JPS53127348A/en
Publication of JPS5828038B2 publication Critical patent/JPS5828038B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Description

【発明の詳細な説明】 本発明は、主として酸液しようとする2個の部材のいず
れか一方を回転させ、上記部材の突合せ面の回転摩擦熱
と回転軸方向のカロ圧力とを利用して上記部材の接合を
行なう摩擦溶接法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly involves rotating either one of two members to which an acid solution is to be applied, and utilizing the rotational friction heat of the abutting surfaces of the members and Calo pressure in the direction of the rotational axis. The present invention relates to a friction welding method for joining the above members.

摩擦溶接法では、突合せ摩擦面の外側と内側中心部との
温度上昇は、摩擦エネルギーの大きな外側の方が大きく
、したがって摩擦による変形が比較的早い時期から発生
するため、酸液後突合せ面外周に突出したパリが大きく
なる。
In the friction welding method, the temperature rise between the outer and inner centers of the butt friction surfaces is greater on the outside where the frictional energy is greater, and deformation due to friction occurs from a relatively early stage. The prominent Paris becomes larger.

しかしてパリが大きくなると次のような欠点がある。However, as Paris grows larger, it has the following disadvantages:

すなわちパリを除去するための機械加工に時間がかかり
、特にこのパリは酵接中に熱影響を受は素材よりかなり
硬くなっているのでパリ除去に要する時間は、全体のカ
ロ工時間の大部分を占める場合もある。
In other words, the machining process to remove the paris takes time.In particular, the paris is affected by heat during fermentation and becomes much harder than the material, so the time required to remove the paris takes up most of the total machining time. In some cases, it occupies .

さらに、よりしろすなわちパリが大きいため、素材の長
手方向と平行に生じている繊維組織が、両部材の接合面
では接合面と平行な方向へ押し曲げられるため、靭性が
低い欠点がある。
Furthermore, due to the large twist, the fiber structure that is generated parallel to the longitudinal direction of the material is pushed and bent in the direction parallel to the joint surface at the joint surface of both members, resulting in a drawback of low toughness.

これらの欠点を同時に解決する方法としては、よりしろ
すなわちパリを小さくすればよいはずであるが、従来の
方法では摩擦時間を少なくするか、力ロ熱圧力を低くす
るかのいずれかである。
A way to solve these drawbacks at the same time would be to reduce the tension, that is, the pressure, but conventional methods either reduce the friction time or reduce the thermal pressure.

しかしながら両者とも摩擦面の内側と外側との温度差が
大きくなり、接合に心安な温度が得られないという別の
問題が生じてくる。
However, in both cases, the difference in temperature between the inside and outside of the friction surface becomes large, causing another problem in that a safe temperature for bonding cannot be obtained.

本発明は、このような従来の摩擦溶接法の欠点を解消す
るため、互に摩擦回転している接合部材の突合せ面を外
側から冷却し、かつ上記突合せ面の内側と外側とがほぼ
同時に酸液温度に達したとき力ロ圧接合させることを特
徴とする摩擦溶接法を提供する。
In order to eliminate such drawbacks of the conventional friction welding method, the present invention cools the abutting surfaces of the joining members that are frictionally rotating against each other from the outside, and also oxidizes the inside and outside of the abutting surfaces almost simultaneously. Provided is a friction welding method characterized in that force-rotation welding is performed when the liquid temperature is reached.

本発明方法の実施例を図面を参照して詳細に説明する。Embodiments of the method of the present invention will be described in detail with reference to the drawings.

第1図にむいて、接合しようとする部材1.1の一方を
回転チャック7、聞方を固定チャック8に取付けてその
突合せ摩擦面1,1を突合せ、かつ両部材1,1の突合
せ摩擦面1,1の外周に冷却用の中空リング3を設け、
摩擦時の一定期間、該中空リング3の冷却体通路4の内
側にある複数の小穴5から冷却体6を噴射し、摩擦面の
外側を強制的に冷却する。
1, one of the members 1.1 to be joined is attached to the rotary chuck 7 and the other to the fixed chuck 8, and the abutting friction surfaces 1, 1 are abutted, and the abutting friction between the two members 1, 1 is A hollow ring 3 for cooling is provided on the outer periphery of the surfaces 1, 1,
During a certain period of time during friction, a cooling body 6 is injected from a plurality of small holes 5 inside the cooling body passage 4 of the hollow ring 3 to forcibly cool the outside of the friction surface.

しかしてこのような冷却方法を用いることによって、以
下に説明するような摩擦面の温度とよりしろに従来方法
と異なる現象が生じ、酸接後の状況は、第2図に示す如
くパリ2が極めて小さい継手が得られる。
However, by using such a cooling method, a phenomenon different from that of the conventional method occurs in addition to the temperature of the friction surface as explained below. A very small joint is obtained.

第3図に示す本発明方法の全酸液工程における接合部材
の回転数N、カロ圧力P、温度T、およびよりしろδの
変化状況を、第4図の従来法と比較しながら説明する。
Changes in the rotational speed N, Calo pressure P, temperature T, and twisting margin δ of the joining members during the entire acid solution process of the method of the present invention shown in FIG. 3 will be explained while comparing with the conventional method shown in FIG. 4.

寸ず第3固転よび第4図において、3− a図および4
− a図は時間tと回転数Nとの関係の図表、3−b図
および4−b図は時間tと加圧力Pとの関係の図表で、
phはカロ熱圧力、Puはアプセット圧力、3−c固転
よび4−0図は時間tと摩擦面の温度Tとの関係の図表
で、Tiは摩擦面の内側温度、Toは摩擦面の外側温度
、3−d図むよび4−d図は時間tとよりしろδとの関
係の図表で、δhは摩擦よりしろ、δUはアプセットよ
りしろを夫々示し、3− a図耘よび4−a図、31b
図および4−b図に示す如く、回転数N、77[]圧力
Pについては本発明方法は従来方法と同じ条件とする。
In Sunzu 3rd fixation and 4th figure, 3-a figure and 4
- Figure a is a graph of the relationship between time t and rotation speed N, Figures 3-b and 4-b are graphs of the relationship between time t and pressing force P,
ph is the caloric pressure, Pu is the upset pressure, Figure 3-c and 4-0 are graphs of the relationship between time t and temperature T of the friction surface, Ti is the inner temperature of the friction surface, and To is the temperature of the friction surface. Outside temperature, Figures 3-d and 4-d are graphs of the relationship between time t and twisting force δ, where δh indicates the force behind friction and δU indicates the force behind upset, respectively. Figure a, 31b
As shown in the figures and 4-b, the conditions for the rotational speed N and 77[] pressure P are the same in the method of the present invention as in the conventional method.

本発明方法にも・いて、一方の部材が回転をはじめ、3
− a図の如く一定の回転数Nに達すると、池方の部材
が3−b図に示すカロ圧力Phにより進行し、両部材が
接触し摩擦発熱をおこす。
According to the method of the present invention, one member starts rotating and three
- When the rotational speed N reaches a certain value as shown in Fig. 3-a, the Ikekata member advances due to the Karo pressure Ph shown in Fig. 3-b, and both members come into contact and generate frictional heat.

しばらくして冷却体を噴出し、両部材の摩擦面を中心に
その近傍を外側から冷却すると、3− ’c図の如く摩
擦面の外側の温度Toは内側中心部の温度Tiより極め
て低くなり、また3−d図の如く摩擦よりしろδhは外
側の変形抵抗が大きいためほとんど発生しない。
After a while, a cooling body is ejected to cool the area around the friction surfaces of both members from the outside, and as shown in Figure 3-'c, the temperature To on the outside of the friction surfaces becomes extremely lower than the temperature Ti on the inside center. , In addition, as shown in Figure 3-d, δh rather than friction hardly occurs because the deformation resistance on the outside is large.

これに較べ従来方法においては、4−0図の如く摩擦面
の内側の温度Tiよりも外側の温度T。
In contrast, in the conventional method, the temperature T on the outside of the friction surface is lower than the temperature Ti on the inside of the friction surface, as shown in Figure 4-0.

が常に高くなっており、捷た4−d図の如く摩擦よりし
ろδh、アプセットよりしろδUともに大きく、つ1り
晦接部のパリが大きい。
is always high, and as shown in the truncated 4-d diagram, both δh from friction and δU from upset are large, and the gap at the joint is large.

この状態を内側の温度が十分高温に達する時間to 1
で一定時間続け、時間toになると冷却体の噴出を停止
する。
In this state, the time for the inside temperature to reach a sufficiently high temperature is to 1.
This continues for a certain period of time, and at time t, the jetting of the cooling body is stopped.

すると3−0図の如く、摩擦面の外側の温度Toは急速
に上昇し内側の温度Tiへ近づく。
Then, as shown in Figure 3-0, the temperature To on the outside of the friction surface rapidly rises and approaches the temperature Ti on the inside.

これにつれて3−d図の如く摩擦よりしろδhもわずか
に発生する。
As a result, a slight amount of friction δh occurs as shown in Figure 3-d.

そこで摩擦面の温度分布が均一、すなわちTo=Tiに
なったところで、ブレーキにより回転中の部材の回転を
止めるとともにアプセット圧力Puを負荷し、接合を完
了する。
Then, when the temperature distribution on the friction surface becomes uniform, that is, To=Ti, the rotation of the rotating member is stopped by the brake, and an upset pressure Pu is applied to complete the joining.

なお酸液される部材の種類によっては必ずしもTo=T
iでなくともよく、突合せ面の温度分布がほぼ同時に酸
液温度に達したとき加圧接合させてもよい。
Note that depending on the type of component to which the acid solution is applied, To=T is not necessarily true.
It does not have to be i, and the pressure bonding may be performed when the temperature distribution of the abutting surfaces reaches the acid solution temperature almost simultaneously.

この時アプセットよりしろδUが発生するが、摩擦より
しろδhが従来方法にくらべ極めて小さいため総よりし
ろδも極端に小さいものとなる。
At this time, the upset δU occurs, but the friction δh is extremely small compared to the conventional method, so the total loss δ is also extremely small.

すなわちパリの小さい継手が得られる。In other words, a joint with a small Paris can be obtained.

また冷却体の供給をアプセット圧力Puを負荷する少し
前に停止するので、摩擦面内外の温度差もなくなり適正
温度での接合が可能になる。
Furthermore, since the supply of the cooling body is stopped slightly before the upset pressure Pu is applied, there is no difference in temperature between the inside and outside of the friction surface, making it possible to join at an appropriate temperature.

以上のように、本発明溶接法によればパリを小さくシフ
て健全な接合が得られ、パリを除去するための機械力ロ
工工数が低減されるとともに、素材の繊維組成も、接合
面で押し曲げられることが極めて少ないので継手の靭性
も向上する。
As described above, according to the welding method of the present invention, a sound joint can be obtained by shifting the burrs to a smaller size, reducing the mechanical man-hours required to remove the burrs, and the fiber composition of the material can also be changed at the joining surface. The toughness of the joint is also improved because it is extremely unlikely to be pressed and bent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明溶接法の一実施例の要領図、第2図は本
発明溶接法による酸液継手の側面図であり、両図とも一
部分断裁部を示す。 第3図および第4図は本発明溶接法および従来法の回転
数N、加圧力P、温度T、よりしろδの変化状況を示す
図表である。 1・・・接合部材、1・・・突合せ摩擦面、2・・・突
合せ摩擦面、3・・・冷却用中空リング、4・・・冷却
体通路、5・・・小穴、6・・・冷却液体、7・・・回
転チャック、8・・・固定チャック。
FIG. 1 is a schematic diagram of an embodiment of the welding method of the present invention, and FIG. 2 is a side view of an acid liquid joint made by the welding method of the present invention, both of which partially show the cut portion. FIGS. 3 and 4 are charts showing changes in the rotational speed N, pressing force P, temperature T, and twisting width δ in the welding method of the present invention and the conventional method. DESCRIPTION OF SYMBOLS 1... Joining member, 1... Butt friction surface, 2... Butt friction surface, 3... Hollow ring for cooling, 4... Cooling body passage, 5... Small hole, 6... Cooling liquid, 7... Rotating chuck, 8... Fixed chuck.

Claims (1)

【特許請求の範囲】[Claims] 1 互に摩擦回転している接合部材の突合せ面を外側か
ら冷却し、かつ上記突合せ面の内側と外側とがほぼ同時
に溶接温度に達したとき力ロ圧接合させることを特徴と
する摩擦溶接法。
1. A friction welding method characterized by cooling the abutting surfaces of joining members that are frictionally rotating against each other from the outside, and performing force-pressure welding when the inside and outside of the abutting surfaces reach welding temperatures almost simultaneously. .
JP4229777A 1977-04-13 1977-04-13 Friction welding method Expired JPS5828038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4229777A JPS5828038B2 (en) 1977-04-13 1977-04-13 Friction welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4229777A JPS5828038B2 (en) 1977-04-13 1977-04-13 Friction welding method

Publications (2)

Publication Number Publication Date
JPS53127348A JPS53127348A (en) 1978-11-07
JPS5828038B2 true JPS5828038B2 (en) 1983-06-13

Family

ID=12632087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4229777A Expired JPS5828038B2 (en) 1977-04-13 1977-04-13 Friction welding method

Country Status (1)

Country Link
JP (1) JPS5828038B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2368550B (en) * 2000-09-07 2004-09-01 Rolls Royce Plc Method and apparatus for friction welding
KR102077408B1 (en) * 2015-07-31 2020-02-13 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Friction welding method
CN111822847B (en) * 2020-07-11 2021-06-04 宁波晶成机械制造有限公司 Rotary friction welding method for target assembly

Also Published As

Publication number Publication date
JPS53127348A (en) 1978-11-07

Similar Documents

Publication Publication Date Title
JP6450684B2 (en) Tool holder with built-in cavity
US5421088A (en) Method of assembling a preload-type, double-row ball bearing
EP1219471B1 (en) Wheel bearing device and method of manufacturing the same
US3624881A (en) Method of manufacturing a flanged bi-metallic bushing
JP2860107B2 (en) Compound drive shaft
KR20020045485A (en) Method of joining different metal materials by friction welding
JPS5828038B2 (en) Friction welding method
JPH10150750A (en) Rotor of squirrel-cage induction motor and manufacture thereof
CA2020245A1 (en) Method and apparatus for joining thermoplastic parts
JP2004138209A (en) Pulley for continuously variable transmission
US4382172A (en) Method for fabricating a watch case
US6592287B1 (en) Self-fixtured joint assembly and its preparation
DE102005026505A1 (en) Method for connecting two components by means of friction welding and welded connection
JPS6311242A (en) Method of bonding ceramic and metal
CN114406439A (en) Claw-shaped rivet suitable for friction stir rivet welding and friction stir rivet welding method
JPH0141440B2 (en)
JP2007136499A (en) Insert drive type friction welding method and equipment
JP3652833B2 (en) Truss material manufacturing method
JPS5633137A (en) Joining method of pipe and shaft
JP2010180953A (en) Method of assembling split-type retainer
JPS62248623A (en) Joining method for thermoplastic pipes having diameters different from each other
JP2969970B2 (en) Assembly method of preload type double row ball bearing
JP2007138192A (en) Method for joining parts
JP5276626B2 (en) Multi-cone sync clutch gear
JPH05293676A (en) Friction joining method for different kinds of metallic materials and roll manufactured with this method