JPS5827630A - Method and apparatus for reacting powder and gas - Google Patents

Method and apparatus for reacting powder and gas

Info

Publication number
JPS5827630A
JPS5827630A JP12544481A JP12544481A JPS5827630A JP S5827630 A JPS5827630 A JP S5827630A JP 12544481 A JP12544481 A JP 12544481A JP 12544481 A JP12544481 A JP 12544481A JP S5827630 A JPS5827630 A JP S5827630A
Authority
JP
Japan
Prior art keywords
powder
gas
reaction
reaction tube
reacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12544481A
Other languages
Japanese (ja)
Inventor
Noboru Yoneda
米田 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP12544481A priority Critical patent/JPS5827630A/en
Publication of JPS5827630A publication Critical patent/JPS5827630A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain a uniform reaction product, in an apparatus for reacting a powder and a gas, by fixing the powder by a medium having good gas permeability to uniformize the reaction of the powder and the gas. CONSTITUTION:In an apparatus for reacting a powder such as an Si powder and a gas such as a nitrogen containing gas, the powder 2 is fixed in a reaction tube 1 by a medium 2 having gas permeability such as a ceramic fiber 3 or a glass fiber. By this structure, the gas is flowed along the medium 2 and penetrated into the interior of the powder and, therefore, the powder and the gas are uniformly reacted to obtain a uniform reaction product such as Si3N4.

Description

【発明の詳細な説明】 本発明は、気相と固相の反応を均一化する方法及びこの
方法を実施する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for homogenizing reactions between gas and solid phases and an apparatus for carrying out this method.

従来粉体とガスを反応させて生成物を得る場合、粉体を
入れたボート、ルツボ等を反応装置に入れ1反応装置に
ガスを導く方法がとられている。例えばSi粉末と窒素
を含むガスを反応させて窒化珪素(8+sNJを得る場
合、第1図に示すように8i粉2を充填したボート5を
反応管1に入れ9反応管1の外周部よシ加熱しつつNt
ガス又はNH,ガスを矢印の如く通じて反応させる方法
がとられる。しかしこの方法では上記ガスに接するボー
ト内充填物の表面部分のみ反応が進行し、しかも発熱反
応である為表面部分のみ焼結して、ガスの充填松内部へ
の浸透が阻害され、窒化率及びαSt、N4の収率が低
い欠点があった。(1300℃で5時間反応させた場合
Conventionally, when obtaining a product by reacting powder and gas, a method has been used in which a boat, crucible, or the like containing the powder is placed in a reaction apparatus and the gas is introduced into one reaction apparatus. For example, when silicon nitride (8+sNJ) is obtained by reacting Si powder with a gas containing nitrogen, a boat 5 filled with 8i powder 2 is placed in a reaction tube 1 as shown in FIG. Nt while heating
A method is used in which gas or NH gas is passed as shown by the arrow to react. However, in this method, the reaction progresses only on the surface of the filled material in the boat that is in contact with the gas, and since it is an exothermic reaction, only the surface portion is sintered, inhibiting the penetration of the gas into the inside of the filled pine, and reducing the nitriding rate. There was a drawback that the yield of αSt and N4 was low. (When reacted at 1300°C for 5 hours.

窒化率23チ、α5iBN、 65優及びβ8N、N。Nitriding rate: 23%, α5iBN, 65% and β8N,N.

35−の生成であj5,1350℃で5時間反応させた
場合、窒化率30チ、αS輸N、57嗟及び/8輸N4
43優の生成であった。)一方9発明者は第2図に示す
ように反応管1の中央部に8i粉2を充填し、81粉の
両端を綿状のセラミック#!繕3で押えて反応管を加熱
しつつ、管の一端からN、ガス及びNH,ガスを通じる
方法で試験を行なった。しかしガスの流入する側の8i
粉は曳く反応してSi@N4を生成するが発熱してS 
i、Naが固結し、ガスの通過が悪くなシ、ガス圧を上
げても8i粉全体に浸透しない。
When reacting at 1,350°C for 5 hours, the nitriding rate was 30, αS import was 57, and /8 import was N4.
It was 43 years old. ) On the other hand, the inventor 9 filled the center of the reaction tube 1 with 8i powder 2 as shown in FIG. 2, and filled both ends of the 81 powder with cotton-like ceramic #! The test was conducted by passing N, gas, and NH, gas from one end of the tube while heating the reaction tube by holding it down with a patch 3. However, 8i on the gas inflow side
The powder reacts and generates Si@N4, but it generates heat and S
i, Na solidifies and gas passage is poor, and even if the gas pressure is increased, it does not penetrate into the entire 8i powder.

ま九常温付近における粉体のガス吸収反応においては、
従来第2図のように粉体を充填し九反応管の一端からガ
スを送る方法がとられて来九が9反応が進むにつれてガ
スを吸収した粉体がJIILガスの通過を阻害する欠点
があつ九。
In the gas absorption reaction of powder near normal temperature,
Conventionally, as shown in Figure 2, a method of filling powder and sending gas from one end of the reaction tube has been used, but as the reaction progresses, the powder absorbs gas and obstructs the passage of JIIL gas. Atsuku.

例えばN I Clt・2NH,粉にNH,を吸収させ
る場合反応が約2091進行した時点で、それ以後のガ
スの通過が困難となシ反応が停止する。
For example, when NH is absorbed into powder of N IClt.2NH, when the reaction has progressed approximately 2091 times, it becomes difficult for the gas to pass through thereafter, and the reaction stops.

さらにC!IO又はCuSO4・H,OにH,Oガスを
吸収する反応においても、従来の方法では管内にガスを
通過させるのにかなりの圧力をかける必要があった。
More C! Even in the reaction of absorbing H, O gas into IO or CuSO4.H,O, in the conventional method it was necessary to apply considerable pressure to pass the gas into the tube.

本発明はこのような欠点を改良し、均一な生成物を得る
粉体とガスの反応方法及び装置を提供することにある。
The object of the present invention is to overcome these drawbacks and provide a method and apparatus for reacting powder and gas to obtain a uniform product.

本発明は9反応管中の連続する通気性を有する媒体によ
って粉体を固定し9反応管中にガスを導入して粉体とガ
スを反応させることtI!lf徴とする粉体とガスの反
応方法、及び連続する通気性を有する媒体を配設し、か
つ該媒体によって粉体が固定された反応管を備えてなる
粉体とガスの反応装置に関する。
The present invention involves fixing the powder with a continuous air-permeable medium in nine reaction tubes, and introducing a gas into the nine reaction tubes to cause the powder and gas to react! The present invention relates to a method for reacting powder and gas with lf characteristics, and a reactor for reacting powder and gas comprising a reaction tube provided with a continuous air-permeable medium and in which powder is fixed by the medium.

本発明において適用される粉体とガスの組合せとしては
、Si粉と窒素を含むガス、N1CJ、・2 NH,粉
とNH,ガス、 Ca(至)と水分を含む空気。
Combinations of powder and gas that can be applied in the present invention include Si powder and gas containing nitrogen, N1CJ, .2NH, powder and NH, gas, and air containing Ca and moisture.

CaC4粉と水分を含む空気、 CuSO4” H*O
と水分を含む空気等の粉体とガスの反応一般に適用され
るが1%に本発明はSi粉と窒素を含むガスを反応させ
てSt、N、を得るのに好ましい。反応においては必要
に応じて加熱してもよい。
Air containing CaC4 powder and moisture, CuSO4” H*O
Although this invention is generally applied to reactions between powders such as air containing Si powder and gases containing moisture, the present invention is preferable for obtaining St, N by reacting Si powders with gases containing nitrogen at a concentration of 1%. In the reaction, heating may be performed as necessary.

反応管中の連続する通気性を有す媒体とは。What is a continuous air permeable medium in a reaction tube?

通気性を有する媒体が反応管中において連続しているこ
とを意味する。第3図、第4図、第5図及び第7図は反
応管中において連続している通気性を有する媒体を示し
ている。本発明においては連続する通気性を有する媒体
によって粉体が固定される。
This means that the permeable medium is continuous in the reaction tube. Figures 3, 4, 5 and 7 show a continuous permeable medium in the reaction tube. In the present invention, the powder is fixed by a continuous air-permeable medium.

第2図及び第6図の媒体は反応管中において連続してい
ない。
The media in FIGS. 2 and 6 are not continuous in the reaction tube.

通気性を有する媒体としては、セフミツ、り繊ツク体、
多孔質ガラス等が用いられ、粉体とガスの反応の際に変
質せず1反応を抑制しないものであればよく、材質、形
状、繊維の直径、繊維の長さ、繊維の方向性等に制限は
ない。
Examples of breathable media include cefmitsu, woven materials,
Porous glass or the like may be used as long as it does not change in quality or suppress the reaction during the reaction between the powder and gas, and the material, shape, diameter of the fiber, length of the fiber, directionality of the fiber, etc. There are no restrictions.

また反応管中に充填する媒体の空隙率は80〜90−が
好ましい範囲でおる。空隙率が小さくなるとガスの通気
性が低下し、大きすぎると空隙の中に粉体が入シ込んで
ガスの流通を阻害する為である。
The porosity of the medium filled in the reaction tube is preferably in the range of 80 to 90. This is because if the porosity is too small, gas permeability will be reduced, and if it is too large, powder will enter the pores and obstruct gas flow.

反応管の中に充填する粉体の層の長さく1)と厚さく1
)の比1/lは3以上でおることが望ましい。
Length 1) and thickness 1 of the powder layer filled in the reaction tube
) is preferably 3 or more.

1/lの大きい方がガスが粉体内部まで浸透して反応が
均一化するからである。
This is because the larger the ratio of 1/l, the more the gas will penetrate into the powder and the reaction will be more uniform.

また本発明に使用される反応管の材質は反応の進行に支
障を来さないものであれば良く、制限はないがアルミナ
質のものが耐熱性の点で好ましい。
Further, the material of the reaction tube used in the present invention may be any material as long as it does not hinder the progress of the reaction, and is not limited to any material, but alumina is preferred from the viewpoint of heat resistance.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 第3図及び第5図に示す如く、空隙率851!の綿状の
セラミック繊m3で325メツシユ以下のSi粉2(5
P)を包んで内径28−のアルミナ製反応管IK充填し
、又は第4図に示す如く反応管1の中の芯部に連続して
配置された綿状のセラミック繊維3によりセラミック繊
#A3の周囲に充填されたSi粉2を固定する。このよ
うKしてSi粉が充填された反応管を横型電気炉(図示
せず)中に入れて毎分150dのN、ガス及び毎分50
m/の甜、ガスを反応管に通じつつ、1300℃の温度
で5時間窒化した。
Example 1 As shown in FIGS. 3 and 5, the porosity is 851! Si powder of 325 mesh or less with m3 of cotton-like ceramic fiber
P) and filled with an alumina reaction tube IK having an inner diameter of 28 mm, or as shown in FIG. The Si powder 2 filled around the is fixed. The reaction tube filled with Si powder after being heated in this manner was placed in a horizontal electric furnace (not shown), and the reaction tube was heated at 150 d/min of N, gas and 50 d/min.
Nitriding was carried out at a temperature of 1300° C. for 5 hours while passing m/m of sugar gas through the reaction tube.

尚第3図、第4図及び第5図において6は固定用の耐火
煉瓦である。
In FIGS. 3, 4, and 5, 6 is a refractory brick for fixing.

比較例1 前述したように第2図に示す如く内径281111mの
反応管lの中央部に実施例1と同じ粒度のSi粉2を充
填し、Si粉の両端を綿状のセラミック繊維3で及び煉
瓦6で固定し、実施例1と同じ方法で加熱しつつN、ガ
ス及びNH,ガスを通じた。ただしこの場合実施例1と
違って0.06 aimのガス圧を要し丸。
Comparative Example 1 As described above, as shown in FIG. 2, Si powder 2 having the same particle size as in Example 1 was filled in the center of a reaction tube 1 with an inner diameter of 281111 m, and both ends of the Si powder were covered with cotton-like ceramic fibers 3. It was fixed with bricks 6, and N gas and NH gas were passed through it while heating it in the same manner as in Example 1. However, in this case, unlike in Example 1, a gas pressure of 0.06 aim is required.

実施例1と比較例1の結果を第1表に示した。The results of Example 1 and Comparative Example 1 are shown in Table 1.

尚窒化率、αS i、 N、含有率及びβ引、N、含有
率の測定は粉末X線回折法を用いた。
The nitridation rate, αS i, N content, and β subtraction, N content were measured using powder X-ray diffraction method.

嬉 1 表 第1I!I!から、実施例1によシ窒化率及びαSi、
N4含有率の高い窒化珪素を得ることが出来ることが示
される。
Happy 1 Table 1I! I! From Example 1, the nitriding rate and αSi,
It is shown that silicon nitride with a high N4 content can be obtained.

比較例2 第6図に示す内径28關のガラス製反応管1′の長手方
向に325メツシユ以下のNi C1t・2 NH。
Comparative Example 2 NiClt.2NH of 325 mesh or less in the longitudinal direction of a glass reaction tube 1' having an inner diameter of 28 mm as shown in FIG.

粉2′(αIgmol)及び綿状のガラス繊維3′を交
互に充填し9次式のNH,化及び脱NH,化を繰り返し
行なった。
Powder 2' (αIgmol) and cotton-like glass fibers 3' were alternately filled, and the 9-order formula of NH and de-NH was repeated.

Ni C1@・2 NH,+ 4 NH,5Ni Cj
、・6 NH。
Ni C1@・2 NH, + 4 NH, 5Ni Cj
,・6NH.

最初の1回又は2回は反応率及び反応速度共に大きかっ
たが、 NH,化の繰シ返しによって粉体が膨張し、ガ
ラス繊維中に微粉が混入して反応率及び反応速度共に徐
々に低下した。またこの装置では構造上反応管内にNH
,ガスを通じる為に1〜2atmの圧力を要する。尚第
6図において7はゴム栓である。
Both the reaction rate and reaction rate were high for the first one or two times, but as the powder expanded due to repeated NH, reaction, fine powder was mixed into the glass fibers, and both the reaction rate and reaction rate gradually decreased. did. Additionally, due to the structure of this device, there is NH in the reaction tube.
, a pressure of 1 to 2 atm is required to pass the gas. In FIG. 6, 7 is a rubber stopper.

実施例2 第7図に示すように、内径28■のガラス製反応管1′
の中の芯部に、空隙率が905Gになるように連続して
配置された径34μmのステンレス線を綿状に交絡させ
て得た径約&0■のガス流通体4によシ、ガス流通体4
の周囲VCII/l−6になるように充填された325
メツシユ以下のNiC1,・2 NH,粉2’ (0,
18mol )を固定し、かつ粉体2′の両端を同じガ
ス流通体4及びゴム栓7で押さえ。
Example 2 As shown in FIG. 7, a glass reaction tube 1' with an inner diameter of 28 cm was prepared.
A gas flow body 4 with a diameter of about &0 cm obtained by intertwining stainless steel wires with a diameter of 34 μm arranged continuously so that the porosity is 905 G in the core of the inside, makes the gas flow. body 4
325 filled to be around VCII/l-6
NiC1, 2 NH, powder 2' (0,
18 mol) was fixed, and both ends of the powder 2' were held down with the same gas flow body 4 and rubber stopper 7.

(A)  NH,を毎分1.0!の流量で45分間反応
管中に流してNH,化し。
(A) NH, 1.0 per minute! NH was converted into NH by flowing it into the reaction tube for 45 minutes at a flow rate of .

(B)  次に乾燥空気を毎分0.21の流量で導入し
つつ250℃で180分間脱NH,化した。
(B) Next, NH was removed at 250° C. for 180 minutes while introducing dry air at a flow rate of 0.21 per minute.

この囚及び(Blの操作を1o回繰返した。繰シ返しご
とのNH,化率は第2表に示す如く変動が小さい。
This operation of NH and Bl was repeated 10 times. The NH conversion rate for each repetition showed little variation as shown in Table 2.

第2表 実施例3 実施例2のNiC11・2 NH,粉の代シに、325
メツシユ以下のCaO粉0.38 tnolを充填して
Table 2 Example 3 NiC11.2 NH of Example 2, 325
Fill with 0.38 tnol of CaO powder below mesh size.

NH,ガスの代シーcH,Oを含んだ空気を室温で毎分
360−の流量で流した結果Ca(OH)、の生成率は
21時間後で81.81であった。
As a result of flowing air containing cH and O instead of NH and gas at room temperature at a flow rate of 360° per minute, the production rate of Ca(OH) was 81.81 after 21 hours.

を充填して、 NH,ガスの代F)I/CH,Oを含ん
だ空気を実施例よと同じ流量を流した。ただし無加圧で
は殆んど流れないのでQ、12 atmの圧力をかけて
21時間後に7G、9−〇〇a(OH)、を生成した。
NH, gas substitute F) I/CH, air containing O was flowed at the same flow rate as in the example. However, since almost no flow occurred when no pressure was applied, a pressure of Q, 12 atm was applied, and after 21 hours, 7G, 9-00a (OH) was produced.

実施例4 実施例3におけるCaO粉の代シに325メツク二以下
のCaCj、粉Q、53 molを充填し、HlOを含
む空気を毎分360−の流量で流したところ。
Example 4 In place of the CaO powder in Example 3, 53 mol of CaCj of 325 mc2 or less and powder Q were filled, and air containing HIO was flowed at a flow rate of 360 -/min.

H,Oの吸収量は18時間後に0.89molに達した
The amount of H and O absorbed reached 0.89 mol after 18 hours.

比較例4 比較例3におけるCaO粉の代りに実施例4と同じCa
C1m粉を充填し、H80を含む空気を同じ流量で流し
た。ただし鴇0の吸収の進行に従って空気圧を高くして
行かないと同じ吸収量にはならない。
Comparative Example 4 The same Ca as in Example 4 was used instead of the CaO powder in Comparative Example 3.
It was filled with C1m powder and air containing H80 was flowed at the same flow rate. However, the amount of absorption will not be the same unless the air pressure is increased as the absorption progresses.

同じ吸収量を得る18時間後の差圧は0.24 atm
であった。
The differential pressure after 18 hours to obtain the same amount of absorption is 0.24 atm
Met.

実施例5 実施例3におけるCaO粉の代シに平均1ooメツシ3
−のCu S O,−H,0粉0.32dを充填し、H
loを含む空気を毎分360dの流量で通したところ。
Example 5 An average of 100 mesh was used as a substitute for CaO powder in Example 3.
Filled with 0.32d of Cu SO,-H,0 powder,
Air containing lo was passed through at a flow rate of 360 d/min.

H,Oを吸収してCu804・5H,0を生成する割合
は20時間後に221であった。
The rate of absorbing H and O to produce Cu804.5H,0 was 221 after 20 hours.

比較例5 比較例3におけるCaO粉の代シに実施例5と同じCu
804・H!0を充填し、 H,0を含む空気を同じ流
量で通した。ただしH,Oの吸収の進行に従って空気圧
をあげて行かないと同一割合の吸収量にはならない、こ
の場合の差圧は20時間後で0.062atmである。
Comparative Example 5 The same Cu as in Example 5 was used instead of CaO powder in Comparative Example 3.
804・H! 0 and air containing H,0 was passed through at the same flow rate. However, unless the air pressure is increased as the absorption of H and O progresses, the amount of absorption at the same rate will not be achieved. In this case, the differential pressure is 0.062 atm after 20 hours.

本発明になる粉体とガスの反応方法によれば。According to the method for reacting powder and gas according to the present invention.

反応管中のガスの通過が容易であるので、殆んどガス圧
をかける必要がなく、ガスが粉体内部までよく浸透する
ので反応の均一性が良い。
Since the gas can easily pass through the reaction tube, there is almost no need to apply gas pressure, and the gas can penetrate well into the powder, resulting in good reaction uniformity.

また本発明になる粉体とガスの反応装置によれば、セラ
ミック繊維等の通気性の良い媒体に沿ってガスが流れる
ので、そ、の流路に接する粉体はガス流体によって冷却
されるので生成物の固化を防止する効果を有する。
Furthermore, according to the powder-gas reaction device of the present invention, the gas flows along a medium with good air permeability such as ceramic fibers, and the powder in contact with the flow path is cooled by the gas fluid. It has the effect of preventing solidification of the product.

【図面の簡単な説明】 第1図、第2図及び第6図は従来の粉体とガスの反応方
法及び装置を示す断面図、第3図。 第4図、′M5図及び第7図は本発明の実施例になる粉
体とガスの反応方法及び装置を示す断面図である。 符号の説明 1.1′・・・反応管     2.2′・・・粉体3
・・・セラミック繊m3′・・・ガラス繊維4・・・ガ
ス流通体    5・・・ボート6・・・耐火煉瓦  
   7・・・ゴム橙代理人 弁理士 若 林 邦 彦 第 II2]        第 27第37    
  笥4図 第 5 図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1, FIG. 2, and FIG. 6 are cross-sectional views showing a conventional method and apparatus for reacting powder and gas, and FIG. 4, 'M5 and 7 are sectional views showing a method and apparatus for reacting powder and gas according to an embodiment of the present invention. Explanation of symbols 1.1'...Reaction tube 2.2'...Powder 3
...Ceramic fiber m3'...Glass fiber 4...Gas flow medium 5...Boat 6...Refractory brick
7...Gomu Orange Agent Patent Attorney Kunihiko Wakabayashi II2] No. 27 No. 37
Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、反応管中の連続する通気性を有する媒体によって粉
体を固定し1反応管中にガスを導入して粉体とガスを反
応させることを特徴とする粉体とガスの反応方法。 2 粉体が84粉であり、ガスが窒素を含むガスである
特許請求の範囲第1項記載の粉体とガスの反応方法。 & 粉体がN1CJt・2 NH,粉であシ、ガスがN
H1lガスである特許請求の範囲第1項記載の粉体とガ
スの反応方法。 表 反応管内に固定される粉体が粉体の充填層の長さく
A’)と厚さく1)との比ノ/lを3以上とする粉体で
ある特許請求の範囲第1項記載の粉体とガスの反応方法
。 氏 連続する通気性を有する媒体を配設し、かつ該媒体
によって粉体が固定された反応管を備えてなる粉体とガ
スの反応装置。 改 通気性を有する媒体が空隙率80〜9091の媒体
である特許請求の範囲第5項記載の粉体とガスの反応装
置。
[Claims] 1. Powder, which is characterized by fixing the powder with a continuous air-permeable medium in a reaction tube, and introducing gas into the reaction tube to cause the powder and gas to react. How gases react. 2. The method for reacting powder and gas according to claim 1, wherein the powder is 84 powder and the gas is a nitrogen-containing gas. & Powder is N1CJt・2NH, powder is N1CJt・2NH, gas is N
A method for reacting a powder with a gas according to claim 1, which is H1l gas. Table 1. The powder fixed in the reaction tube is a powder having a ratio of the length A') of the packed bed of powder to the thickness 1) of 3 or more. Method of reaction between powder and gas. A powder and gas reaction apparatus comprising a reaction tube in which a continuous air-permeable medium is provided and powder is fixed by the medium. The powder-gas reaction device according to claim 5, wherein the medium having air permeability has a porosity of 80 to 9,091.
JP12544481A 1981-08-10 1981-08-10 Method and apparatus for reacting powder and gas Pending JPS5827630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12544481A JPS5827630A (en) 1981-08-10 1981-08-10 Method and apparatus for reacting powder and gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12544481A JPS5827630A (en) 1981-08-10 1981-08-10 Method and apparatus for reacting powder and gas

Publications (1)

Publication Number Publication Date
JPS5827630A true JPS5827630A (en) 1983-02-18

Family

ID=14910232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12544481A Pending JPS5827630A (en) 1981-08-10 1981-08-10 Method and apparatus for reacting powder and gas

Country Status (1)

Country Link
JP (1) JPS5827630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117407A (en) * 1984-07-05 1986-01-25 Mitsubishi Metal Corp Production of silicon nitride powder
JP2008510611A (en) * 2004-08-23 2008-04-10 タレスナノ ゼットアールティー. Cartridge reactor for flow-type laboratory hydrogenation equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117407A (en) * 1984-07-05 1986-01-25 Mitsubishi Metal Corp Production of silicon nitride powder
JP2008510611A (en) * 2004-08-23 2008-04-10 タレスナノ ゼットアールティー. Cartridge reactor for flow-type laboratory hydrogenation equipment

Similar Documents

Publication Publication Date Title
Venables et al. Reduction of tungsten oxides with hydrogen and with hydrogen and carbon
Ghosh et al. Reduction of ferric oxide pellets with methane
CA2646385A1 (en) Carbon dioxide separation via partial pressure swing cyclic chemical reaction
US6024774A (en) Chemical reaction apparatus and method of collecting main product gas
Hu et al. Nitrogen production by efficiently removing oxygen from air using a perovskite hollow-fiber membrane with porous catalytic layer
JPS623006A (en) Nitrogen super purification facilities and purification process
JPS5827630A (en) Method and apparatus for reacting powder and gas
JP2001120969A (en) Gaseous hydrogen separation filter and method for manufacturing the same
Aihara et al. Kinetic study of UT-3 thermochemical hydrogen production process
JPS5983978A (en) Novel material comprising silicon and manufacture
JP4823442B2 (en) Gas separation material, method for producing the same, and reactor
US2660569A (en) Hydrogen chloride gas hardening of metal oxide powder
Prabhu et al. Kinetics of the oxidation of zinc sulfide
JPS59107988A (en) Manufacture of porous diaphragm
JP3664860B2 (en) Chemical reactor and main gas recovery method
Ammann et al. The oxidation kinetics of molybdenite at 525° to 635° C
JPS5910306A (en) Porous diaphragm
JPS59102403A (en) Production of porous diaphragm
JPS5891012A (en) Method and apparatus for manufacturing silicon nitride powder
CN108939943A (en) A kind of K of non-metal cations doping2NiF4Type composite conductor oxygen-permeating film material and the preparation method and application thereof
CN103649012A (en) Method for making porous acicular mullite bodies
Amir et al. Design development of iron solid reactants in the UT-3 water decomposition cycle based on ceramic support materials
JPS61222702A (en) Manufacture of raw material for composite material
JPS5992001A (en) Preparation of porous diaphragm
KR100209539B1 (en) Method for the preparation of sic whisker