JPS5828035A - Vibro-isolating track and its vibro-isolating device - Google Patents

Vibro-isolating track and its vibro-isolating device

Info

Publication number
JPS5828035A
JPS5828035A JP12626481A JP12626481A JPS5828035A JP S5828035 A JPS5828035 A JP S5828035A JP 12626481 A JP12626481 A JP 12626481A JP 12626481 A JP12626481 A JP 12626481A JP S5828035 A JPS5828035 A JP S5828035A
Authority
JP
Japan
Prior art keywords
main shaft
vibration
elastic
spring
lower elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12626481A
Other languages
Japanese (ja)
Other versions
JPH0118308B2 (en
Inventor
Saiichi Okamoto
岡本 才市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12626481A priority Critical patent/JPS5828035A/en
Publication of JPS5828035A publication Critical patent/JPS5828035A/en
Publication of JPH0118308B2 publication Critical patent/JPH0118308B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/02Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction
    • F16F3/04Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction composed only of wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/046Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means using combinations of springs of different kinds

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Railway Tracks (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To prevent generation of resonance further increase a vibro-isolating effect, by arranging upper and lower resilient members of mutually different spring constant to the upper and the lower of a supporting mount and holding said resilient members with tightening tools in top and bottom ends of a main shaft and flange part. CONSTITUTION:A flange part 6 is constituted to the central part of a main shaft 5, inserted through a supporting mount 1, and an upper side plate 15, inserted with an upper half part 14 of the main shaft 5, is adapted to the flange part 6. Then plural layers of resilient materials 7 are laminated on the upper side plate 15 and held by a tightening tool 17 to form an upper resilient member 7a. While a lower side plate 23 is inserted with the main shaft 5 from the lower and adapted to the flange part 6, then plural layers of resilient materials 7 is laminated to the lower of said plate 23, and held by a tightening tool 17 to form a lower resilient member 7b. A spring constant of said upper resilient member 7a and lower resilient member 7b is arragned to values different from each other.

Description

【発明の詳細な説明】 本発明は防振装置とこの防振装置の特殊な性質を利用し
た防振軌道に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vibration isolator and a vibration isolator track that utilizes the special properties of this vibration isolator.

従来の軌道にあっては\砕石又はコンクリートスラブ上
に枕木を平行に多数配設し八その上にレールを敷設して
レールを枕木に直接固定しただけのものであった。この
ような剛構造の軌道にあっては列車の走行中に生ずる高
域から低域にわたるあらゆる周波数の振動・騒音が直接
レール1枕木を通して地面に伝わってしまい1周囲に多
大の悪影響を及ぼすという欠点があった。特に高架\橋
:ハ トンネルなど共振しやすい構造体を列車が通過す
る場合は振動・騒音が増幅されA周囲に与える悪影響は
甚大でおった。また1住宅密集地内を通過する場合活線
住民の健康のため1振動・騒音対策も早急に立てねばな
らないという要請もある。またX列車(特に新幹線)の
高速化も予定されておシ為抜本的対策が緊急の課題とし
て近々取シ上けられることになってbることも見逃せな
い事柄である。1だ、剛構造の軌道の騒音・振動を軽減
すべく防振ゴムをスラブの下に敷設(−だものがあった
が蔦げね定数の変化がないので、共振を起すと抑制でき
ないという欠点があり、防振効果は薄いが共振の心配の
ない硬いものしか使用できないという欠点があった。ま
た1スラブの下に防振ゴムを敷設したのではスラブを伝
って振動が伝達され防振効果が薄いという欠点やスラブ
が撓みで破損するという欠点もあった。
Conventional tracks simply consist of a large number of sleepers arranged in parallel on crushed stone or concrete slabs, rails laid on top of the sleepers, and the rails directly fixed to the sleepers. The disadvantage of such a rigidly structured track is that vibrations and noises of all frequencies, from high to low, that occur while the train is running are directly transmitted to the ground through the rail sleepers, which has a great negative impact on the surrounding area. was there. In particular, when a train passes through a structure that is prone to resonance, such as an elevated tunnel, the vibrations and noise are amplified, and the negative impact on the surrounding area is enormous. There is also a demand that vibration and noise countermeasures must be taken as soon as possible for the health of live line residents when passing through densely populated residential areas. It is also important to note that the speed of the X trains (especially the Shinkansen) is scheduled to be increased, and drastic countermeasures will be taken up as an urgent issue in the near future. 1. Anti-vibration rubber was laid under the slab to reduce the noise and vibration of the rigid track (-), but since there is no change in the tension constant, the drawback is that if resonance occurs, it cannot be suppressed. Although the anti-vibration effect was weak, it had the disadvantage that only hard materials with no fear of resonance could be used.Additionally, if anti-vibration rubber was placed under one slab, vibrations would be transmitted through the slab and the anti-vibration effect would be poor. There were also disadvantages of the slab being thin and the slab breaking due to bending.

本発明はかかる従来例の欠点に鑑みてなされたもので1
その目的とするとζろは)振幅によってけね定数が変り
、共振の発生のない防振装置と、この特長を利用した防
振軌道とを提供するにおる。
The present invention has been made in view of the drawbacks of the conventional example.
The purpose is to provide a vibration isolating device in which the resonance constant changes depending on the amplitude and does not cause resonance, and a vibration isolating track that utilizes this feature.

以下1本発明を図示実施例に従って詳述する。まず、防
振装置の第7発明を第1〜9図に従って説明する。支持
台(1)は口字状の弾性材取付部と活性材取付部(2) (の側板下部より延出せる取付片部(3)とで構Δ 成されておシ1弾性材取付部(2)の上面板中央には摺
動孔〈4)を穿孔しである。主軸(5)はボルトにて構
成されておシ為中央部にはっは部(6)を構成するナツ
トを螺着しである。もちろん仁のつば部(6)は主軸(
5)に一体的に削設してもよい。弾性材(7)は本実施
例では合成ゴムあるいは軟質合成樹脂成形品などで形成
され表面に交互にV溝がノ・ 凹設された波状弾性板(8)と外スプリング(9)及び
内スズリング(10) (内外スプリング(9) (1
0)のばね常数は互いに相違するようにしてもよいし\
又自由長を違わせておいてもよい。)のいずれか一方又
は両方とで構成されており1さらに波状弾性板(8)の
中央には主軸挿通孔(11)と1主軸挿通孔(11)の
周囲に等間隔でばね収納孔(12)とを穿設しである。
The present invention will be described in detail below according to illustrated embodiments. First, the seventh invention of the vibration isolator will be explained according to FIGS. 1 to 9. The support base (1) is composed of a square-shaped elastic material attachment part and an active material attachment part (2) (an attachment piece part (3) extending from the bottom of the side plate). 2) A sliding hole <4) is bored in the center of the top plate. The main shaft (5) is composed of a bolt, and a nut constituting a snap part (6) is screwed into the center of the shaft. Of course, Jin's brim (6) is the main shaft (
5) may be removed integrally. In this embodiment, the elastic material (7) is made of synthetic rubber or a soft synthetic resin molded product, and includes a wavy elastic plate (8) having V grooves alternately formed on its surface, an outer spring (9), and an inner tin ring. (10) (Inner and outer spring (9) (1
The spring constants of 0) may be different from each other.
Also, the free lengths may be made different. 1) Furthermore, in the center of the wavy elastic plate (8), there are spring storage holes (12) arranged at equal intervals around the main shaft insertion hole (11) and the main shaft insertion hole (11). ).

(もちろん弾性材(7)は本実施例の場合に限定されず
翫スポンジ状のものでもよいlハ波状弾性板(8)のみ
でもスプリング(10) (9)だけでもよい。)まず
\主軸(5)の上半部(14)に上側プレート(15)
を挿通してつば部(6)に当接させ、次いで波状弾性板
(8)を主軸(5)の上半部(4)に挿通して上側プレ
ー) (15)と接着スル。次に外スプリング(9)を
げね収納孔(12)内に配設した後側の波状弾性板(8
)を上半部(14) K押通してこの上側の波状弾性板
(8)のばね収納孔(12)内に外スプリング(9)を
収納し、さらに上半部(14)に中間プレー) (16
)を挿通して上側の波状弾性板(8)を接着する。この
時1波状弾性板(8)間にすき間(X)を設けてもよい
し為逆に密着させてもよい。すき間(X>の影響は後に
詳述する。このような作業を〈シ返して弾性材(7)を
複数層積層し1然るのち締結具(17)を上半部(14
)に螺装してつば部(6)とで弾性材(7)を締め付け
て上部弾性材(7a)を形成する。仁の時〜主軸(5)
に加わる加振力に合わせて上部弾性材(7a) K初圧
を加えるようにしてもよい、っまた)仁の場合弾性材(
7)の最上層のみ内外スプリング(9) (10)を二
重にして配設しであるが、もちろん加振力に合わせて全
層にわたって二重にしてもよく\逆に一重であってもよ
い。さらに本実施例では弾性材(7)を3層に積装した
が17層でもまたそれ以上でもよいものである。このよ
うに主軸(5)の十半部(]4)に上部弾性材(7a)
を組み込んだ後飄主軸(5)の下半部(18)を支持台
(1)の摺動孔(4)に挿入し1つば部(6)が摺動孔
(4)内に嵌シ込むようにする。次いで下側プレート(
23) 、波状弾性板(8)A外スプリング(9)\波
状弾性板(8)\中間プレー) (16)の順で前述同
′様に下半部(18)に組み込み・弾8羽゛(7)を被
数層積層する。この場合ももちろん荷重に合わせて7層
でもよいし1それ以上でもよい。然るのち下半部(18
)の下端に締結具(17)を螺装してつば部(16)と
で下部弾性材(7b)を締め付ける。乙の場合も必要に
応じて初圧を加えることができる。このようにして防振
装ff1(A)を組み上げるのであるが\こξでは上部
弾性材(7a)と下部弾性材(7b)とけばね常数が互
いに相違する。(本実施例では下方の弾性材(7)の方
かばね常数が大きく設定されることになる)ように設定
されている。
(Of course, the elastic material (7) is not limited to the case of this embodiment, and may be a sponge-like material. It is also possible to use only the wave-like elastic plate (8) or the springs (10) and (9).) First, the main shaft ( 5) Upper plate (15) on the upper half (14)
The corrugated elastic plate (8) is then inserted into the upper half (4) of the main shaft (5) and bonded to the upper plate (15). Next, attach the outer spring (9) to the rear wavy elastic plate (8) disposed inside the spring storage hole (12).
) is pushed through the upper half (14) K, the outer spring (9) is stored in the spring storage hole (12) of the upper wavy elastic plate (8), and then the intermediate play is inserted into the upper half (14). (16
) and adhere the upper wavy elastic plate (8). At this time, a gap (X) may be provided between each wave-like elastic plate (8), or they may be brought into close contact with each other. The effect of the gap (X>
) and tighten the elastic member (7) with the collar part (6) to form an upper elastic member (7a). The Time of Jin ~ Main Axis (5)
An initial pressure may be applied to the upper elastic member (7a) in accordance with the excitation force applied to the upper elastic member (7a).
Only the top layer of 7) has the inner and outer springs (9) and (10) double-layered, but of course they can be double-layered across the entire layer depending on the excitation force.Conversely, they can also be single-layered. good. Further, in this embodiment, the elastic material (7) is stacked in three layers, but it may be stacked in 17 layers or more. In this way, attach the upper elastic material (7a) to the ten-half part (]4) of the main shaft (5).
Insert the lower half (18) of the rear shaft main shaft (5) into the sliding hole (4) of the support base (1), and one flange (6) fits into the sliding hole (4). Do it like this. Then the lower plate (
23) Assemble the wavy elastic plate (8) A outer spring (9) \ wavy elastic plate (8) \ middle play (16) into the lower half (18) in the same manner as above in this order, and install the 8 bullets. (7) is laminated in several layers. In this case, of course, there may be seven layers or one or more layers depending on the load. After that, the lower half (18
) is screwed onto the lower end of the lower elastic member (7b) to tighten the lower elastic member (7b) with the collar (16). In case B, initial pressure can also be applied if necessary. The vibration isolator ff1(A) is assembled in this way, but the spring constants of the upper elastic material (7a) and the lower elastic material (7b) are different in ξ. (In this embodiment, the lower elastic member (7) has a larger spring constant).

次に\この防振装置(A)のばね常数にの変化及び固有
振動数ωn % 41.δ稍伝達率tを鴇合に分けて説
明する。寸ず1弾性材(7)のσね定数をKとすると、
固有振動数ωnは一般(C以下で表わされる。
Next, change in the spring constant of this vibration isolator (A) and the natural frequency ωn% 41. The δ transmissibility t will be explained separately. If the σ constant of the size 1 elastic material (7) is K, then
The natural frequency ωn is generally expressed as C or less.

15加振力Wdnωtの周期をωとすると\振動伝達率
tは一般に以下で表わされる。
15 When the period of the excitation force Wdnωt is ω, the vibration transmissibility t is generally expressed as follows.

Wト第1し1に示すようにつば部(6)の肉厚(S)と
支持台(1)の肉厚とが等しく初圧がかから力い場合を
示すと\げね定数の変化社第s図のようになる。即ち1
上下部弾性材(7a) (7b)のばね定数をKIJ、
KLとすると1層点0を境に折れ曲ってそれぞれ独立の
ばねとして働くことになる。即ち1上部弾性材(7a)
が圧下されて撓むとつば部(6)が支持台(1)よシ突
出し下部弾性材(7b)が支持台(1)より離れるとと
になシλ逆に加振力の振動方向が逆転し、て下部弾性材
(7b)が圧縮されると上部弾性材(7a)が支持台(
1)から離れることになシ1上下部弾性材(7:X) 
(7b)):iそれぞれのノ辰動方向について独立して
働くことになるのである。次にこれらKU% KLを(
1)、(2)式にそれぞれ代入すると固有振動数ωn1
慟伝。
As shown in Figure 1 and 1, when the thickness (S) of the collar (6) and the thickness of the support base (1) are equal and the initial pressure is applied, the change in the force constant is shown. The result will be as shown in Figure s. That is, 1
The spring constants of the upper and lower elastic members (7a) and (7b) are KIJ,
If it is KL, it will bend at the 1st layer point 0 and act as an independent spring. That is, 1 upper elastic material (7a)
When it is pressed down and bent, the brim (6) protrudes beyond the support base (1), and when the lower elastic member (7b) separates from the support base (1), the vibration direction of the excitation force reverses. Then, when the lower elastic member (7b) is compressed, the upper elastic member (7a) moves to the support base (
1) Do not separate from the upper and lower elastic members (7:X)
(7b)): It works independently for each direction of rotation. Next, these KU% KL (
Substituting into equations 1) and (2), the natural frequency ωn1
A legend.

達率tけ上下方向においてそれぞれ相違するととになる
。今1加振力の周期ωがいずれか一方の固有振動数ωn
に近づき八一方が共振したとしても他方は吸振的に働き
)その結果共振は完全に抑制される。
If the delivery rate t is different in the vertical direction, then . Now, the period ω of the excitation force is the natural frequency ωn of either one
, and even if one side resonates, the other acts as a vibration absorber), and as a result, resonance is completely suppressed.

(との場合の計算例は後述の通シである。)なお1上部
り性材(7a)のばね定数KOと下部弾性材(7b)の
げね定数にしとの差が大きい程この効果が大きくヘ一方
が他方の0倍以上であることが望ましい。
(An example of calculation in the case of is described later.)The larger the difference between the spring constant KO of the upper elastic member (7a) and the spring constant of the lower elastic member (7b), the greater this effect will be. It is desirable that one is 0 times or more larger than the other.

上部弾性材  下部弾性材 K :KU    K =K。Upper elastic material Lower elastic material K: KU = K.

@4図は上部弾性材(7a)に初圧T、を加オーた場合
1第7図は下部弾性材(7b)に初圧TLを加えた場合
、第g図は両方にTいTLを加えた例で、加振力がT、
又は11以上になった時にW−TIJ (TL)分だけ
撓むことになり、実際の撓み召二を減することができる
。なお・詔1図〜fl’7 g図はスプリング(9) 
(10)と波状外性板(8)とが一体的に働く場合であ
る。
@Figure 4 shows the case where an initial pressure T is applied to the upper elastic member (7a). 1 Figure 7 shows the case where an initial pressure TL is applied to the lower elastic member (7b). Figure g shows the case where T is applied to both. In the example in which the excitation force is T,
Or, when it becomes 11 or more, it will be deflected by W-TIJ (TL), and the actual deflection can be reduced. In addition, Figure 1 of the imperial edict ~ fl'7 Figure g is the spring (9)
This is a case where (10) and the wavy external plate (8) work integrally.

第9図及び第1θ図01上下の波状外性板(8)間にす
き間XusχLを設けておき1スプリング(9) (1
G)と波状外性板(8)とが必らずしも一体的に働が匁
い場合を示す。ここで」二部及び下部のスプリング(9
) (10)の単独又は合成ばね定数をKUS% I(
LSとし、波状弾性板(8)のげね定数をICIJGλ
KLGとする。7Lず、加振力にて下部弾性材(7a)
を圧縮すると」一部のスプリング(9) (10)のみ
が撓み・ばね定数はKIJSを示す。ここではスプリン
グ(9) (10)の撓り入テするからヒステリシスは
描か永い。さらlζ圧縮されて上部弾性材(7a)が僚
みXu−0となると上下の波状弾性板(8)も圧縮され
て撓み−ばね定tkは両者の和(KO”= Kus +
Kuc )となシ飄強くなる。また)ここでは波状弾性
板(8)の影響でヒステリシスを描く仁とになる。1加
振力の方向が逆転し\下部弾性材(7b)K上昇成分が
加わっプこ場合も前述と同じことが生ずる。
Figure 9 and Figure 1θ Figure 01 A gap XusχL is provided between the upper and lower wavy external plates (8), and 1 spring (9) (1
A case is shown in which G) and the wavy external plate (8) do not necessarily work integrally. Here, the second part and the lower spring (9
) The individual or combined spring constant of (10) is KUS% I(
LS, and the gene constant of the wavy elastic plate (8) is ICIJGλ
Let's call it KLG. 7L, lower elastic material (7a) with excitation force
When compressed, only some of the springs (9) and (10) deflect and the spring constant shows KIJS. Here, the hysteresis is long because the springs (9) and (10) are bent. When the upper elastic member (7a) is further compressed and the upper elastic member (7a) stiffens to Xu-0, the upper and lower wavy elastic plates (8) are also compressed, and the deflection-spring constant tk is the sum of both (KO”= Kus +
Kuc ) and become stronger. In addition, here, due to the influence of the wavy elastic plate (8), the curved surface exhibits hysteresis. The same thing as described above occurs when the direction of the excitation force is reversed and an increasing component of K is applied to the lower elastic member (7b).

以下余白 上部弾性材    下部弾性材 また1初圧TいTLをあらかじめ加えておけば[図〜第
g図と同様実際の撓みが小さくなる。このようにばね定
数がたわみ量によりて変るためまたとえKIISN K
LST共振してもKいKLの領域に振幅が及んだ時ωn
が変シX(2)式から共振が急激に抑制されるととノ になる。
Below are the margins: upper elastic material, lower elastic material, and if an initial pressure T (TL) is applied in advance, the actual deflection will be smaller, as shown in Figures - g. In this way, since the spring constant changes depending on the amount of deflection, the KIISN K
When the amplitude reaches the region of KL even if LST resonates, ωn
From equation (2), if the resonance is suddenly suppressed, then .

第1/図〜第2−図は第2発明で\つば部(6)の肉厚
(S)が支持台(1)の肉厚よシ薄い場合のばね定数変
化グラフである。このうち!//図〜M/り図と第1g
図〜第ココ図はっは部(のの設定方法が相違する。まず
S第1/図〜第1り図の場合を説明する。まず、上下の
締結具(17)を締め込み1上下部弾性材(7a)  
(7b)に初圧与T、を与え、つば部(6)が支持台(
1)内に位置するようにする。この時のすき間をそれぞ
れXいx2とする。上下部弾性材(7a)  (7b)
は互いにバランスして引き合っているのでNばね定数に
はK。、iK、+に、となシ)非常に強いばねとなる。
Figures 1 to 2 are graphs of changes in the spring constant in the second invention in which the wall thickness (S) of the collar portion (6) is thinner than the wall thickness of the support base (1). this house! //Figure~M/Figure and 1st g
The setting method for the parts shown in Figures 1 to 1 is different. First, we will explain the case of S 1/Figure 1 to 1. First, tighten the upper and lower fasteners (17). Elastic material (7a)
(7b) is given an initial pressure T, and the collar (6) is attached to the support base (
1) Be located within. Let the gaps at this time be Xx2. Upper and lower elastic materials (7a) (7b)
are balanced and attracted to each other, so the N spring constant is K. , iK, +, tonashi) It becomes a very strong spring.

また1ことではスプリング(9) (10) 、!:波
状弾性板(8)とは一体的に働くので、KIJ=KIJ
S十に、6、KL =KLS+KIGとなる。ここで加
振力が加ゎ知又社共振して振幅が増大してX0乙を越え
ると上、下部弾性板(7a) (7b)が交互に支持台
(1)よシ離れ\ばね定数はK。、KLとなるて減少す
ることになる。ここではKU+し及びKいKLの領域で
ヒステリシスを描くことになる。共振の場合は前述同様
K1.lX K L領域に入るや否やωnが大幅に小さ
くな弘共振が防止される上部弾性材     下部弾性
材 第1段階  KU+1         同左2   
  K、         K。
Another thing is the spring (9) (10)! :Since it works integrally with the wavy elastic plate (8), KIJ=KIJ
For S ten, 6, KL = KLS + KIG. Here, when the excitation force resonates and the amplitude increases and exceeds X0, the upper and lower elastic plates (7a) (7b) are alternately separated from the support base (1) \ spring constant is K. , KL, and decreases. Here, hysteresis will be drawn in the KU+ and KL regions. In the case of resonance, K1. lX K As soon as it enters the L region, ωn becomes significantly smaller. Upper elastic material prevents Hiro resonance Lower elastic material 1st stage KU+1 Same as left 2
K, K.

第73図〜第1り図の場合fi、絃状弾状弾性板)とス
フリング(9X1のとが一体的に働かない場合である。
In the case of Fig. 73 to Fig. 1, the fi, string-like elastic plate) and the suffling (9X1) do not work integrally.

まず第1り図の場合は波状弾性板(8)間のすき間XU
% X L  がXI 、X2よシ大きい場合である。
First, in the case of the first diagram, the gap between the wavy elastic plates (8) is XU.
This is the case when %XL is larger than XI and X2.

即ち Xl(X。That is, Xl(X.

X2(Xシ  の場合 加振力の振幅がXu%xL内の時はスプリング(9) 
(1G)のみの撓みとなり、ばね定数は以下のようにな
る。
X2 (X) If the amplitude of the excitation force is within Xu%xL, the spring (9)
The deflection is only (1G), and the spring constant is as follows.

第1段階 K =:kBs+kLs 次いで振幅が大きくなると、つば部(6)が支持台(1
)より突出して上下部弾性材(7a) (7b)のスプ
リング(9) (10)のみの撓みとなシ、はね定数は
札S、kLSに変る。従って前段階で共振が生じてもこ
の段階で共振は抑止される。さらに弾性板(7)が撓む
と上下の波状弾性板(8)が密着し)スプリング(9)
 (10)と波状弾性板(8)とが共同して働き\ばね
常数はKu(”Kus+Kuc) % Ktに増加する
。通常cvmlthハlK7段階(K=Kus 十KL
s )の範囲で行なわれるが)荷重が過大で第コ段階迄
振幅が及びかつ共振した時に有効である。
1st stage K =:kBs+kLs Next, as the amplitude increases, the collar (6) moves to the support base (1
), and only the springs (9) and (10) of the upper and lower elastic members (7a) and (7b) are bent, and the spring constants change to S and kLS. Therefore, even if resonance occurs in the previous stage, resonance is suppressed in this stage. When the elastic plate (7) further bends, the upper and lower wavy elastic plates (8) come into close contact with each other, and the spring (9)
(10) and the wavy elastic plate (8) work together to increase the spring constant to Ku ("Kus + Kuc) % Kt. Usually cvmlth ha l K7 stage (K = Kus 10 KL
(s)) is effective when the load is excessive and the amplitude reaches up to stage C and resonance occurs.

第1左図は χ、〉X。The first left diagram is χ, 〉X.

xt <XIの場合で1この場合は 上部弾性材(7a)の挙動が@/7図の場合と相違する
。即ちつば部(6)が支持台(1)よシ突出する前に上
下の波状弾性板(8)が密着するのでばね定数は以下の
ように変る。
1 when xt <XI In this case, the behavior of the upper elastic member (7a) is different from the case in Figure @/7. That is, before the collar portion (6) projects beyond the support base (1), the upper and lower wavy elastic plates (8) come into close contact with each other, so the spring constant changes as follows.

上部弾性材  下部弾性材 第一段q  K=Ku−1−に、5K=Kts第3段階
 K:Ku      K:=Kl第1A図はこの逆で
x2〉xL Xl <Xuの場合である。
Upper elastic material Lower elastic material 1st stage q K=Ku-1-, 5K=Kts 3rd stage K: Ku K:=Kl FIG. 1A shows the reverse case where x2>xL Xl <Xu.

ばね常数の変化は 上部弾性材  下部弾性材 第1段階    K” KUS +KLS   同左、
2       K:KIS     K:=Kl +
Kus、7       K=KuK:KL 第77図は第1り図の逆で1この場合 Xl >XU X2 >xLとなυ)ばね常数の変化 は以下のようKなる。
The change in spring constant is upper elastic material lower elastic material 1st stage K” KUS +KLS Same as left,
2 K:KIS K:=Kl +
Kus, 7 K=KuK:KL Fig. 77 is the opposite of Fig. 1. In this case, Xl > XU X2 > xL. υ) The change in the spring constant is K as follows.

上部弾性材  下部弾性材 第1段階    K−KUS 十KLS   同左2 
       K=Ku十KLSK:Kl +KIJ。
Upper elastic material Lower elastic material 1st stage K-KUS 10KLS Same as left 2
K = Ku ten KLSK: Kl + KIJ.

、7        K: Ku      K: K
L以上のようにいずれも上下振動においてばね定数は3
段階に変化しKutKtsとほぼ等しい加振力が加わっ
て共振した時でもこれを抑止できる。
, 7 K: Ku K: K
As shown above, the spring constant is 3 in both vertical vibrations.
Even when an excitation force that is approximately equal to KutKts changes in stages and resonates, this can be suppressed.

第1g図〜第、2.2図は初圧TU>TLの場合である
Figures 1g to 2.2 are for the case where the initial pressure TU>TL.

まず第19図について説明すると1加振力W画ωtがT
U  TLN TLに打ち勝つ迄上下部弾性材(7a)
 (7b)は提督ない。次いで圧下成分がTu−TLに
打ち勝つと撓み始め1つば部(6)と支持台(1)の4
“き間Xを振幅が越えた所でばね定数はKuに減少する
。上昇成分につbてはT[を越えた所で下部弾性材(7
b)の撓みが始1シ\以後Klとたる。即ち上部弾性材
 下部弾性材 第1段階 加振力≦Tυ−TL  撓まず(Ill、撓
まず2          K:Ku、LK=KL3 
         K:K。
First, to explain Fig. 19, one excitation force W picture ωt is T
U TLN Upper and lower elastic material (7a) until it overcomes TL
(7b) is not an admiral. Next, when the rolling component overcomes the Tu-TL, it begins to bend and the parts 4 of the collar (6) and the support base (1) begin to bend.
“The spring constant decreases to Ku when the amplitude exceeds the gap X. Regarding the rising component, when the amplitude exceeds T [
The deflection in b) becomes Kl from the beginning. That is, upper elastic material lower elastic material 1st stage Excitation force≦Tυ-TL Not deflected (Ill, not deflected 2 K: Ku, LK = KL3
K:K.

第20図〜、2.2図はスプリング(す(10)と波状
弾性材(8)とが共同して働かない場合で\まず第27
図の場合を説明する。この場合はすき間Xよυ波状弾性
材(8)のすき間Xuが大きい場合である。
Figures 20 to 2.2 show the case where the spring (10) and the wavy elastic material (8) do not work together.
The case shown in the figure will be explained. In this case, the gap X is larger than the gap Xu between the υ wave-like elastic members (8).

即ち、X<X14 上部弾性材 下部弾性材 第1段階 加振力〈Tu−TL撓まず n <Tt撓ま
ず2         K:KuS、LSK==i<。
That is, X <

3               K=I(uSK丁−
■(Ltl           K=KU 第ココ図は逆にX>X、の場合で1 以下余白 上部弾性材 下部弾性材 第1段階 加振力<Tu−’rし  撓まず tt <
 TL撓まず2             K:KUS
+KLS  K=:KLs3            
               K:Kl  +KLS
  K:=Klグ                 
     K: KLIとなり、たわみの増加に従って
次々とばね定数が変化することになる。なお図中破線部
分は加振力の減少時に生ずる波状弾性板(8)K起因す
るヒステリシスである。ここでWf、2又は第3段階以
降にノ ヒステリシスを描くことは次のような効果がある。例え
ばω/ωnb/となって前段階で共振した時振幅が次段
階に波及するや否中ばね定数が変ると共に波状弾性材(
8)の内部摩擦が働いて内部減衰を生じ−たとえ変化後
の ■/ω−がρ以下であったとしても大幅な防振効果
を発揮する。
3 K=I(uSK ding-
■(Ltl K=KU On the other hand, in the figure here, when X>X, 1 or less margin Upper elastic material Lower elastic material 1st stage Excitation force <Tu-'r and does not bend tt <
TL deflection 2 K:KUS
+KLS K=:KLs3
K:Kl +KLS
K:=Klg
K: KLI, and the spring constant changes one after another as the deflection increases. Note that the broken line portion in the figure is hysteresis caused by the wavy elastic plate (8) K that occurs when the excitation force decreases. Here, drawing nohysteresis after the second or third stage of Wf has the following effects. For example, when ω/ωnb/ resonates in the previous stage, as soon as the amplitude spreads to the next stage, the spring constant changes and the wavy elastic material (
8) The internal friction acts to produce internal damping, and even if the changed ①/ω is less than ρ, a significant vibration damping effect is achieved.

なお)第コ実施例では上下部弾性材(7a) (。Note) In the fourth embodiment, the upper and lower elastic members (7a) (.

7b)のばね定数にいKLは等しくてもよいい互いに相
違するものであってもよい。また、主軸(5)にりは部
(6)を設けず1波状弾性板(8)間にすき間を設仕た
場合は第23図のようにばね定数が途中で増加するよう
になる。即ち 上部弾性材    下部弾性材 第7R階  に−”US 十KLS     同 左f
il、l  tt    K =Ku +KLS   
 K :KL +KUS第、23図は主軸(5)の上端
を水平に引張してつげ部(6)を中心に曲げモーメント
を加え−lc場合で、この場合は弾性材(7)の両端部
のみが引張又は圧縮され1中央部は中立状態となシ)ば
ね定数は圧縮時の「となる。
The spring constants KL in 7b) may be equal or different. Further, when the main shaft (5) is not provided with the rib portion (6) and a gap is provided between each wave-like elastic plate (8), the spring constant increases midway as shown in FIG. 23. That is, the upper elastic material and the lower elastic material on the 7th floor - "US 10 KLS Same left f
il, l tt K = Ku +KLS
K: KL +KUS No. 23 shows the case where the upper end of the main shaft (5) is pulled horizontally and a bending moment is applied around the boxwood part (6) -lc. In this case, only both ends of the elastic material (7) is tensioned or compressed, and the central part is in a neutral state.) The spring constant is `` when compressed.

次にλ第19図に示す場合を軌道に適用した例について
説明する。第、2左)、26図に示すように防振装置(
A)はレール(22)の直下に配置された主防振装置(
A、)と枕木(19)のサイドに配置された副防振装置
(A*)とがあシ\主防振装置(Aυの支持台(1)U
、直接土台(20)に固定され、枕木(19)はグ本の
主軸(5)に螺着されている。一方1副防振装置(A、
)は、土台(20)に45度の角度で固定され\枕木(
19)の側端が主軸(5)に螺着しである。しかして列
車がレール(22)上を通過するとレール(22)を介
して枕木(19)に上下方向及び水平方向の加振力が加
わることになる。即ち\枕木(19)の上方を列2tの
車輪が到達する都度に枕木(19)に圧下成分及び−水
平方向成分が加わシ、車輪が通過してしまうと圧下成分
及び−水平方向成分が解除されて復帰成分及び水平方向
成分が加わることになって振動音を発生することになる
のであるが)本発明の主防振装置(A、)及び副防振装
m (A2)とが一体となって上下方向の加振力及び水
平方向の加振力を吸収するノ ことになる。ここで垂直方向の振動について考えてみる
と1上下部弾性材(7a) (7b)の合成ばね定#!
IKUい、K14yi  は以下の通シである。
Next, an example in which the case shown in FIG. 19 is applied to a trajectory will be described. 2nd left), the vibration isolator (as shown in Figure 26)
A) is the main vibration isolator (
A,) and the secondary vibration isolator (A*) placed on the side of the sleeper (19) and the main vibration isolator (Aυ support stand (1) U
, is directly fixed to the base (20), and the sleeper (19) is screwed to the main shaft (5) of the book. On the other hand, the 1st sub-vibration isolator (A,
) is fixed to the base (20) at an angle of 45 degrees and the sleeper (
The side end of 19) is screwed onto the main shaft (5). When the train passes over the rails (22), vertical and horizontal excitation forces are applied to the sleepers (19) via the rails (22). That is, each time a wheel of row 2t reaches above the sleeper (19), a rolling component and a -horizontal component are added to the sleeper (19), and once the wheels have passed, the rolling component and -horizontal component are canceled. However, the main vibration isolator (A,) and the sub-vibration isolator m (A2) of the present invention are integrated. Therefore, the excitation force in the vertical direction and the excitation force in the horizontal direction are absorbed. Now, if we consider vertical vibration, the composite spring constant # of the upper and lower elastic members (7a) and (7b) is 1!
IKUi, K14yi is the following passage.

’u iff方向の上部!IIt性材(7a)の合成げ
ね定数KU賞えけ    Iぐua、F−2(Klt−
十〇、”’uk、>・−・(”)となり、下部弾性材(
7b)の合成ばね定数KU4*はKい、、=2  (K
l、−1−(1,7Kla、  )   ・  ・  
・  (4)となる。
'u if direction top! Igua, F-2 (Klt-
10, ``'uk, >・-・(''), and the lower elastic material (
The composite spring constant KU4* of 7b) is K, , = 2 (K
l, -1-(1,7Kla, ) ・ ・
・(4) becomes.

(計算例/・第左図の場合) 各ばね定数を以下のように定め\枕木/本に配設された
)主・副防振装置(Aυ(A2)のKuas K Lt
riωnz tを計算する。
(Calculation example/in the case of the figure on the left) Determine each spring constant as follows \ Installed on sleepers / books) Main and sub-vibration isolators (Aυ (A2) Kuas K Lt
Calculate riωnz t.

(主・副防振装置(AI) (At)の各上下部弾性材
(7a) (7b)のtri’、ね定数)1(Ul  
=2,857  (kg 7cm)    K、==8
.57(IKU錦二1,428      K、、、、
::=4,285、’、 KU、、二2 (2,857
+f1.7X1,42B):: 7,713KLQ−−
72(8,57(!  ト0.7X4,285)  −
−23,139’Vm+tx−10、Go(’)kgと
する。g=980 (重力力[(速度)よシヘ土下部弾
性拐(7a) (7b)の固有&!’r−’tb数ω□
ωηaけ\ 今1加振力の周期ω:47であったとすると合成した下
部弾性材(7b)のtlは となって共振する。
(tri', constant of each upper and lower elastic member (7a) (7b) of main and sub-vibration isolator (AI) (At)) 1 (Ul
=2,857 (kg 7cm) K, ==8
.. 57 (IKU Nishikiji 1,428 K...
::=4,285,', KU,,22 (2,857
+f1.7X1,42B):: 7,713KLQ--
72(8,57(!to0.7X4,285) -
-23,139'Vm+tx-10, Go(')kg. g=980 (gravitational force [(velocity) and elasticity of the lower part of the soil (7a) (7b)'s unique &!'r-'tb number ω□
ωηake\ Now, if the period of the excitation force is ω: 47, the tl of the combined lower elastic member (7b) becomes and resonates.

一方1合成した上部弾性材(7a)にあっては1となっ
て合成いと下部弾性材(7b)が共振しようとするのを
抑制する。
On the other hand, when the upper elastic material (7a) is composed of 1, it becomes 1 and suppresses the tendency of the lower elastic material (7b) to resonate.

(計算例2) 次に1第79囚に示す防振装置(A)を軌道に適用しン
E場合について説明する。
(Calculation Example 2) Next, a case will be described in which the vibration isolator (A) shown in Figure 1, No. 79 is applied to the orbit.

−に′″j″1合成し/こ上部弾性材(7a)について
説ノ 関する。
The following describes the upper elastic material (7a).

(イ)加振力Wmax≦Tu−’I’Lの時1上部弾性
−オオ(78)はちa壕ない。即ち1列車のような移動
してくる外部荷重に対して1上下部弾性材(7a) (
7b)に夕1部荷重に合わせた一定の初圧TいTLを与
えておけは”1荷重の通過時にその荷重に等しい弾性材
(7)の反力(Tu−Tt)を得ることができ、その結
果荷重の瞬間的な加速度に対する弾性材(7)の変化(
)ζわみ)しか起らす\振幅が大幅に緩和される(lス
)加振力Wmax> Tu−TIの時1すき間Xの範囲
内では、上下部弾性材(7a) (7b)が共に伸縮す
るから合成ばね定数にはK   =に、工+KL、とな
る一L・6 ゜、’、K  :=7,713+23,139=30,
85211+L声ハ (2)式よシ固有振動数61.1Bは (ハ)加振力Wmaxによる振幅がXを越えると上部弾
性材のみの撓みとなって合成ばね定数K −υp− 7,713に変るから ここで振幅が上部弾性材(7a)の共振にてすき間Xを
越えたとすると入加振カの周期ωは55rad/sea
に近いものである。ω:55と仮定してKU4.、。
(a) When the excitation force Wmax≦Tu-'I'L, 1. Upper elasticity - Oh (78) is not effective. In other words, one upper and lower elastic member (7a) (
If we give 7b) a constant initial pressure (T) that matches the load, we can obtain the reaction force (Tu-Tt) of the elastic material (7) that is equal to the load when one load passes through it. , resulting in the change of the elastic material (7) with respect to the instantaneous acceleration of the load (
) ζ deflection) \ The amplitude is significantly relaxed (l) When the excitation force Wmax > Tu-TI, within the range of 1 gap X, the upper and lower elastic members (7a) (7b) Since they both expand and contract, the composite spring constant is K = K + KL, which is -L・6°,', K :=7,713+23,139=30,
85211+L voice C According to formula (2), the natural frequency 61.1B is (c) When the amplitude due to the excitation force Wmax exceeds X, only the upper elastic material is deflected, resulting in a composite spring constant K -υp- 7,713 If the amplitude exceeds the gap X due to the resonance of the upper elastic member (7a), the period ω of the input vibration force is 55 rad/sea.
It is close to. Assuming ω:55, KU4. ,.

領域でのtを計算すると1 となシー共振は抑制されることになる。Calculating t in the area is 1 The sea resonance will be suppressed.

次に下部弾性材(7b) Kついて考慮する。軌道は九
列車の通過の都度1車輪に圧下され車輪が通過すると元
の位置に復帰するもので一般釦はすき間Xの範囲内で振
動することになる。従って共振に対する対策は主として
」:部弾性材(7b)側のみを考慮しておれば足如1下
部弾性材(7b)は復帰時のはね」ニジを抑A−てやる
程度でよいことになる。また1主に振動は上部弾性材(
7a)で受けることになるが1この時下部弾性材(71
))のばね定数K[を上部弾性材(7a)のKljシ大
きくしておけば合成ばねKu+Lとして働いた時点がら
に、VC移る時の差が大きくなシ1その結果固有振動周
波数が大きく変ることになって防振効果が高くなるもの
である。
Next, consider the lower elastic member (7b) K. The track is rolled down by one wheel each time nine trains pass, and returns to its original position once the wheel has passed, and the general button will vibrate within the range of the gap X. Therefore, as a countermeasure against resonance, if only the lower elastic member (7b) side is taken into account, then the lower elastic member (7b) should only be able to suppress the splash when the lower elastic member (7b) returns. Become. In addition, 1 vibration is mainly caused by the upper elastic material (
7a), but at this time the lower elastic member (71
)) If the spring constant K[ of the upper elastic member (7a) is increased, the difference in VC transition will be large as when it works as a composite spring Ku+L1.As a result, the natural vibration frequency will change greatly. As a result, the anti-vibration effect is enhanced.

なお、使用例として軌道に適用した場合を示したが1必
らずしもこれに限定されるもので力く)加振周波数が変
化するよう1に場合に応じ適用できるものである。また
% IX−I A’図のようにスプリング(9) (1
0)の一部を支持台(1)に直接接触させてお訃上下部
弾性材(7a) (7b)が支持台(1)から離れた時
でもこのスプリング(9) (10)が伸長して接触す
るようにしてもよいし、第、29図のように波状弾性板
(8)から細い接触片(24)を延出しておき、同様に
接触するようにしてもよい。逆にこの接触片(24)を
すき間(XIJ) (XL)間に設け\互いに土工の波
状弾性板(8)間で1か触させておいてもよい0.さら
に、すき間(Xu) (XL)は上下部弾性材(7a)
 (7b)のいすねかのみに設けてもよいものである。
Note that, as an example of use, a case where the present invention is applied to a track is shown; however, the present invention is not necessarily limited to this, and may be applied depending on the case so as to change the excitation frequency. Also, the spring (9) (1
0) is brought into direct contact with the support base (1) so that even when the upper and lower elastic members (7a) (7b) are separated from the support base (1), these springs (9) (10) will expand. Alternatively, as shown in FIG. 29, a thin contact piece (24) may be extended from the wavy elastic plate (8) to make contact in the same manner. Conversely, this contact piece (24) may be provided between the gaps (XIJ) and (XL) so that they touch each other between the corrugated elastic plates (8) of the earthwork. Furthermore, the gap (Xu) (XL) is made of upper and lower elastic materials (7a).
It may be provided only in the seat (7b).

本発明にあっては、叙」二のl:うに互いにげね定数の
相違する上部弾性材と下部弾性材とが支持台の肉厚と等
(〜いつげ部で仕切られて個別に独立して挟持されてい
るので、防振装置に加振力が加わった時圧下成分と土昇
成分とガ個別に」二下部弾性材に働く仁とにたりへその
結果個別の固有振動数−振動伝達率をとることになる。
In the present invention, the upper elastic material and the lower elastic material, which have different spring constants from each other, are separated by the wall thickness of the support base, etc. Since the vibration isolator is held between the two sides, when an excitation force is applied to the vibration isolator, the reduction component and the soil elevation component are separately applied to the two lower elastic materials, resulting in individual natural frequency-vibration transmission. You will have to take the rate.

その結果−・方で共振し7たとしても他方がとれを吸収
するように働きA共振が防止される。また1上下部弾性
材はそれぞれ独立して挟持されているので\必要に応じ
て締結具を締め込んだシ1逆に緩めて初圧をかけ直すこ
とができるという利点もある。また1部2発明におって
は)つば部の肉厚を支持台の肉厚よシ薄ぐして上下部弾
性材に初圧を加えであるので、加振力が加わって振動の
振幅が増加減少するにつれてつば部が支持台から突出没
入し1その都度ばね定数の変化が生じまたとえつば部が
支持台内で振動している時に共振しても支持台からっは
部が突出するや否や固有振動数が変化して共振が抑制さ
れることになる。さらに第3発明にあっては枕木と土台
との間に防振装置を配設しているので、列車走行時に生
じた振動・騒音は直ちに防振装置によって吸収されてし
まいA土台まで伝達されることがない。特に橋シよう八
 トンネル1高架などの共振しやすい構造体において高
い防振効果が得られることになる。さらに前述のよりに
防振装置のばね定数が圧下時と上昇時とで変化したシ、
たわみの途中で変化するので1低域から高域にわたる雑
多な周波数のうち7部において共振しそうになっても(
通常は最大振幅を示す周波数の振動を抑えてやれば他の
周波数の振動は抑制される。
As a result, even if one side resonates, the other side works to absorb the distortion and prevents the A resonance. Furthermore, since the upper and lower elastic members 1 are held independently, there is an advantage that if necessary, the fasteners can be tightened and then loosened to reapply the initial pressure. In addition, in the invention of Part 1 and 2), the thickness of the collar is made thinner than the thickness of the support base, and initial pressure is applied to the upper and lower elastic members, so the excitation force is added and the amplitude of vibration increases. As it decreases, the collar protrudes from the support base and retracts, causing a change in the spring constant each time.For example, even if the collar resonates when vibrating within the support base, as soon as the collar protrudes from the support base, the spring constant changes. The natural frequency changes and resonance is suppressed. Furthermore, in the third invention, since a vibration isolator is disposed between the railroad ties and the foundation, vibrations and noise generated when the train is running are immediately absorbed by the vibration isolator and transmitted to the A foundation. Never. In particular, high vibration isolation effects can be obtained in structures that are prone to resonance, such as bridges and tunnels. Furthermore, as mentioned above, the spring constant of the vibration isolator changed between rolling down and raising.
Since it changes during the deflection, even if it is likely to resonate at 7 of the miscellaneous frequencies ranging from low to high frequencies (
Normally, if the vibration at the frequency that exhibits the maximum amplitude is suppressed, the vibration at other frequencies will be suppressed.

)直ちに固有振動数が変つてしまって共振が抑制され為
高い防振効果をあげることができるものである。また)
両端に副防振装置を枕木の表示方向に沿って対称に傾斜
させて配設しであるので\水平方向の加振力に対しても
強い抵抗力1防振効果を示すものである。
) Since the natural frequency changes immediately and resonance is suppressed, a high vibration damping effect can be achieved. Also)
Since the sub-vibration isolators are arranged at both ends symmetrically and inclined symmetrically along the display direction of the sleepers, it exhibits a strong resistance against vibration force in the horizontal direction and a vibration-isolating effect.

【図面の簡単な説明】[Brief explanation of the drawing]

、第7図は同上の副防振装置の一部切欠正面図1詔3〜
と図はスプリングと波状弾性板とが一体的に働く場合で
〜第2図の各セット時のばね定数の変化を示すグラフ\
第9図社波状弾性板間にすき間が設けてあってスプリン
グと波状弾性板とが常に一体として働かない場合の縦断
面図X第1θ図は同上のばね定数の変化を示すグ2フ\
tlc//図は第2発明の一実施例の縦断面図、第1λ
図は同上のばね定数の変化を示すグラフX第73図は同
上の他の実施例の縦断面図X第11I〜77図は同上の
セット条件を変えた場合のばね定数の変化を示すグラフ
%第1g図は第2発明の初圧条件を変えた場合の縦断面
図1第1り図は同−Fのばれ定数図 の変化を示すグラフ)第一0図は第79Aの場合におい
て波状弾性材にすき間を設けた例の縦断面図、第、2/
、2.2図は同上のセット条件を変えた場合のばね定数
の変化を示すグラフ1第23図はつげ部を設けなかった
場合のばね定数の変化を示すグラフs第、ZlI図は本
発明の防振装置の主軸に水平方向の加温力が働いた場合
の正面図、第2左図は本発明に係る波状弾性板とスプリ
ングの斜視図、tlI、λ6図及びコク図は第3発明の
左半分の一部窃欠正面図と平面図・第、2g図及び第2
9図は本発明の他の実施例の一部分の縦断面図で%  
(1)紘支持台、(4)は摺動孔1(5)は主軸1(6
)けっは部5(7a)は上部弾性材s  (7b)は下
部弾性材、(14)社主軸の上半部九 (17)は締゛
結Az  (1a)は主軸の下半部、  (19)は枕
木5(20)は土台X(22)はレールである。 特許出願人 間本才市 代理人 弁理士  森 義 明 −,27− 第1図 第20図 17    第24図
, Figure 7 is a partially cutaway front view of the sub-vibration isolator shown above.
The figure below shows the case where the spring and the wavy elastic plate work together ~ Figure 2 is a graph showing the change in spring constant for each set.
Figure 9: Longitudinal cross-sectional view when a gap is provided between the wavy elastic plates and the spring and the wavy elastic plates do not always work as a unit.
tlc // Figure is a vertical cross-sectional view of an embodiment of the second invention, the first λ
The figure is a graph showing the change in the spring constant as above. Figure 1g is a longitudinal cross-sectional view when the initial pressure conditions of the second invention are changed. Vertical cross-sectional view of an example in which a gap is provided in the material, No. 2/
, 2.2 is a graph 1 showing the change in the spring constant when the setting conditions of the same as above are changed. Fig. 23 is a graph s showing the change in the spring constant when the boxwood part is not provided. The front view when horizontal heating force is applied to the main axis of the vibration isolator, the second left figure is a perspective view of the wavy elastic plate and spring according to the present invention, the tlI, λ6 figure and the full body figure are the third invention Partially stolen front view and plan view of the left half of
Figure 9 is a vertical sectional view of a portion of another embodiment of the present invention.
(1) Hiro support base, (4) is sliding hole 1 (5) is main shaft 1 (6
) The kick part 5 (7a) is the upper elastic material s (7b) is the lower elastic material, (14) the upper half of the main shaft 9 (17) is the fastening Az (1a) is the lower half of the main shaft, ( 19) is the sleeper 5 (20) is the base X (22) is the rail. Patent applicant Yoshiaki Mori, 27- Figure 20 Figure 17 Figure 24

Claims (5)

【特許請求の範囲】[Claims] (1)   加振力を受ける主軸の中央部外周につげ部
を突設し、支持台に穿設した摺動孔に主軸のりは部を摺
動自在に挿通し\支持台の上方及び下方にはね定数の互
いに相違する上部及び下部弾性材をそれぞれ配設し)主
軸の上半部及び下半部を上部及び下部弾性材にそれぞれ
挿通し、主軸の上下両端に螺着せる締結具とつげ部とで
上部及び下部弾性材をそれぞれ挟持して成ることを特徴
とする防振装置。
(1) A boxwood part is provided protruding from the outer periphery of the central part of the main shaft that receives the excitation force, and the glue part of the main shaft is slidably inserted into the sliding hole drilled in the support \ above and below the support. A fastener and a boxwood part, in which upper and lower elastic members having different spring constants are respectively arranged, the upper and lower halves of the main shaft are inserted through the upper and lower elastic members, respectively, and screwed onto both upper and lower ends of the main shaft. A vibration isolating device comprising an upper and a lower elastic material sandwiched between and.
(2)加振力を受ける主軸の中央部外周につげ部を突設
し、つげ部より厚肉の支持台に摺動孔を穿孔し1主軸の
つば部を摺動孔内に摺動自在に挿通し、支持台の上方及
び下方に上部弾性材と下部弾性材とをそれぞれ配設して
主軸の上手部及び下半部を上−下部弾性材に挿通し主軸
の上下両端部に螺着せる締結具とつば部とで上1下部弾
性材を挟持してそれぞれに初圧を加えて成ることを特徴
とする防振装置。
(2) A boxwood part is provided protruding from the outer periphery of the central part of the main shaft that receives the excitation force, and a sliding hole is bored in the support base which is thicker than the boxwood part, so that the collar of one main shaft can freely slide into the sliding hole. An upper elastic member and a lower elastic member are respectively arranged above and below the support base, and the upper and lower halves of the main shaft are inserted through the upper and lower elastic members and screwed onto both the upper and lower ends of the main shaft. A vibration isolating device characterized in that an upper and a lower elastic member are sandwiched between a fastener and a collar and initial pressure is applied to each of them.
(3)伸縮性に富むゴム板や合成樹脂板にて弾性板を形
成し1この弾性板にばね収納孔を穿孔し1ばね収納孔内
にコイルばねを収納して上部及び下部弾性材を形成した
ことを特徴とする特許請求の範囲第1項又は第一項に記
載の防振装置。
(3) Form an elastic plate from a highly elastic rubber plate or synthetic resin plate, 1. Punch a spring storage hole in this elastic plate, and 1. store a coil spring in the spring storage hole to form the upper and lower elastic members. The vibration isolating device according to claim 1 or 1, characterized in that:
(4)ばね収納孔を穿孔した一対の弾性板を上下に配設
して弾性板間にすき間を設け無上下の弾性板のばね収納
孔内にスプリングを収納して成ることを特徴とする特許
請求の範囲第 3項に記載の防振装置。
(4) A patent characterized in that a pair of elastic plates with spring storage holes are arranged above and below, a gap is provided between the elastic plates, and a spring is stored in the spring storage holes of the upper and lower elastic plates. A vibration isolator according to claim 3.
(5)加振力を受ける主軸の中央部外周につば部を突設
し1支持台に穿孔した摺動孔に主軸のつば部を摺動自在
に挿通し1支持台の上方及び下方に弾性材を配設し1主
軸の」二手部及び下半部を弾性材に挿通し)主軸の上下
両ψjミ1に9儂着せる締結具とつば部とで弾性材をそ
れぞれ挟着して防振装置を形成し1土台の上方に枕木を
複数本平行に配設し、土台と枕木との間に防振装置を垂
直に配設して支持台を土台に固定すると共に枕木を主軸
に固着し1垂直に配設した防振装置の両側に枕木の長手
方向に漬って主軸を対称に傾斜させた他の一対の防振装
置を配設し1支持台を基台に固定すると共に傾斜せる主
軸を枕木の端部にそれぞれ固着し1枕木上にレールを敷
設して成ることを特徴とする防振軌道。
(5) A flange is provided on the outer periphery of the central part of the main shaft that receives the excitation force, and the flange of the main shaft is slidably inserted into the sliding hole drilled in the first support base, and elastically extends above and below the first support base. Vibration isolation is achieved by sandwiching the elastic material between the collar and the fastener, which is attached to both the upper and lower ends of the main shaft (by inserting the second hand part and lower half of the main shaft into the elastic material) and the collar part. A device is formed, a plurality of sleepers are arranged in parallel above one base, a vibration isolator is arranged vertically between the base and the sleepers, the support is fixed to the base, and the sleepers are fixed to the main shaft. 1. A pair of other vibration isolating devices are installed on both sides of the vertically arranged vibration isolating device, dipping in the longitudinal direction of the sleepers and having their main axes tilted symmetrically. 1. The support base is fixed to the base and tilted. A vibration-proof track characterized in that the main shafts are fixed to the ends of the sleepers, and a rail is laid on each sleeper.
JP12626481A 1981-08-11 1981-08-11 Vibro-isolating track and its vibro-isolating device Granted JPS5828035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12626481A JPS5828035A (en) 1981-08-11 1981-08-11 Vibro-isolating track and its vibro-isolating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12626481A JPS5828035A (en) 1981-08-11 1981-08-11 Vibro-isolating track and its vibro-isolating device

Publications (2)

Publication Number Publication Date
JPS5828035A true JPS5828035A (en) 1983-02-18
JPH0118308B2 JPH0118308B2 (en) 1989-04-05

Family

ID=14930875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12626481A Granted JPS5828035A (en) 1981-08-11 1981-08-11 Vibro-isolating track and its vibro-isolating device

Country Status (1)

Country Link
JP (1) JPS5828035A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310157A (en) * 1989-08-16 1994-05-10 Minus K Technology, Inc. Vibration isolation system
US5370352A (en) * 1989-08-16 1994-12-06 Minus K Technology, Inc. Damped vibration isolation system
US5549270A (en) * 1989-08-16 1996-08-27 Minus K Technology, Inc. Vibration isolation system
WO2003042566A3 (en) * 2001-11-14 2003-07-10 Microgen Energy Ltd A stirling engine assembly
FR2843622A1 (en) * 2002-08-13 2004-02-20 Uniwill Comp Corp Vibration reducing system for data access apparatus e.g. hard disk, has elastic unit that is used to suspend apparatus within depression, where damping effect generated by difference between modulus of two units
JP2006322534A (en) * 2005-05-19 2006-11-30 Unirock:Kk Vibration isolation device
JP2007253679A (en) * 2006-03-22 2007-10-04 Kawasaki Heavy Ind Ltd Inter-body stabilizing device of vehicle
KR100964910B1 (en) 2001-11-14 2010-06-23 썬파워, 인코포레이티드 A stirling engine assembly
CN106188714A (en) * 2016-08-31 2016-12-07 河南恒发橡塑制品有限公司 A kind of engine shock absorbing device
CN106240333A (en) * 2016-08-31 2016-12-21 河南恒发橡塑制品有限公司 A kind of base of automobile engine damping fixing device
CN116006627A (en) * 2023-02-23 2023-04-25 华中科技大学 Zero-rigidity vibration isolation system for magnetic levitation heavy load

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231523U (en) * 1975-08-25 1977-03-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231523U (en) * 1975-08-25 1977-03-05

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310157A (en) * 1989-08-16 1994-05-10 Minus K Technology, Inc. Vibration isolation system
US5370352A (en) * 1989-08-16 1994-12-06 Minus K Technology, Inc. Damped vibration isolation system
US5549270A (en) * 1989-08-16 1996-08-27 Minus K Technology, Inc. Vibration isolation system
KR100964910B1 (en) 2001-11-14 2010-06-23 썬파워, 인코포레이티드 A stirling engine assembly
US6983593B2 (en) 2001-11-14 2006-01-10 Microgen Energy Limited Stirling engine assembly
WO2003042566A3 (en) * 2001-11-14 2003-07-10 Microgen Energy Ltd A stirling engine assembly
FR2843622A1 (en) * 2002-08-13 2004-02-20 Uniwill Comp Corp Vibration reducing system for data access apparatus e.g. hard disk, has elastic unit that is used to suspend apparatus within depression, where damping effect generated by difference between modulus of two units
GB2393233B (en) * 2002-08-13 2006-03-15 Uniwill Comp Corp Vibration-reducing system for data access apparatus
JP2006322534A (en) * 2005-05-19 2006-11-30 Unirock:Kk Vibration isolation device
JP2007253679A (en) * 2006-03-22 2007-10-04 Kawasaki Heavy Ind Ltd Inter-body stabilizing device of vehicle
CN106188714A (en) * 2016-08-31 2016-12-07 河南恒发橡塑制品有限公司 A kind of engine shock absorbing device
CN106240333A (en) * 2016-08-31 2016-12-21 河南恒发橡塑制品有限公司 A kind of base of automobile engine damping fixing device
CN116006627A (en) * 2023-02-23 2023-04-25 华中科技大学 Zero-rigidity vibration isolation system for magnetic levitation heavy load
CN116006627B (en) * 2023-02-23 2024-04-19 华中科技大学 Zero-rigidity vibration isolation system for magnetic levitation heavy load

Also Published As

Publication number Publication date
JPH0118308B2 (en) 1989-04-05

Similar Documents

Publication Publication Date Title
AU2007216806B2 (en) A rail track tie
JPS5828035A (en) Vibro-isolating track and its vibro-isolating device
CN109635327B (en) Building vibration reduction method influenced by rail transit vibration and vibration reduction effect evaluation method
CN105178463A (en) Bidirectional limiting mechanism with overlaid U-shaped steel plates
JP3736052B2 (en) Isolation device
JP3698774B2 (en) Traffic vibration and earthquake vibration isolator for floating slabs.
JPH09242379A (en) Vibration isolating device for light load
JP6635327B2 (en) Seismic isolation structure of building and seismic isolation method
JP4022313B2 (en) Seismic isolation / vibration isolation structure with suspension and sliding
JP3671317B2 (en) Seismic isolation mechanism
JP2002294638A (en) Vibration damping structure for noise barrier
JPH01169022A (en) Support structure of artificial ground on traffic facility means
JPH10115123A (en) Vibration isolation device
JPS5845282Y2 (en) Vibration damper for structures
JP3585580B2 (en) Elastic support structure for bridges
JP3829593B2 (en) Isolation device
JPH0374649A (en) Dynamic vibration reducing device for building
JPS63318341A (en) Vibration absorbing sheet
JPH10252253A (en) Floor vibration control system
JPH0235850Y2 (en)
JP2001295204A (en) Vibrationproof track pad
JP2575204Y2 (en) Seismic isolation elastic rubber bearing for structures
JPH11303918A (en) Device for isolating and controlling impact and base isolation structure of building
JPS6122110Y2 (en)
JP4327044B2 (en) Vibration isolation method for structural floor