JPS5827866B2 - Method and device for determining hydrogen in metals - Google Patents

Method and device for determining hydrogen in metals

Info

Publication number
JPS5827866B2
JPS5827866B2 JP51071701A JP7170176A JPS5827866B2 JP S5827866 B2 JPS5827866 B2 JP S5827866B2 JP 51071701 A JP51071701 A JP 51071701A JP 7170176 A JP7170176 A JP 7170176A JP S5827866 B2 JPS5827866 B2 JP S5827866B2
Authority
JP
Japan
Prior art keywords
hydrogen
container
carrier gas
test piece
quantifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51071701A
Other languages
Japanese (ja)
Other versions
JPS52155596A (en
Inventor
尚之 芹生
俊助 後藤
秀之 佐藤
孝至 大坪
実 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP51071701A priority Critical patent/JPS5827866B2/en
Priority to DE2727252A priority patent/DE2727252C3/en
Priority to FR7718869A priority patent/FR2355287A1/en
Priority to US05/808,357 priority patent/US4142399A/en
Publication of JPS52155596A publication Critical patent/JPS52155596A/en
Publication of JPS5827866B2 publication Critical patent/JPS5827866B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 本発明は金属中の水素の定量方法および装置に係り、特
に、溶接の際得られた溶着金属中の微量の水素を、精度
よく簡便にかつ自動的に定量することを目的とした測定
方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for quantifying hydrogen in metal, and in particular to a method and apparatus for easily and automatically quantifying trace amounts of hydrogen in deposited metal obtained during welding. The present invention relates to a measuring method and apparatus for the purpose of.

最近、溶接われ感受性の高いとされている高張力鋼の溶
接われ防止を目的として、溶接棒および鋼材に改良を加
え溶着金属中の水素量を低下せしめるよう努力が傾注さ
れている。
Recently, efforts have been made to reduce the amount of hydrogen in the weld metal by improving welding rods and steel materials in order to prevent welding of high-strength steel, which is considered to be highly susceptible to welding.

このためには、2tull/ 1001以下の溶着金属
中の微量の水素を精度よく定量することが必要とされて
いる。
For this purpose, it is necessary to accurately quantify the trace amount of hydrogen in the deposited metal of 2 tull/1001 or less.

ところで、従来溶着金属中の拡散性水素量を測定する場
合は、わが国では一般にグリセリン置換を行なうJIS
Z3113−1975溶着金属の水素量測定方法がひ
ろく用いられている。
By the way, in Japan, when measuring the amount of diffusible hydrogen in conventional weld metal, it is common practice in Japan to use the JIS method, which uses glycerin substitution.
Z3113-1975 method for measuring the amount of hydrogen in weld metal is widely used.

一方、世界各国では、水銀置換法を利用したI 、 I
、W(International In5titu
te of Welding)の測定法(Doc、 I
I −A −275−70)がひろく採用されている。
On the other hand, in various countries around the world, I, I
, W(International In5titu
te of welding) measurement method (Doc, I
I-A-275-70) has been widely adopted.

ここでJIS法とIIW法とを比較してみるとJIS法
においては、人体に有害な水銀を使用しないという大き
な利点をもっているものの、測定値がIIW法に比べて
約40%低いことが報告されている。
Comparing the JIS method and the IIW method, the JIS method has the great advantage of not using mercury, which is harmful to the human body, but it has been reported that the measured value is about 40% lower than the IIW method. ing.

このような低値の原因として試験片からグリセリン中に
放出される水素の小気泡の浮上速度が水銀中に比べて非
常に遅い(約10’分の1といわれている)ために、4
8時間の捕集時間では完全に浮上しきれずに小気泡のま
ま滞留しているものと考えられる。
The reason for such a low value is that the floating speed of small hydrogen bubbles released from the test piece into glycerin is extremely slow (approximately 1/10' slower than in mercury).
It is thought that the particles could not be completely floated to the surface during the collection time of 8 hours and remained as small bubbles.

さらに、わずかではあるが水素がグリセリンに溶解度を
もつことが指摘されている。
Furthermore, it has been pointed out that hydrogen has a small solubility in glycerin.

捕集液に起因する誤差の他にも、試験材、溶接条件、雰
囲気冷却条件などが変動要因として考えられるが、これ
らによってもたらされるばらつきσが、0.5縦/10
0g程度で、n=4の繰返しで判別できるのは約1al
/100&といわれている。
In addition to errors caused by the collecting liquid, test materials, welding conditions, atmospheric cooling conditions, etc. can be considered as fluctuation factors, but the variation σ caused by these is 0.5 vertical/10
At around 0g, it is approximately 1al that can be determined by repeating n=4.
It is said to be /100&.

一方、1.1.W法は人体に有害な水銀を多量に増扱わ
なければならないという致命的欠点のほかに、10’朋
Hgの減圧下に72時間保持する間に測定容器のすり合
せ部から大気が侵入して測定が失敗Oこ終ることが頻発
する。
On the other hand, 1.1. The W method has the fatal disadvantage of having to handle a large amount of mercury, which is harmful to the human body, as well as the fact that air enters the measuring container through the joints during the 72-hour period under reduced pressure of 10 Hg. Measurements often end in failure.

1.1.W法による測定値のばらつきσは約0.5tr
tll/ 1001i’といわれており定量できる下限
は約2d/100gとされている。
1.1. The variation σ of the measured values by the W method is approximately 0.5tr
It is said to be tll/1001i', and the lower limit of quantification is approximately 2d/100g.

この定量下限は最小目盛0.05/ItJのビユレット
に捕集されたガスを目祝で測定することおよび溶着金属
量が約1gであることから決定される。
This lower limit of quantification is determined by visually measuring the gas collected in a billet with a minimum scale of 0.05/ItJ and from the fact that the amount of deposited metal is approximately 1 g.

一方、溶着金属中の水素とならんで溶接時の溶融金属中
の水素量も、溶接われ現象を解明するための重要な知見
を提供するものである。
On the other hand, in addition to hydrogen in the deposited metal, the amount of hydrogen in the molten metal during welding also provides important knowledge for elucidating the phenomenon of weld warpage.

この溶融金属中の水素溶解過程を解明する方法として、
たとえば英国のG、R,5alter氏(Britis
hWelding Journal、 June 19
63 P 316〜325)は、アルゴンと水素の混
合気体を満たした密閉容器中で鋼をアーク溶融し、消弧
後ただちに溶融鋼を密閉器中でアーク室と隔離された別
室に導き、ここで、溶融鋼の冷却凝固(消弧後の経過時
間は最高45秒)による水素溶解度の減少に伴って放出
される水素を熱伝導度計によって定量する方法を報告し
ている。
As a method to elucidate the hydrogen dissolution process in molten metal,
For example, Mr. G. R. 5alter of the United Kingdom (Britis)
hWelding Journal, June 19
63 P 316-325), steel is arc melted in a closed container filled with a mixed gas of argon and hydrogen, and immediately after the arc is extinguished, the molten steel is guided into a separate chamber isolated from the arc chamber in a closed container, where it is melted. reported a method for quantifying hydrogen released as hydrogen solubility decreases due to cooling and solidification of molten steel (maximum elapsed time after arc extinction is 45 seconds) using a thermal conductivity meter.

この方法によれば、3〜9gの試料に対して0.2〜1
.2/Itl(N、T、P)、すなわち2tttl!7
100 g〜12d/ 100g程度の水素を定量する
ことが可能であるが、最大誤差は±0.007m/(約
0.1m// 100 f )といわれている。
According to this method, 0.2 to 1
.. 2/Itl(N,T,P), i.e. 2tttl! 7
It is possible to quantify approximately 100 g to 12 d/100 g of hydrogen, but the maximum error is said to be ±0.007 m/(approximately 0.1 m//100 f).

この方法を前述の溶着金属中の水素定量に利用できるか
という観点でみるとこの方法は、消弧後約45秒という
短時間に0.2〜1.2//Ll(2尻l/100g〜
12rrtl/ 100g)という多量に放出される水
素の定量のために開発されたものであるので溶着金属中
の水素定量用としては不適当である。
From the viewpoint of whether this method can be used to quantify hydrogen in the weld metal mentioned above, this method can be used in a short period of about 45 seconds after the arc is extinguished. ~
It was developed for the purpose of quantifying hydrogen released in large amounts (12rrtl/100g), and is therefore unsuitable for quantifying hydrogen in weld metal.

このように、前述の三つの方法はいづれもさきに述べた
欠点に加えて定量下限および定量精度に関して、最初に
のべたような溶着金属中の微量水素の測定において要求
される条件を満たすものではない。
In this way, in addition to the shortcomings mentioned earlier, none of the three methods mentioned above meet the requirements for measuring trace amounts of hydrogen in weld metal as mentioned above in terms of lower limit of quantification and quantification accuracy. do not have.

また、残留水素量を求める場合には、JIS法あるいは
IIW法で拡散性水素を測定したのちに同じ試験片につ
いて、切断、清浄化、乾燥等の操作をへて、さらに別途
準備された鋼中水素定量装置を用いて定量をおこなって
いる。
In addition, when determining the amount of residual hydrogen, after measuring diffusible hydrogen using the JIS method or IIW method, the same test piece is subjected to operations such as cutting, cleaning, and drying. Quantification is performed using a hydrogen quantification device.

しかしながら、このように同一試験片について、拡散性
水素および残留水素をそれぞれ異った装置を用いて異っ
た操作によって測定することは非常に煩雑である。
However, it is very complicated to measure diffusible hydrogen and residual hydrogen using different devices and different operations on the same test piece.

本発明はこのような難点をことごとく解決して溶着金属
中の微量の拡散性水素および残留水素を精度よく自動的
に定量する方法および装置を提供するものである。
The present invention solves all of these difficulties and provides a method and apparatus for automatically and accurately quantifying trace amounts of diffusible hydrogen and residual hydrogen in weld metal.

即ち、本発明は、 (1)常時キャリヤーガスを流通せしめられた水素定量
系統中に水素捕集容器を断続自在に設け、該捕集容器内
Oこ挿入された試験片より拡散性水素を一定時間だけ該
容器中に放出せしめたのち、該キャリヤーガスにより該
水素をガス分析計に導入して定量を行ない、これを任意
の回数くり返すと共に、これら分析サイクル当りの時間
、サイクル回数、必要とする弁操作、および定量・記録
操作をシーケンス制御により行なって、常温拡散性水素
を定量することを特徴とする金属中の水素の定量方法。
That is, the present invention has the following features: (1) A hydrogen collection container is provided intermittently in a hydrogen quantitative system in which a carrier gas is constantly allowed to flow, and a test piece inserted into the collection container collects diffusible hydrogen at a constant rate. After releasing the hydrogen into the container for a certain amount of time, the hydrogen is introduced into the gas analyzer using the carrier gas and quantitatively determined.This is repeated an arbitrary number of times, and the time per analysis cycle, the number of cycles, and the required amount are determined. 1. A method for quantifying hydrogen in metals, characterized in that normal temperature diffusible hydrogen is determined by sequence control of valve operations and quantitative/recording operations.

および(2)常時キャリヤーガスを流通せしめられた水
素定量系統中に水素捕集容器を断続自在に設け、該捕集
容器内に挿入された試験片より拡散性水素を一定時間該
容器中に放出せしめたのち、該キャリヤーガスにより該
水素をガス分析計に導入して定量を行ない、これを任意
の回数くり返すと共に、これら分析サイクル当りの時間
、サイクル回数、必要とする弁操作、および定量。
and (2) A hydrogen collection container is provided intermittently in a hydrogen quantitative system in which a carrier gas is constantly supplied, and diffusible hydrogen is released into the container for a certain period of time from a test piece inserted into the collection container. After this, the hydrogen is introduced into a gas analyzer using the carrier gas and quantified. This is repeated an arbitrary number of times, and the time per analysis cycle, number of cycles, required valve operations, and quantification are determined.

記録操作をシーケンス制御により行なって常温拡散性水
素を定量し、次いで該容器を排気し、さらに該容器内の
試験片を一定時間加熱して残留水素を放出せしめ、次に
該容器にキャリヤーガスを導入してほぼ常圧とするとと
もに該水素を分析計に導入して定量を行ない、かつ必要
とする弁操作および定量・記録操作をシーケンス制御に
より行なって残留水素を定量することを特徴とする金属
中の水素の定量方法。
The recording operation is performed under sequence control to quantify room temperature diffusible hydrogen, then the container is evacuated, the test piece in the container is heated for a certain period of time to release residual hydrogen, and then a carrier gas is injected into the container. A metal characterized in that hydrogen is introduced into an analyzer to bring the pressure to approximately normal pressure, and the residual hydrogen is determined by introducing the hydrogen into an analyzer and quantifying it, and performing necessary valve operations and quantitative/recording operations by sequence control. Method for quantifying hydrogen in

およびこれらを実施するための装置であって、本発明に
よれば2m171009以下の水素を精度よく定量でき
、かつ10 ”tttl/ 5 minあるいは10
”trtl/ hl程度までの微量放出水素の挙動
の把握が可能となる。
and an apparatus for implementing these, which according to the present invention is capable of accurately quantifying hydrogen of 2 m171009 or less, and which is capable of quantifying hydrogen at a rate of 10"tttl/5 min or 10"
``It is possible to understand the behavior of trace amounts of released hydrogen up to about trtl/hl.

以下、本発明について、図面に基づいて説明する。Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明の装置の一実施態様例を示すものである
FIG. 1 shows an embodiment of the apparatus of the present invention.

1は試験片が挿入され、常温で放出される水素を捕集す
るための捕集容器であって、切換スイッチ13を介して
温度指示調節計12によって温度制御可能な加熱炉2中
に保持される機構となっており、該捕集容器1はキャリ
ヤーガスを導入するための人口弁3およびキャリヤーガ
ス及び捕集された水素を導出するための出口弁4を介し
て水素定量系統のガス流路に接続されている。
Reference numeral 1 denotes a collection container into which a test piece is inserted to collect hydrogen released at room temperature, and is held in a heating furnace 2 whose temperature can be controlled by a temperature indicating controller 12 via a changeover switch 13. The collection container 1 is connected to the gas flow path of the hydrogen quantitative system via an artificial valve 3 for introducing carrier gas and an outlet valve 4 for extracting the carrier gas and the collected hydrogen. It is connected to the.

キャリヤーガスとしては、Arガス、N2ガスなどを用
い、キャリヤーガスは流量調節弁6により流量調節をう
けながらボンベ5より供給される。
Ar gas, N2 gas, or the like is used as the carrier gas, and the carrier gas is supplied from the cylinder 5 while being adjusted in flow rate by the flow rate control valve 6.

7゜8はキャリヤーガスの流路を任意の捕集容器1また
は1に切換えるための切換弁で、7はガス流路人口弁3
側に、8はガス流路出口弁4側にそれぞれ接続されてい
る。
7°8 is a switching valve for switching the carrier gas flow path to an arbitrary collection container 1 or 1; 7 is a gas flow path population valve 3;
8 are respectively connected to the gas flow path outlet valve 4 side.

該切換弁8は捕集容器1または1′において捕集され、
キャリヤーガスによって導かれた水素をガス分析計9に
導くためのものである。
The switching valve 8 is collected in the collection container 1 or 1',
This is for guiding the hydrogen guided by the carrier gas to the gas analyzer 9.

該分析計9は分析データ記録手段として定量分析の測定
値をアナログ記録するためのレコーダー10および同じ
く測定値の積分量を記録するための積分計11と接続し
ている。
The analyzer 9 is connected as analysis data recording means to a recorder 10 for analog recording of the measured values of the quantitative analysis and an integrator 11 for recording the integral amount of the measured values.

捕集容器1は弁15を介して真空排気装置14?こより
排気可能なように配管されている。
The collection container 1 is connected to a vacuum exhaust device 14 via a valve 15. The pipes are designed to allow for exhaust air.

またボンベ5と捕集容器1との間には該捕集容器1を真
空排気する際にボンベ5と遮断するための弁16を介在
せしめる。
Further, a valve 16 is interposed between the cylinder 5 and the collection container 1 to shut off the cylinder 5 when the collection container 1 is evacuated.

以上のべたような加熱炉2の加熱時間および温度の制御
、捕集容器1中の水素ガス捕集時間の制御、該捕集容器
1中に捕集された水素ガスをガス分析計9に送りこむた
めのキャリヤーガスの流路およびタイミングの制御、捕
集容器1からガス分析計9へのサンプルガス導入の時期
に対応し7てレコーダー10および積分計11の動作開
始および停止の制御、また残留水素の定量のためにする
捕集容器1の排気およびキャリヤーガス導入のための真
空排気装置14および弁15,16の制御をおこなうの
がシーケンス制御機構17である。
The heating time and temperature of the heating furnace 2 are controlled as described above, the hydrogen gas collection time in the collection container 1 is controlled, and the hydrogen gas collected in the collection container 1 is sent to the gas analyzer 9. control of the flow path and timing of the carrier gas, control of the start and stop of operation of the recorder 10 and the integrator 11 in accordance with the timing of introducing the sample gas from the collection container 1 to the gas analyzer 9, and control of the operation start and stop of the recorder 10 and the integrator 11, and The sequence control mechanism 17 controls the evacuation device 14 and valves 15 and 16 for evacuation of the collection container 1 and introduction of carrier gas for quantitative determination.

以上にのべた装置の実施態様例においてキャリヤーガス
の他、捕集容器、ガス分析計、分析データ記録手段、お
よびシーケンス制御機構またはこれにさらに加熱炉およ
びその温度制御機構、および真空排気装置を具備するこ
とが必須であり、弁の配置、配管系統などについては適
宜変更することが可能である。
In addition to the carrier gas, the embodiments of the apparatus described above are equipped with a collection container, a gas analyzer, an analysis data recording means, and a sequence control mechanism, or a heating furnace and its temperature control mechanism, and a vacuum evacuation device. It is essential to do so, and the arrangement of valves, piping system, etc. can be changed as appropriate.

なお、第1図では同じ構成の捕集ユニットが1’ 、
2’ 、 3’ 、 4’などでもう一組あるものを例
示したものであり、図示した以外にも同様なユニットを
複数組配設することは勿論可能である。
In addition, in FIG. 1, the collection units with the same configuration are 1',
This is an example of another set of units such as 2', 3', 4', etc., and it is of course possible to arrange multiple sets of similar units other than those shown.

そのような場合には、それぞれの加熱炉の温度制御は前
記切換スイッチ13により行なわれる。
In such a case, temperature control of each heating furnace is performed by the changeover switch 13.

ガス捕集容器1の材質としては、1300℃までの温度
で充分な強度を有し、しかも水素を透過しない材質のも
のであることが肝要であり、その内部のプツトスペース
が20d以下であることが望ましい。
It is important that the material of the gas collection container 1 has sufficient strength at temperatures up to 1300°C and is impermeable to hydrogen, and that the internal put space is 20 d or less. desirable.

また加熱炉2としては1300℃程度以上まで昇温可能
であるものを選ぶことが必要である。
Further, it is necessary to select a heating furnace 2 that can raise the temperature to about 1300° C. or higher.

なお、温度指示調節計としては通常のものを用いること
が出来る。
Note that a normal temperature indicating controller can be used.

ガス分析計9は、キャリヤーガスによって搬送された水
素を、すくなくとも1 x 10 ’al(N、T、
P、)まで定量しうろことが必要で、例えば熱伝導度検
出型ガスクロマトグラフを用いるとよい。
The gas analyzer 9 analyzes the hydrogen carried by the carrier gas at least 1 x 10'al (N, T,
It is necessary to quantify up to P, ), for example, using a thermal conductivity detection type gas chromatograph.

積分計11は、ガス分析計9の長時間稼動に付随するベ
ースラインの変動キャリヤーガス搬送のための弁の開閉
に伴う圧力変動で惹起される定量ノイズ等の妨害を受け
ず、対象とするガスのみの分析ピークを積分することの
可能な、たとえばガスクロマトグラフ用デジタルインチ
ブレーク−を用いることが望ましい。
The integrator 11 is free from disturbances such as quantitative noise caused by pressure fluctuations caused by the opening and closing of valves for conveying carrier gas due to fluctuations in the baseline accompanying long-term operation of the gas analyzer 9, and is capable of measuring the target gas. It is desirable to use, for example, a digital inch break for gas chromatography, which is capable of integrating only the analytical peaks.

なおアナログレコーダーとしては、例えば通常のペンレ
コーダーを用いることができる。
Note that as the analog recorder, for example, a normal pen recorder can be used.

真空排気装置14は少なくとも10−1朋Hgまで真空
排気可能なものを用いなければならない。
The evacuation device 14 must be capable of evacuation to at least 10 -1 Hg.

シーケンス制御機構1γは弁あるいはスイッチ等を動作
させるための起動スイッチが任意に設定された時間に接
・断の動作をしうろことが肝要であり、形式としては、
たとえばピンボードプログラミング方式などのものを用
いることが出来る。
It is important for the sequence control mechanism 1γ that the starting switch for operating the valve or switch etc. performs the connection/disconnection operation at an arbitrarily set time, and the format is as follows:
For example, a pinboard programming method can be used.

次lこ第1図の態様例1こ示した本発明装置を用いて本
発明方法を実施するための要領を説明する。
Next, the procedure for implementing the method of the present invention using the apparatus of the present invention shown in Embodiment 1 of FIG. 1 will be explained.

まず、通常の試験片調製法たとえば1.1.W、法(D
oc、 n−A−275−70、6、1分析のための
試片準備)にしたがって試験片を準備する。
First, a typical test piece preparation method such as 1.1. W, law (D
oc, n-A-275-70, 6, 1 Specimen Preparation for Analysis).

加熱炉2中に保持された捕集容器1の中に試験片を入れ
て、必要に応じて容器1中の空気をキャリヤーガスでパ
ージしたのち人口弁3および出口弁4を閉じる。
A test piece is placed in a collection container 1 held in a heating furnace 2, and after the air in the container 1 is purged with a carrier gas as required, the population valve 3 and outlet valve 4 are closed.

入口弁3および出口弁4を閉じられているときは、入口
切換弁7および出口切換弁8によってキャリヤーガスの
みをガス分析計9に導く。
When the inlet valve 3 and the outlet valve 4 are closed, only the carrier gas is guided to the gas analyzer 9 by the inlet switching valve 7 and the outlet switching valve 8.

シーケンス制御機構17は、あらかじめ適宜設定された
時間経過後、入口弁3および出口弁4を開き、さらに入
口切換弁7および出口切換弁8を操作して、試験片から
放出されて容器1中に貯蔵された水素をキャリヤーガス
ボンベ5から弁6を経由したキャリヤーガスによってガ
ス分析計9に導く。
After a preset time has elapsed, the sequence control mechanism 17 opens the inlet valve 3 and the outlet valve 4, and further operates the inlet switching valve 7 and the outlet switching valve 8, so that the sample is released from the test piece and into the container 1. The stored hydrogen is guided from the carrier gas cylinder 5 to the gas analyzer 9 by the carrier gas via the valve 6.

シーケンス制御機構17はレコーダー10と積分計11
とをそれぞれ動作させる。
The sequence control mechanism 17 includes a recorder 10 and an integrator 11
and operate respectively.

容器1中の水素量はレコーダー10によ−ってアナログ
信号として、また積分計IHこよってベースライン変動
を補正後の積分デジタル量として記録される。
The amount of hydrogen in the container 1 is recorded by the recorder 10 as an analog signal, and by the integrator IH as an integrated digital amount after correcting baseline fluctuations.

分析終了後、再びシーケンス制御機構1Tは容器1の入
口弁3および出口弁4を閉じ、入口切換弁7および出口
切換弁8を操作して、キャリヤーガスのみをガス分析計
9に導く。
After the analysis is completed, the sequence control mechanism 1T closes the inlet valve 3 and outlet valve 4 of the container 1 again, operates the inlet switching valve 7 and the outlet switching valve 8, and guides only the carrier gas to the gas analyzer 9.

大口弁3を開いたのち積分計11が動作を開始するまで
の時間はあらかじめ設定される。
The time from opening the large mouth valve 3 until the integrator 11 starts operating is set in advance.

あらかじめ適宜設定された任意の時間経過後、再びシー
ケンス制御機構17は再び同一の分析サイクルをくり返
す。
After an arbitrary preset time has elapsed, the sequence control mechanism 17 repeats the same analysis cycle again.

これによって第1回分析後、容器1中lこ放出された水
素量が定量される。
As a result, after the first analysis, the amount of hydrogen released into the container 1 is quantified.

この分析サイクルをあらかじめシーケンス制御機構17
に設定された任意の回数だけくり返して、常温拡散性水
素の定量操作を完了する(抽出時間は原則として、I
、 I 、W、法Gこ準じて72時間とするのがよい)
The sequence control mechanism 17 controls this analysis cycle in advance.
Repeat the specified number of times to complete the quantitative operation of room-temperature diffusible hydrogen (as a general rule, the extraction time is
, I, W, and G, it is best to set it as 72 hours)
.

各分析サイクルで得られた水素量の合計が常温拡散性水
素を与える。
The sum of the amounts of hydrogen obtained in each analysis cycle gives the room temperature diffusible hydrogen.

次に真空排気装置14を動作させ弁15を開いて、容器
1を排気して再び弁15を閉じる。
Next, the vacuum evacuation device 14 is operated to open the valve 15, the container 1 is evacuated, and the valve 15 is closed again.

温度指示調節計12を作動させ、加熱炉2を1300℃
以下の任意の温度に昇温させ、捕集容器1中の試験片を
間接的に加熱して残留していた水素を任意の一定時間放
出せしめたのち、弁16を開いてキャリヤーガスを導入
し、はゾ常圧としたのち、再び弁16を閉じ、つづいて
入口切換弁7および出口切換弁8を操作し大口弁3、出
目弁4を開いてキャリヤーガスによって高温で放出され
た水素をガス分析計9に導く、高温放出水素も、前記常
温放出水素と同様(こアナログ量およびデジタル量で記
録される。
Activate the temperature indicator controller 12 and heat the heating furnace 2 to 1300°C.
After raising the temperature to an arbitrary temperature below and indirectly heating the test piece in the collection container 1 to release the remaining hydrogen for an arbitrary fixed period of time, the valve 16 is opened to introduce carrier gas. After setting the pressure to normal pressure, close the valve 16 again, then operate the inlet switching valve 7 and the outlet switching valve 8 to open the large mouth valve 3 and the outlet valve 4 to remove the hydrogen released at high temperature by the carrier gas. The high-temperature released hydrogen led to the gas analyzer 9 is also recorded in the same way as the normal-temperature released hydrogen (this is recorded in analog and digital amounts).

この場合加熱温度を任意の数段階(こ設定することによ
って、残留水素を抽出温度別に分別定量することも可能
である。
In this case, by setting the heating temperature in any number of steps, it is also possible to separately quantify residual hydrogen by extraction temperature.

以上の操作lこ関して、全く同様のシーケンス制御によ
って捕集容器1からの水素をガス分析計9で分析してい
ない時に例えば捕集容器11、加熱炉21、大口弁3′
、出口弁41を操作して、捕集容器1′からの水素をガ
ス分析計9に導くこと(こよって、2個の試験片番こつ
いて、はゾ同じ所要時間で同様の測定値を得ることが可
能である。
Regarding the above operations, for example, when the hydrogen from the collection container 1 is not being analyzed by the gas analyzer 9 using exactly the same sequence control, the collection container 11, the heating furnace 21, the large mouth valve 3'
, operating the outlet valve 41 to guide the hydrogen from the collection vessel 1' to the gas analyzer 9 (thus, two test pieces are used to obtain similar measurements in the same amount of time). Is possible.

そこで、前記の如く、複数組の同様な構成の抽出ユニッ
トを配設しておけば以上にのべた方法(こよって多数個
(r+>2)の試鋏片について、それぞれの拡散性水素
量と残留水素量を微量まで精度よくはゾ同時に定量する
ことができる。
Therefore, as mentioned above, if multiple sets of extraction units with the same configuration are arranged, the method described above (thus, for a large number (r+>2) of test scissors, the amount of diffusible hydrogen for each It is possible to simultaneously quantify the amount of residual hydrogen with high accuracy down to the trace amount.

また必要に応じて、単位時間当り放出水素量(第2図参
照)あるいは残留水素に関して加熱温度毎の抽出水素量
(第3図参照)といった有用な微視的測定値を得ること
も可能である。
If necessary, it is also possible to obtain useful microscopic measurements such as the amount of hydrogen released per unit time (see Figure 2) or the amount of extracted hydrogen at each heating temperature (see Figure 3) regarding residual hydrogen. .

なお、前記の単位時間当り放出水素量あるいは加熱温度
毎の抽出水素量が不必要な場合には分析操作を簡略化し
て着目する測定値のみを得ればよいことは勿論である。
It goes without saying that if the amount of hydrogen released per unit time or the amount of hydrogen extracted per heating temperature is unnecessary, the analysis operation can be simplified to obtain only the measured value of interest.

なお第1図に示した装置例は、本発明の一陣様のみを示
したものであって、ガスクロマトグラフの代りに質量分
析計、またピンボードプログラマ−の代りにカムプログ
ラマ−を用いるなど、本願特許請求の範囲内で如何様t
ども変りうるものであることは云うまでもない。
The device example shown in FIG. 1 shows only one aspect of the present invention, and the present invention may include a mass spectrometer instead of a gas chromatograph, a cam programmer instead of a pinboard programmer, etc. within the scope of the claims.
Needless to say, things can change.

また残留水素の定量を特に必要としない場合には、これ
に関連する装置および操作を省略することができること
は匁論である。
Furthermore, if quantitative determination of residual hydrogen is not particularly required, it is a matter of course that the equipment and operations related thereto can be omitted.

最後に本発明を実施例により、さらに具体的に説明する
Finally, the present invention will be explained in more detail with reference to Examples.

実施例 1 まず、第1表の第1欄に示す試験材を1.1.W法に準
じて準備し、第2欄に示す溶接法で第3欄に示す種類の
溶接材料を用いて溶接し、1.1.W法に準じて準備し
た試験片(寸法は1.1.W法の2個を1個とし巾15
朋×長さ15朋×高さ10間に変更した)を、第1図に
ついて説明したような操作をおこなって常温で1時間周
期でガスクロマトグラフを用いて測定し、これを48回
くり返してそれぞれの結果の総計を第4欄に、1000
℃で加熱抽出し、30分周期で2回分析した結果の総計
を第5欄に示す。
Example 1 First, the test materials shown in the first column of Table 1 were subjected to 1.1. Prepared according to the W method and welded using the welding method shown in the second column using the type of welding material shown in the third column, 1.1. Test piece prepared according to the W method (dimensions are 1.1. Two pieces of the W method are taken as one piece, width 15
15 mm long x 15 mm long x 10 mm high) was measured using a gas chromatograph at room temperature in 1-hour cycles by performing the same operation as explained in Figure 1, and this was repeated 48 times to measure each The total of the results is in the fourth column, 1000
Column 5 shows the total of the results of heating extraction at ℃ and analysis twice at 30 minute intervals.

参考のために1.1.W法での測定結果を第6欄に、J
、1.S法での測定結果を第7欄に示す。
For reference 1.1. The measurement results using the W method are shown in column 6, and the results are shown in column 6.
, 1. The measurement results by the S method are shown in column 7.

第2表に定量原理等にもとづいて、一般にいわれている
IIW法およびJIS法の検知下限と本発明法の検知下
限、さらに第1表の測定結果から得られる再現精度(水
素量に応じて3グループに分けて常法に従い「力2から
算出した)の比較を示す。
Based on the principle of quantitative determination, Table 2 shows the lower detection limits of the generally known IIW method and JIS method and the lower detection limit of the method of the present invention, as well as the reproducibility obtained from the measurement results in Table 1 (depending on the amount of hydrogen). Divide into groups and show a comparison of ``calculated from force 2'' according to the usual method.

これらの比較から明らかなように本発明法は従来法であ
るIIW法やJIS法と比較して水素の検知下限絶対量
が3けた低下し、またサンプル採取量を考慮に入れた相
対測定値(trtl/ 100! )を考察してみると
、溶接ビードlこよる水素侵入の機構まで含めた総合的
再現精度を考慮に入れた定量下限の比較において、本発
明法は従来法を大巾に改善し、拡散性水素の低濃度域の
定量可能ならしめるのみでなく、 微量域でも従来法に比べて正確な値が得られることがわ
かる。
As is clear from these comparisons, the method of the present invention lowers the absolute detection limit of hydrogen by three orders of magnitude compared to conventional methods such as the IIW method and the JIS method, and also lowers the relative measurement value (taking into account the amount of sample collected). trtl/100!), the method of the present invention greatly improves the conventional method in comparing the lower limit of quantification, which takes into account the overall reproducibility including the mechanism of hydrogen intrusion through the weld bead. However, it can be seen that not only is it possible to quantify diffusible hydrogen in the low concentration range, but it is also possible to obtain more accurate values than conventional methods even in the trace amount range.

実施例 2 炭素鋼から9朋φ×約14間の形状をもつにの試験片A
、B、C,D、E、Fを切り出し、エメリー$600で
仕上げ研摩し重量を7,0OOPとし、lN−H2SO
46コA35rI19を加えた溶液中で白金網を対極と
して電流密度5mA/adでそれぞれ1,5,10,5
0,100,500分間定電流陰極電解水素チャージを
おこない電解チャージ後、直ちに試験片を第1図の捕集
容器1に入れ常温で1時間を周期として48回測定をく
り返した。
Example 2 Test piece A made of carbon steel with a shape of 9 mm φ x approximately 14 mm
, B, C, D, E, and F, finished polishing with emery $600 to a weight of 7,0 OOP, and lN-H2SO
1, 5, 10, 5, respectively, at a current density of 5 mA/ad using a platinum mesh as a counter electrode in a solution containing 46 pieces of A35rI19.
Constant current cathodic electrolytic hydrogen charging was carried out for 0, 100, and 500 minutes. Immediately after electrolytic charging, the test piece was placed in the collection container 1 shown in FIG. 1, and measurements were repeated 48 times at room temperature every hour.

それぞれの測定値の総計を第3表に示す。The total of each measurement value is shown in Table 3.

またり、Fの2試料Oこついての時間経過に伴う水素放
出量の変化を第4表に示す。
Table 4 also shows changes in the amount of hydrogen released over time for two samples of F.

この結果かられかるように、本発明法によれば5分間あ
るいは10分間という短時間当りに放出される0、00
013iあるいは0.0000277!lという極微量
に至るまでの放出水素量を時間経過にそって自動的に定
量でき、しかもそれらを合算することによって得られる
放出量合計においても従来法では困難であった0、00
056yrtlという微量水素まで測定可能である。
As can be seen from this result, according to the method of the present invention, 0,000
013i or 0.0000277! It is possible to automatically quantify the amount of released hydrogen down to an infinitesimal amount of 1,000 liters over time, and even the total released amount obtained by adding them up is 0.000, which was difficult with conventional methods.
It is possible to measure up to a trace amount of hydrogen of 0.056 yrtl.

以上の実施例から明らかなように、本発明は従来測定が
困難であった2rnl/100 f以下の拡散性水素量
をも精度よくかつ正確に自動的に定量することができる
のみならず、残留水素も併せて高精度で簡単にかつ自動
的に 測定でき、しかもそれぞれについて5分間という短時間
に至るまで特定時間当りの放出水素量を0.00001
mgの微量まで把握が可能となり、これによって水素放
出の微視的挙動を明らかにすることが出来るものであっ
て、金属あるいは金属構造物の安全性確保に寄与すると
ころ極めて犬である。
As is clear from the above examples, the present invention not only makes it possible to accurately and accurately automatically quantify the amount of diffusible hydrogen of 2rnl/100 f or less, which was difficult to measure in the past, but also Hydrogen can also be measured easily and automatically with high precision, and the amount of hydrogen released per specific time can be measured at 0.00001 for each short period of 5 minutes.
It is possible to grasp minute amounts down to mg, thereby clarifying the microscopic behavior of hydrogen release, which is extremely important in contributing to ensuring the safety of metals and metal structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の原理を示す模式図、第2図は本発
明装置を用いて得られる単位時間当り放出水素量および
累積捕集水素量と捕集時間の関係を示す図、第3図は本
発明装置を用いて得られる累積捕集水素量と加熱温度の
関係を示す図である。 1 、1’ :ガス捕集容器、2 、2’ :加熱炉、
3゜31:入口弁、4 、4’ :出口弁、5:キャリ
ヤーガスボンベ、6:流量調節弁、1:入口切換弁、8
:出口切換弁、9:ガス分析計、10ニレコーダー 1
1:積分計、12:温度指示調節計、13:切換スイッ
チ、14:真空排気装置、15゜15′:弁、16,1
6’:弁、11ニジ−ケンス制御機構。
Fig. 1 is a schematic diagram showing the principle of the device of the present invention, Fig. 2 is a diagram showing the relationship between the amount of hydrogen released per unit time, the cumulative amount of captured hydrogen, and the collection time obtained using the device of the present invention, and Fig. 3 The figure is a diagram showing the relationship between the cumulative amount of trapped hydrogen obtained using the apparatus of the present invention and the heating temperature. 1, 1': Gas collection container, 2, 2': Heating furnace,
3゜31: Inlet valve, 4, 4': Outlet valve, 5: Carrier gas cylinder, 6: Flow rate control valve, 1: Inlet switching valve, 8
: Outlet switching valve, 9: Gas analyzer, 10 Recorder 1
1: Integrator, 12: Temperature indicating controller, 13: Selector switch, 14: Vacuum exhaust device, 15゜15': Valve, 16,1
6': Valve, 11 nitrogen control mechanism.

Claims (1)

【特許請求の範囲】 1 常時キャリヤーガスを流通せしめられた水素定量系
統中に水素捕集容器を断続自在に設け、該捕集容器内に
挿入された試験片より拡散性水素を一定時間だけ該容器
中に放出せしめたのち、該キャリヤーガス(こより該水
素をガス分析計に導入して定量を行ない、これを任意の
回数くり返すと共に、これら分析サイクル当りの時間、
サイクル回数、必要とされる弁操作、および定量・記録
操作をシーケンス制御により行なって、常温拡散性水素
を定量することを特徴とする金属中の水素の定量方法。 2 常時キャリヤーガスを流通せしめられた水素定量系
統中に水素捕集容器を断続自在に設け、該捕集容器内に
挿入された試験片より拡散性水素を一定時間該容器中に
放出せしめたのち、該キャリヤーガスにより該水素をガ
ス分析計に導入して定量を行ない、これを任意の回数く
り返すと共に、これら分析サイクル当りの時間、サイク
ル回数、必要とする弁操作、および定量・記録操作をシ
ーケンス制御により行なって常温拡散性水素を定量し、
次いで該容器を排気しさらに該容器内の試験片を一定時
間加熱して残留水素を放出せしめ、次に該容器にキャリ
ヤーガスを導入してほぼ常圧とするとともに該水素を分
析計(こ導入して定量を行ない、かつ必要とする弁操作
および定量4畝操作をシーケンス制御により行なって残
留水素を定量することを特徴とする金属中の水素の定量
方法。 3 常時キャリヤーガスを流通せしめられた水素定量系
統であって、該キャリヤーガスの供給源と、試験片を保
持し且つ該試験片より放出される水素を捕集するための
捕集容器と、水素量を定量するための分析計およびその
結果を記録するための手段とガス流路を適宜切換えるた
めの複数個の弁とこれら分析操作を制御するためのシー
ケンス制御機構とからなることを特徴とする金属中の水
素の定量装置。 4 常時キャリヤーガスを流通せしめられた水素定量系
統であって該キャリヤーガスの供給源と、試験片を保持
し且つ該試験片より放出される水素を捕集するための捕
集容器と、該捕集容器を排気するための排気装置と、該
試験片を加熱するための加熱炉と、水素量を定量するた
めの分析計およびその結果を記録するための手段と、ガ
ス流路を適宜切り換えるための複数個の弁と、これらの
分析操作を制御するためのシーケンス制御機構とから戒
ることを特徴とする金属中の水素の定量装置。
[Claims] 1. A hydrogen collection container is provided intermittently in a hydrogen quantitative system in which a carrier gas is constantly supplied, and diffusible hydrogen is collected for a certain period of time from a test piece inserted into the collection container. After being released into the container, the hydrogen is introduced into a gas analyzer through the carrier gas and quantified, and this is repeated an arbitrary number of times, and the time per analysis cycle is
A method for quantifying hydrogen in metals, characterized in that room temperature diffusible hydrogen is determined by sequentially controlling the number of cycles, required valve operations, and quantitative/recording operations. 2. A hydrogen collection container is installed intermittently in a hydrogen quantitative system in which a carrier gas is constantly supplied, and after diffusible hydrogen is released into the container for a certain period of time from a test piece inserted into the collection container. , the hydrogen is introduced into the gas analyzer using the carrier gas and quantified, and this is repeated an arbitrary number of times, as well as the time per analysis cycle, the number of cycles, the required valve operations, and the quantification/recording operations. Quantify room temperature diffusible hydrogen by sequence control,
The container is then evacuated, and the test piece in the container is heated for a certain period of time to release residual hydrogen. Next, a carrier gas is introduced into the container to bring it to approximately normal pressure, and the hydrogen is transferred to an analyzer. A method for quantifying hydrogen in a metal, which is characterized in that the residual hydrogen is determined by sequentially controlling the necessary valve operations and 4-row operation. The hydrogen quantitative system includes a supply source of the carrier gas, a collection container for holding the test piece and collecting hydrogen released from the test piece, an analyzer for quantifying the amount of hydrogen, and An apparatus for quantifying hydrogen in metals, comprising means for recording the results, a plurality of valves for appropriately switching gas flow paths, and a sequence control mechanism for controlling these analysis operations.4. A hydrogen quantitative system in which a carrier gas is constantly supplied, comprising a supply source of the carrier gas, a collection container for holding a test piece and collecting hydrogen released from the test piece, and the collection An exhaust device for evacuating the container, a heating furnace for heating the test piece, an analyzer for quantifying the amount of hydrogen, a means for recording the results, and a means for appropriately switching the gas flow path. An apparatus for quantifying hydrogen in metals, comprising a plurality of valves and a sequence control mechanism for controlling these analytical operations.
JP51071701A 1976-06-19 1976-06-19 Method and device for determining hydrogen in metals Expired JPS5827866B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP51071701A JPS5827866B2 (en) 1976-06-19 1976-06-19 Method and device for determining hydrogen in metals
DE2727252A DE2727252C3 (en) 1976-06-19 1977-06-16 Method for the device for measuring the hydrogen contained in a metal sample
FR7718869A FR2355287A1 (en) 1976-06-19 1977-06-20 PROCEDURE FOR AUTOMATICALLY AND QUANTITATIVELY MEASURING THE QUANTITY OF HYDROGEN CONTAINED IN A METAL AND APPARATUS FOR CARRYING OUT THIS PROCESS
US05/808,357 US4142399A (en) 1976-06-19 1977-06-20 Method for automatic quantitative measurement of hydrogen in a metal and an apparatus for carrying out said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51071701A JPS5827866B2 (en) 1976-06-19 1976-06-19 Method and device for determining hydrogen in metals

Publications (2)

Publication Number Publication Date
JPS52155596A JPS52155596A (en) 1977-12-24
JPS5827866B2 true JPS5827866B2 (en) 1983-06-11

Family

ID=13468096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51071701A Expired JPS5827866B2 (en) 1976-06-19 1976-06-19 Method and device for determining hydrogen in metals

Country Status (1)

Country Link
JP (1) JPS5827866B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462597U (en) * 1990-09-29 1992-05-28
JPH0514549Y2 (en) * 1987-10-20 1993-04-19

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514549Y2 (en) * 1987-10-20 1993-04-19
JPH0462597U (en) * 1990-09-29 1992-05-28

Also Published As

Publication number Publication date
JPS52155596A (en) 1977-12-24

Similar Documents

Publication Publication Date Title
EP0024566B1 (en) An apparatus for the analysis of oxygen, nitrogen and hydrogen contained in metals
US4877743A (en) Monitoring reaction of nitrous oxide to form nitrogen
DE2520444B2 (en) Device for continuous measurement of the hydrogen concentration in argon gas
US5522915A (en) Method and apparatus for sequentially and continuously determining concentrations of carbon, hydrogen, and nitrogen in molten steel, and method and apparatus for rapidly determining trace amounts of carbon in molten steel
US4290296A (en) Method and apparatus for gas dosing for linearization
US4142399A (en) Method for automatic quantitative measurement of hydrogen in a metal and an apparatus for carrying out said method
Padhy et al. Rapid determination of diffusible hydrogen in steel welds using a modified gas chromatography facility
JPS5827866B2 (en) Method and device for determining hydrogen in metals
Jenkins et al. An evaluation of rapid methods for diffusible weld hydrogen
EP0281037A2 (en) Method of measuring oxygen in silicon
US3567388A (en) Apparatus for determining carbon on catalyst
JPS6125047A (en) Preliminary detecting method of hydrogen errosion in pressure container
US3251217A (en) Determination of gases in metals
JPS6411905B2 (en)
Ohtsubo et al. Development of apparatus for determination of diffusible hydrogen in steel
Benlyamani et al. Solubility of sulfur in pure Cr2O3 at 1000° C
JP3492248B2 (en) Method for measuring trace helium in metals
Gregory et al. An improved apparatus for the determination of gaseous elements in metals by vacuum fusion on a micro scale
GB1516896A (en) Method and means for quantitative analysis of sulphuric acid-containing gases
Walker et al. The use of electrolytic hygrometers for the determination of water and hydrogen
JPS6321136B2 (en)
Quintana et al. Diffusible hydrogen testing by gas chromatography
JPS61283866A (en) Method and apparatus for analyzing trace of carbon contained in steel material
Peterson et al. Evaluation of Inert Gas Fusion Method for Rapid Determination of Oxygen in Steel
Folwell Rapid Simultaneous Determination of Oxygen and Nitrogen in Steel for Production Control