JPS5827625B2 - sealed lead acid battery - Google Patents

sealed lead acid battery

Info

Publication number
JPS5827625B2
JPS5827625B2 JP51022416A JP2241676A JPS5827625B2 JP S5827625 B2 JPS5827625 B2 JP S5827625B2 JP 51022416 A JP51022416 A JP 51022416A JP 2241676 A JP2241676 A JP 2241676A JP S5827625 B2 JPS5827625 B2 JP S5827625B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
battery
amount
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51022416A
Other languages
Japanese (ja)
Other versions
JPS52106435A (en
Inventor
邦雄 米津
国広 溝辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP51022416A priority Critical patent/JPS5827625B2/en
Publication of JPS52106435A publication Critical patent/JPS52106435A/en
Publication of JPS5827625B2 publication Critical patent/JPS5827625B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 本発明は正、負極格子に実質的にアンチモンを含1ない
鉛合金を用い、しかも酸素サイクルによる密閉反応によ
り電解液中の水の減少を防いだ密閉形鉛蓄電池に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sealed lead-acid battery in which a lead alloy substantially free of antimony is used in the positive and negative electrode grids, and water in the electrolyte is prevented from decreasing due to a sealed reaction caused by an oxygen cycle. It is something.

従来のこの種電池は正極から発生した酸素ガスと負極と
の反応を円滑に行なわせるために、電解液を非流動化し
、ゲル状とするかまたは多孔体に含浸させた状態にして
ガスの負極への拡散、接触を容易にするとともに、負極
活物質量は正極よりも多く、過剰に用いていた。
In conventional batteries of this type, the electrolyte is made non-fluid, gel-like, or impregnated into a porous material to facilitate the reaction between the oxygen gas generated from the positive electrode and the negative electrode. In addition to facilitating diffusion and contact with the electrode, the amount of negative electrode active material was larger than that of the positive electrode, and was used in excess.

あるいは負極の容量を正極の容量と電池の新し7い間に
生ずる酸素不足分とを加えた値以上にするなど負極の容
量を正極のそれよりも多くするのが普通であった。
Alternatively, it was common to make the capacity of the negative electrode greater than that of the positive electrode, such as by making the capacity of the negative electrode greater than the sum of the capacity of the positive electrode and the oxygen deficiency that occurs during the battery's life.

また格子合金は、鉛−カルシウム系合金か、またはアン
チモン2%以下の鉛−アンチモン−錫合金のような、実
質的にアンチモンを含昔ないものが用いられていた。
Furthermore, the lattice alloy used has been one that does not substantially contain antimony, such as a lead-calcium alloy or a lead-antimony-tin alloy containing less than 2% antimony.

これは、水素ガス発生の過電圧を大きくL〜で、負極か
らの水素ガス発生を防ぐとともに負極の自己放電を小さ
くして、電解液中の水の減少を防ぐためである。
This is to increase the overvoltage for hydrogen gas generation to L~ to prevent hydrogen gas generation from the negative electrode, reduce self-discharge of the negative electrode, and prevent water from decreasing in the electrolytic solution.

従来形電池は、このような構成であるから、電池使用中
あるいは放置中の水の減少が少なく補水の必要が無いこ
と、また電池を転倒しても漏液しないという長所を有す
る反面、深い放電による充放電サイクルでは短寿命であ
り、また緩放電で深い放電を1.て充電せずに放置する
と電解液が中性に近くなり、鉛の酢解度が増して正、負
極間に短絡を生じ、回復不能になるという欠点があった
Because conventional batteries have this structure, they have the advantage that water decreases little while the battery is in use or left unused, and there is no need to refill it, and that it does not leak even if the battery is tipped over. The charge/discharge cycle caused by the 1. If the battery is left uncharged, the electrolyte becomes nearly neutral, and the degree of acetylation of lead increases, causing a short circuit between the positive and negative electrodes, which becomes irreversible.

本発明の目的は上述の如き欠点を除去し、深い放電によ
る充放電サイクル寿命が長く、しかも緩放電で深く放電
し、その1ま放置しても異常の発生をみない密閉形鉛蓄
電池を得ることにある。
The object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a sealed lead-acid battery that has a long charge/discharge cycle life due to deep discharge, deeply discharges due to slow discharge, and does not cause any abnormality even if left for a while. There is a particular thing.

前記の目的を達成するための本発明の要旨とするところ
は負極の活物質量を少なくして、緩放電容量を正極のそ
れよりも小さくすると共に電解液中の硫酸重量を負極活
物質量との関係にむいて規制し、微少電流で深い放電を
行なっても電解液を充分に酸性に保つことにある。
The gist of the present invention to achieve the above object is to reduce the amount of active material in the negative electrode to make the slow discharge capacity smaller than that of the positive electrode, and to reduce the weight of sulfuric acid in the electrolyte to the amount of active material in the negative electrode. The aim is to maintain the electrolyte sufficiently acidic even when deep discharge is performed with a minute current.

本発明は、この種の鉛蓄電池で常識とされていた要件を
再検討した結果、生1れたものである。
The present invention was developed as a result of reconsidering the requirements that were common knowledge for this type of lead-acid battery.

即ち、従来は、 (1)負極活物質量は正極よりも多く、過剰に用いる。That is, conventionally, (1) The amount of negative electrode active material is larger than that of the positive electrode, and is used in excess.

これは、充電中における負極からの水素ガス発生を防ぎ
、−!た、正極から発生した酸素ガスと負極との反応を
円滑に行なわせ、さらに酸素ガスで酸化されるため完全
充電状態になることのない負極の劣化を防止するという
点で必要なことである。
This prevents hydrogen gas from being generated from the negative electrode during charging, and -! In addition, this is necessary in order to facilitate the reaction between the oxygen gas generated from the positive electrode and the negative electrode, and to prevent deterioration of the negative electrode, which is oxidized by oxygen gas and does not reach a fully charged state.

(2)電解液量はできるだけ少なくして、王、負極板間
のガス拡散の通路を多くしておかねばならない。
(2) The amount of electrolyte must be kept as small as possible to provide as many paths for gas diffusion between the main and negative electrode plates.

これは転倒時の漏液防止のためにも有効である。This is also effective in preventing leakage when the product falls over.

と考えられていた。It was thought that

この2点について再検討l〜た結果は、次ぎの通りであ
る。
The results of reexamining these two points are as follows.

実験1.正極と負極活物質量の比の検討 正極と負極活物質量の比を変えて、その放電容量の大小
関係を変えた電池の、放電特性を第1図に示す。
Experiment 1. Examination of the ratio of the amounts of positive electrode and negative electrode active materials FIG. 1 shows the discharge characteristics of batteries in which the ratio of the amounts of positive electrode and negative electrode active materials was changed to change the relationship in discharge capacity.

正極の放電容量の小さな電池の端子電圧と正むよび負極
の単極電位を実線で示し負極の放電容量の小さな場合を
点線で示す。
The terminal voltage of a battery with a small positive electrode discharge capacity and the single electrode potential of the positive and negative electrodes are shown by solid lines, and the case where the negative electrode has a small discharge capacity is shown by a dotted line.

端子電圧では両者に差はみられないが、単極電位の推移
は全く異なっていることが判る。
Although there is no difference in the terminal voltage between the two, it can be seen that the transition of the unipolar potential is completely different.

第2図は、アンチモンを5%含む鉛−アンチモン系合金
と、鉛−カルシウム系合金とを用いた電池にむいて、そ
れぞれ正、負極容量の比を約2対3、または、3対2に
したものの充放電サイクル寿命式1験結果である。
Figure 2 shows a battery using a lead-antimony alloy containing 5% antimony and a lead-calcium alloy, with a positive and negative electrode capacity ratio of approximately 2:3 or 3:2, respectively. This is the result of a first test of the charge/discharge cycle life formula.

この試験では、放電は端子電圧]、、7V/′−+、z
lz=4’で行ないまた、適当なサイクルごとに電池重
量を測定した。
In this test, the discharge is at the terminal voltage], 7V/'-+,z
The battery weight was measured at each appropriate cycle.

その結果鉛−アンチモン系合金では、負極の容量を大き
くしたものの方が長寿命でありまた、電解液の減少も少
なく、従来の常識どうりであったが、鉛−カルシラ7、
系合金では逆に負極の容量を小さくした方が良かった。
As a result, for lead-antimony alloys, those with a larger negative electrode capacity have a longer life and less loss of electrolyte, as is conventional wisdom.
In contrast, it was better to reduce the capacity of the negative electrode in the case of alloys.

この寿命試験路r後、負極板を詳細に調べ/とところ、
アンチモンを含む合金を用いた場合には、BET法によ
る表面積が初期の1/′5〜1/10であり、また活物
質の硫酸鉛は40〜70%にも達していたが、アンチモ
ンを含lない合金の場合には、表面積は初期の2/3〜
1/2、硫酸鉛は5%以下であった。
After this life test path, the negative electrode plate was examined in detail.
When an alloy containing antimony was used, the surface area measured by the BET method was 1/5 to 1/10 of the initial value, and lead sulfate as an active material reached 40 to 70%. In the case of alloys without l, the surface area is between 2/3 of the initial
1/2, and lead sulfate was 5% or less.

また、寿命試1験中の電池重量即ち、電解液中の水の減
少量をみると、鉛−アンチモン系合金を格子に用いたも
のは、鉛−カルシウム系のそれに比して大きくなって訃
り、負極板の酸素ガス吸収による密閉反応が明らかに少
ない。
In addition, looking at the weight of the battery, that is, the amount of water in the electrolyte reduced during one life test, the battery using a lead-antimony alloy for the lattice was larger and died compared to the lead-calcium alloy. Therefore, there is clearly less sealing reaction due to absorption of oxygen gas by the negative electrode plate.

電池を解体1−また結果では鉛−アンチモン系合金のそ
れはゲルが乾燥L〜でおり、正極から負極へのカスの拡
散あ・よび負極とガスとの接触には好適な状態である。
Dismantling the battery 1 - The results also show that the gel of the lead-antimony alloy is dry, which is a suitable state for diffusion of scum from the positive electrode to the negative electrode and for contact between the negative electrode and the gas.

それにもかかわらず、密閉反応が少ないのは、負極活物
質が充電されない状態に劣化してし1つたためである。
Despite this, the reason why the sealing reaction is small is that the negative electrode active material has deteriorated to an uncharged state.

他方、鉛−カルシウム系合金を用いた電池では、負極板
はいつ1でも活性であり、充電を受入れ易い状態を保っ
ている。
On the other hand, in a battery using a lead-calcium alloy, the negative electrode plate is always active and remains in a state where it can easily accept charging.

次に、この電池内の充電中に釦ける酸素サイクルを考え
てみる。
Next, let's consider the oxygen cycle that occurs during charging within this battery.

充電の後半には、1ず正極から酸素ガスが発生しはじめ
、次第にその量が増して、正極の充電が完fするど充電
電流は総てガス発生に消費される。
In the latter half of charging, oxygen gas first begins to be generated from the positive electrode, the amount of which gradually increases, and when the positive electrode is fully charged, all of the charging current is consumed for gas generation.

負極は、格子合金にアンチモンを含1ず、水素ガス発生
の過電圧が大きいから、活物質中に硫酸鉛が存在する間
は水素ガスの発生は少なく、硫酸鉛が充電される。
Since the negative electrode does not contain antimony in its lattice alloy and has a large overvoltage for hydrogen gas generation, while lead sulfate is present in the active material, little hydrogen gas is generated and the lead sulfate is charged.

他方、正極から発生した酸素ガスは負極と反応し、負極
活物質である金属鉛は酸化鉛となるが、これは電解液と
容易に反応して最終的には硫酸鉛となるので、負極は正
極の充電された程度に対応して目じ程度に充電されてゆ
くことになる。
On the other hand, the oxygen gas generated from the positive electrode reacts with the negative electrode, and the metal lead that is the negative electrode active material becomes lead oxide, which easily reacts with the electrolyte and eventually becomes lead sulfate, so the negative electrode The positive electrode will be charged to a level corresponding to the degree to which the positive electrode is charged.

さらに、負極活物質量の正極のそれに対する比と密閉反
応との関係を考えてみる。
Furthermore, let us consider the relationship between the ratio of the amount of negative electrode active material to that of the positive electrode and the sealing reaction.

正極でも負極でも、活物質が完全に充電された状態では
、充電電流は総てガス発生に消費されるが、放電生成物
を多量に含む時には、極板が活性でありさえすれば、活
物質の充電に消費される。
In both the positive and negative electrodes, when the active material is fully charged, all of the charging current is consumed for gas generation, but when it contains a large amount of discharge products, as long as the electrode plate is active, the active material consumed for charging.

即ち、ガスの発生は、活物質量の大小ではなくて、放電
活物質量の充電活物質量に対する割合の大小によって左
右される。
That is, the generation of gas depends not on the amount of active material but on the ratio of the amount of discharged active material to the amount of charged active material.

放電活物質量は、活物質量の大小とは無関係に外部回路
を通じて放電された電気量によって一義的に決1す、正
極と負極とでは全く同じ(但し、二酸化鉛ど鉛の電気化
学当量にそれぞれ比例するが)である。
The amount of discharge active material is determined uniquely by the amount of electricity discharged through the external circuit, regardless of the amount of active material, and is exactly the same for the positive and negative electrodes (however, the amount of discharge active material is the same for the positive and negative electrodes (however, the electrochemical equivalent of lead dioxide and lead (although they are proportional to each other).

従って、活物質量をより過剰にすると放電した活物質量
の割合が低くなり、充電途中の充電効率はより低くなる
Therefore, when the amount of active material is made excessive, the ratio of the amount of discharged active material decreases, and the charging efficiency during charging becomes lower.

また反対に活物質量が少ないものほど放電しまた活物質
量の割合が高くな0、充電効率はよ←柴り、充電の副反
応であるガスは少なくなる。
On the contrary, the smaller the amount of active material is, the more it is discharged, and the higher the ratio of the amount of active material is, the better the charging efficiency is, and the less gas is produced as a side reaction of charging.

即ち、負極からの水素ガスの発生は、負極活物質量を正
極よりも少なく1〜ノ7二方が少なく、酸素サイクルの
密閉反応は円滑に進むことになる。
That is, the generation of hydrogen gas from the negative electrode causes the amount of negative electrode active material to be smaller than that of the positive electrode, and the sealed reaction of the oxygen cycle proceeds smoothly.

(El、 l、、負極活物質が劣化し、て不活性な場合
には、酸素ガスの反応も緩慢であるから、活物質量を多
くして、その反応面積を大きくするのが有効となる。
(El, l, If the negative electrode active material has deteriorated and is inactive, the reaction with oxygen gas will be slow, so it is effective to increase the amount of active material and increase the reaction area. .

以−Lのことから、負極活物質量を正極のそれよりも過
剰にしなければならないという従来の常識は、アンチモ
ンを含む合金を用いた電池にのみ正しく、どの場合には
アンチモンが核となって負極活物質が疎大化し、サルフ
エーションを起こすので、その劣化と容量低下とを補う
意味で有効であること、アンチモンを含1ない電池では
このような現象による容量低−ドが少ないので、負極の
容量を多くする必要はなく、むしろ少なくした方が密閉
反応1d円滑に行なわれること、またこのように正極の
活物質層を過剰にして、放電時における正極活物質の利
用率を低く抑えると、サイクル寿命性能が著しく向上す
ることが判った。
From the above, the conventional wisdom that the amount of negative electrode active material must be in excess of that of the positive electrode is correct only for batteries using alloys containing antimony, and in any case antimony is the core. Since the negative electrode active material becomes large and causes sulfation, it is effective in compensating for its deterioration and capacity reduction.Batteries that do not contain antimony have less capacity loss due to this phenomenon, so the negative electrode active material There is no need to increase the capacity of the positive electrode, and in fact, it is better to decrease the capacity so that the sealing reaction 1d is carried out smoothly.Also, by making the positive electrode active material layer excessive in this way and keeping the utilization rate of the positive electrode active material low during discharge, It was found that the cycle life performance was significantly improved.

なお、氾極に対する負極の電気化学当量の比は、分子量
の比と同じになり、207/2390.87であるから
、利用率が1i“1じならば正極活物質量1に対して負
極活物質量0.87で両者の放電容量は目じとなる。
Note that the ratio of the electrochemical equivalent of the negative electrode to the flood electrode is the same as the molecular weight ratio, which is 207/2390.87, so if the utilization rate is 1i, then the negative electrode active material is At a substance amount of 0.87, the discharge capacity of both becomes the eyelid.

活物質の利用率は極板厚や活物質の多孔度などで変わる
ので、正、負極板の放電容量を単純に表現することはで
きない。
Since the utilization rate of the active material varies depending on the thickness of the electrode plate, the porosity of the active material, etc., it is not possible to simply express the discharge capacity of the positive and negative electrode plates.

すなわち、正、負極の容量は実際に放電してみなければ
、その容量の大小比較はできない。
That is, the capacitance of the positive and negative electrodes cannot be compared in size unless they are actually discharged.

しかし活物質量が多いほど放電容量も多いという傾向は
強く、負極活物質重量を正極のそれの0.6程度にすれ
ば、負極の容量は正極よりも多いということはあ1りな
く、05以Fでは、1ず、かならず少なくなる。
However, there is a strong tendency that the greater the amount of active material, the greater the discharge capacity.If the weight of the negative electrode active material is about 0.6 of that of the positive electrode, the capacity of the negative electrode will never be greater than that of the positive electrode. From then on, the number will definitely decrease by 1.

実1験2.電解液量の検討 酸素サイクル反応による密閉形鉛蓄電池では、酸素ガス
と負極活物質との接触を生じ易くするために、流動電解
液を少なりシ、て、IE、負極板の間に空隙を設けるこ
とが必要である。
Experiment 1 Experiment 2. Consideration of the amount of electrolyte In sealed lead-acid batteries that use oxygen cycle reactions, in order to facilitate contact between oxygen gas and the negative electrode active material, it is necessary to use a small amount of flowing electrolyte and create a gap between the IE and the negative electrode plate. is necessary.

、他方、極板間隙を広ぐするとか、極板群の上部空間を
利用するとかの方法で非流動化した電解液を多くするこ
とは可能である。
On the other hand, it is possible to increase the amount of non-fluidized electrolyte by widening the gap between the electrode plates or by utilizing the space above the electrode plate group.

しか(−7、電解液を非流動化し7た電池では小電流で
端子電圧の低いところ1で放電1゜たのち、充電せずに
放置すると電床か零となり、充電1〜でも回復1−7な
い異常現象が多ぐみられ・い12、そこで、正・負極の
活物質量を変えることにより負極のiF極に対する容量
比を約2 / 3.7たは約3/2とした電池で、電解
液の濃度を変えることにより電解液中の硫酸量を広範囲
に変えた電池を試作1〜.20時間率電流で端子電圧1
0■1で放電し−、そのt’、30℃雰囲気中に放置し
て1力月目に異常の有無を調べた、結果を第1表に示す
However, (-7) In a battery made by making the electrolyte non-fluid, after discharging 1° with a small current and a low terminal voltage at 1, if left without charging, the battery will drop to zero, and even after charging from 1 to 1, the battery will recover from 1- Therefore, by changing the amount of active material in the positive and negative electrodes, the capacity ratio of the negative electrode to the iF electrode is set to about 2/3.7 or about 3/2 in a battery. Prototype batteries in which the amount of sulfuric acid in the electrolyte was varied over a wide range by changing the concentration of the electrolyte were produced at a terminal voltage of 1 to .20 hours at a rate of current of 1.
Table 1 shows the results of discharging the battery at a temperature of 0.1 to 0.01 and then leaving it in an atmosphere of 30°C at t' to check for abnormalities in the first month.

なお、第1表にむける而1〜13はそれぞれ試1/ト電
池を示し、また異常は放電後の放置によって電圧が零と
なり充電しても回復しないという異常現象を生じたもの
を示す。
Incidentally, numbers 1 to 13 in Table 1 indicate the test batteries, respectively, and the abnormality indicates a battery in which an abnormal phenomenon occurred in which the voltage became zero due to being left unattended after being discharged and did not recover even after being charged.

かかる第1表から明らかなように、負極容量を正極より
も太きく1−7た従来形の構成の電池では、放電後の放
置によって電圧が零となり充電(−7てもIF11復[
−ないという異状現象が多く見られ、負極容量を小さく
しまた電池では少なかった。
As is clear from Table 1, in a conventional battery with a negative electrode capacity of 1-7, which is larger than that of the positive electrode, the voltage drops to zero when left after discharging, and the IF11 recovery [
- Abnormal phenomena such as "no" were often observed, and the negative electrode capacity was reduced, and it was less in batteries.

また硫酸4よの負極活物質重量にズ・1する比が0.6
5以−ドCはi’Th記1−た異常U−11象を生じ、
07以にではこの異常を生じなかつた。
Also, the ratio of sulfuric acid 4 to the weight of the negative electrode active material is 0.6.
5.C causes an abnormal U-11 phenomenon as described in i'Th1-1.
This abnormality did not occur after 2007.

以−Hの実1験から、アンチモンを含゛まない合金を用
い、酸素サイクルを利用シフ/と密閉形鉛蓄電池では、
従来の常識とは異なり、負極の〃;物質量を少なくして
、放電容量を正極のそれより小さ←するとともに、電解
液中の硫酸重量を負極活物質重量の0.7以[とすれば
、性能の優れたものが得らrシることがわかる。
From the experiment in I-H, it was found that in Schiff/ and sealed lead-acid batteries using an alloy that does not contain antimony and using an oxygen cycle,
Contrary to conventional wisdom, the amount of material in the negative electrode is reduced to make the discharge capacity smaller than that of the positive electrode, and the weight of sulfuric acid in the electrolyte is 0.7 or more of the weight of the negative electrode active material. It can be seen that a product with excellent performance cannot be obtained.

負極の容量を少なくするための具体的手段としては、極
板を薄り]−7で活物質量を減らすか、極板\J−法を
正極板より小さくするか、または極板枚数を少なくすれ
ばよい。
Specific measures to reduce the capacity of the negative electrode include thinning the electrode plate]-7 to reduce the amount of active material, making the electrode plate smaller than the positive electrode plate, or reducing the number of electrode plates. do it.

極板枚数は、通常の電気では負極の方が正極よりも1枚
多いが、これを逆にすれば負極の方を1枚少なくするこ
とができる。
Regarding the number of electrode plates, in normal electricity, the negative electrode has one more plate than the positive electrode, but if this is reversed, the number of negative electrode plates can be reduced by one.

また、通常の電池では正極板1枚と負極板1枚とを交互
に配置しているが、正極板2枚と負極板1枚とを交互に
配置する横取とすれば、負極の枚数を正極の1/2にす
ることができる。
In addition, in a normal battery, one positive electrode plate and one negative electrode plate are arranged alternately, but if two positive electrode plates and one negative electrode plate are arranged alternately, the number of negative electrode plates can be reduced. It can be reduced to 1/2 that of the positive electrode.

負極の容量を正極より小さくするため、両者の活物質量
の比をどうすればよいのかは、極板厚や温度によって利
用率が異るので、−概に決めることはできない。
In order to make the capacity of the negative electrode smaller than that of the positive electrode, the ratio of the amounts of active materials between the two cannot be determined in general because the utilization rate varies depending on the electrode plate thickness and temperature.

し2かし、緩放電の場合には負極の活物質重量を正極の
それの0.50以下にすれば、いかなる極板厚や温度で
も、筐ず電池容量は負極で制限され、好ましい。
However, in the case of slow discharge, it is preferable to make the weight of the active material of the negative electrode 0.50 or less of that of the positive electrode, since the capacity of the battery is limited by the negative electrode regardless of the electrode plate thickness or temperature.

負極の活物質利用率は約60%が限度であるから、この
場合、正極活物質は利用率約35%以下に抑えることが
でき、アンチモンを含1ない合金を格子に用いても、放
電が浅く長寿命である。
Since the utilization rate of the active material of the negative electrode is limited to approximately 60%, in this case, the utilization rate of the positive electrode active material can be suppressed to approximately 35% or less, and even if an alloy that does not contain antimony is used for the lattice, discharge will not occur. It is shallow and has a long life.

本発明は以上に説明した横取を有するものであり、 a、電池の容量は負極で制限されて釦り、正極活物質の
利用率は低く抑えられているので充放電サイクル寿命性
能が優れている。
The present invention has the above-mentioned advantages: a. The capacity of the battery is limited by the negative electrode, and the utilization rate of the positive electrode active material is kept low, so the charge-discharge cycle life performance is excellent. There is.

b、電解液量を少なくしたり、その濃度を下げたりして
、硫酸量をより少なくしても、深い緩放電後の放置で異
常の発生がない。
b. Even if the amount of sulfuric acid is further reduced by reducing the amount of electrolyte or lowering its concentration, no abnormality will occur when left after deep slow discharge.

C,アンチモンを含1ない合金を格子に用いているにも
かかわらず、充放電サイクル寿命が長く、しかも自己放
電や放置での劣化が少ないという特長が失われない。
Even though an alloy that does not contain C or antimony is used for the lattice, the characteristics of long charge/discharge cycle life and little deterioration due to self-discharge and storage are not lost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は正極の容量の大きな電池と、負極の容量の大き
な電池の放電特性図、第2図は鉛−アンチモン系合金と
鉛−カルシウム系合金を格子に用い、正、負極の容量比
を変えた電池の充放電ザイクル寿命試験結果を示す図で
ある。
Figure 1 shows the discharge characteristics of a battery with a large capacity positive electrode and a battery with a large capacity negative electrode. Figure 2 shows the capacity ratio of the positive and negative electrodes using a lead-antimony alloy and a lead-calcium alloy in the grid. It is a figure which shows the charge-discharge cycle life test result of the changed battery.

Claims (1)

【特許請求の範囲】[Claims] 1 正・負極格子に実質的にアンチモンを含1ない鉛合
金を用い、かつ電解液を非流動化して正極から発生する
酸素ガスと負極とを接触、反応させるとともに、外気の
電池内への侵入を防ぐ弁を装着したものにむいて、負極
の緩放電容量を正極のそれよりも小さくし、かつ電解液
中の硫酸重量を負極活物質重量の0.7以上と(〜たこ
とを特徴とする密閉形鉛蓄電池。
1. A lead alloy that does not substantially contain antimony is used for the positive and negative electrode grids, and the electrolyte is made non-fluid so that the oxygen gas generated from the positive electrode and the negative electrode come into contact and react, and at the same time, outside air enters the battery. The slow discharge capacity of the negative electrode is smaller than that of the positive electrode, and the weight of sulfuric acid in the electrolyte is 0.7 or more of the weight of the negative electrode active material. A sealed lead-acid battery.
JP51022416A 1976-03-01 1976-03-01 sealed lead acid battery Expired JPS5827625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51022416A JPS5827625B2 (en) 1976-03-01 1976-03-01 sealed lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51022416A JPS5827625B2 (en) 1976-03-01 1976-03-01 sealed lead acid battery

Publications (2)

Publication Number Publication Date
JPS52106435A JPS52106435A (en) 1977-09-07
JPS5827625B2 true JPS5827625B2 (en) 1983-06-10

Family

ID=12082051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51022416A Expired JPS5827625B2 (en) 1976-03-01 1976-03-01 sealed lead acid battery

Country Status (1)

Country Link
JP (1) JPS5827625B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321629U (en) * 1989-06-30 1991-03-05

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453226A (en) * 1977-10-05 1979-04-26 Yuasa Battery Co Ltd Lead storage battery
JPS57853A (en) * 1980-06-02 1982-01-05 Matsushita Electric Ind Co Ltd Lead acid battery
IT1130536B (en) * 1980-11-26 1986-06-18 Marelli Autronica CIRCUIT FOR THE DETECTION AND SIGNALING OF FAULTS AND OPERATING ANOMALIES IN A RECHARGE SYSTEM FOR ELECTRIC ACCUMULATORS
JPS58115775A (en) * 1981-12-28 1983-07-09 Sanyo Electric Co Ltd Lead-acid battery
JPS5916279A (en) * 1982-07-16 1984-01-27 Sanyo Electric Co Ltd Lead storage battery
JPS59196559A (en) * 1983-04-22 1984-11-07 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery
JPH0750616B2 (en) * 1985-11-18 1995-05-31 株式会社ユアサコーポレーション Lead acid battery
JPS62154579A (en) * 1985-12-27 1987-07-09 Furukawa Battery Co Ltd:The Lead-acid battery
JPH0665065B2 (en) * 1986-03-12 1994-08-22 日本電池株式会社 Sealed lead acid battery
JP4507483B2 (en) * 2002-06-06 2010-07-21 パナソニック株式会社 Control valve type lead acid battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925426A (en) * 1972-07-03 1974-03-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925426A (en) * 1972-07-03 1974-03-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321629U (en) * 1989-06-30 1991-03-05

Also Published As

Publication number Publication date
JPS52106435A (en) 1977-09-07

Similar Documents

Publication Publication Date Title
EP2960978B1 (en) Flooded lead-acid battery
JPS5827625B2 (en) sealed lead acid battery
US3447969A (en) Storage battery improvement
CN104067436A (en) Lead-acid battery
US3484291A (en) Gas depressor additives for iron electrodes
US10355316B2 (en) High performance lead acid battery with advanced electrolyte system
US3440099A (en) Electrolyte additives for nickel-cadmium cells
WO2024016153A1 (en) Battery pack and electric device
JPS61165956A (en) Sealed type lead acid battery
JPH04296464A (en) Sealed-type lead-acid battery
JPH0689738A (en) Sealed type lead-acid battery
US9892865B2 (en) Super hybrid capacitor
TWI795196B (en) Electrode material including binary metal oxide, method for preparing electrode including the same, and supercapacitor
US8450000B2 (en) Rapidly rechargeable battery
JPS62100940A (en) Enclosed type lead storage battery
JP2002343413A (en) Seal type lead-acid battery
JPS61502714A (en) Sealed lead-acid battery for oxygen gas recombination
JPS62254359A (en) Hydrogen cell
JP2002343412A (en) Seal type lead-acid battery
CN116864688A (en) Pulping method of mixed conductive agent
JPS607061A (en) Manufacture of plate for sealed lead storage battery
CN117936906A (en) Electrolyte and battery
JP2003086236A (en) Sealed-type lead-acid battery
JPH06223863A (en) Sealed lead-acid battery
JPS62188169A (en) Sealed lead-acid battery