JPS5827113A - Optical transmission device - Google Patents

Optical transmission device

Info

Publication number
JPS5827113A
JPS5827113A JP56125677A JP12567781A JPS5827113A JP S5827113 A JPS5827113 A JP S5827113A JP 56125677 A JP56125677 A JP 56125677A JP 12567781 A JP12567781 A JP 12567781A JP S5827113 A JPS5827113 A JP S5827113A
Authority
JP
Japan
Prior art keywords
light
lens
face
flat plate
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56125677A
Other languages
Japanese (ja)
Inventor
Tsutomu Tanaka
勉 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56125677A priority Critical patent/JPS5827113A/en
Publication of JPS5827113A publication Critical patent/JPS5827113A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting

Abstract

PURPOSE:To permit transmission of light to desired places by delicate adjustment of the optical transmission paths of two near parabolic rod lenses which are so disposed as to face each other at the end faces by providing a flat plate which permits the transmission of light obliquely on one end face of said two rod lenses. CONSTITUTION:Lenses 5, 6 which are provided to face to each other are constituted into a columnar shape in such a way as to have gradually smaller refractive indices the nearer the outer side from the center. A flat plate 7 permitting the transmission of light is disposed at one of their opposing end faces, for example, the end face of the lens 5 at an angle alpha. An adhesive agent 8 permitting the transmission of light is filled therebetween to adhere the lens 5 and the plate 7. If the plate 7 is not adhered, the light made incident from the point A focuses at the point B on the end face of the lens 6, but when the plate 7 is adhered, the agent 8 acts as a prism and the incident light from the point A focuses at the point C. Therefore, the focusing position of light is controlled by controlling the angle of inclination of the plate 7.

Description

【発明の詳細な説明】 本発明は二つの集束性ロッドレンズの伝送光路を微妙に
調整して所定の場所に伝送することができる光伝送装置
全提供することを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide an optical transmission device that can transmit light to a predetermined location by finely adjusting the transmission optical path of two converging rod lenses.

近年の光通信の発展により、大容量伝送の実用、化が期
待されるようになった。この為に、単一モードファイバ
を用いた伝送が検討されているが、光か伝搬する部分C
コア)が長波長用のものでも十数μmと、細径である為
、レーザとファイバの結合、あるいは分波器等の光学装
置の作製は非常に困難である。例えば、発振波長1.3
μmのシングルモード発振している半導体レーザとコア
径10.8μmのテーパー先球状光フアイバ全結合させ
た場合の結合特性を第1図に示す。第1図は最適結合位
置からファイバ軸に垂直な方向にファイバヶずらせた時
の元ファイバからの出力減少の割合全示したものである
。X方向はLD活性層と平行でy方向は垂直方向である
。この図かられかるように最適結合出力からの出力低下
が1dB以内になるよう、レーザと元ファイバを結合す
る場合、位置合せ8度は0.25μm以下でなければな
らない。このような位置合せは通常の微動装置で制御す
ることは非常に困難である。又、半導体レーザと光ファ
イバを固定する為に半田を用いたりすると熱膨張にエリ
固定する時に最適結合位置よりずれてしまう。このよう
な理由により半導体レーザとシングルモードファイバと
の結合には種々の手段が提案されているが、まだ実用に
供せられる手段は開発されていない。例えば第2図に示
した例では半導体レーザーの端面に微小球レンズ2を接
着剤3により接着することにより、光ファイバー4との
位置合せの精度全緩和させたものであるが、レーザ1の
共振面上にレンズ2が接着される為、スレシホールド電
流が増加したり、あるいは共振面に熱歪がかかる等信頼
性にかける欠点がある。
With the recent development of optical communications, there are expectations for the practical implementation of large-capacity transmission. For this purpose, transmission using a single mode fiber is being considered, but the light propagating portion C
Even if the core is for long wavelengths, it has a small diameter of more than 10 μm, making it extremely difficult to couple a laser with a fiber or create optical devices such as a demultiplexer. For example, the oscillation wavelength is 1.3
FIG. 1 shows the coupling characteristics when a semiconductor laser oscillating in a single mode of μm is fully coupled to a tapered spherical optical fiber with a core diameter of 10.8 μm. FIG. 1 shows all the percentages of decrease in output from the original fiber when the fiber is shifted from the optimum coupling position in a direction perpendicular to the fiber axis. The X direction is parallel to the LD active layer and the y direction is perpendicular. As can be seen from this figure, when coupling the laser and the original fiber so that the output drop from the optimal coupled output is within 1 dB, the alignment of 8 degrees must be 0.25 μm or less. It is very difficult to control such positioning with a normal fine movement device. Furthermore, if solder is used to fix the semiconductor laser and the optical fiber, the optimum bonding position will shift due to thermal expansion. For these reasons, various means have been proposed for coupling a semiconductor laser and a single mode fiber, but no means for practical use has yet been developed. For example, in the example shown in FIG. 2, the accuracy of alignment with the optical fiber 4 is completely relaxed by bonding the microsphere lens 2 to the end face of the semiconductor laser with adhesive 3, but the resonant surface of the laser 1 Since the lens 2 is bonded on top, there are drawbacks such as increased threshold current and thermal distortion on the resonant surface, which impairs reliability.

本発明はこのように位置合せ精度が極端に要求される光
伝送装置を容易な手段によって提供しよつとするもので
あり、以下本発明の実施例について図面とともに説明す
る。
The present invention is intended to provide an optical transmission device that requires extremely high alignment accuracy by simple means, and embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の基本的な実施例を示すものである。5
.6はそれぞれ集束性ロッドレンズである。このレンズ
ε、6は中心から外側に行くにしたがって屈折率が徐々
に小さくなるように設定された柱状のものであり、−周
期長に設定されている。このレンズ5,6の端面同志全
相対向させて配置し、一方のレンズ6の端面に光音透過
する平板7を角度αをもって配置し、この間に光を透過
する接着剤8f:満し、レンズ5と平板7と接着する。
FIG. 3 shows a basic embodiment of the invention. 5
.. 6 are convergent rod lenses. This lens ε, 6 is columnar and has a refractive index that gradually decreases from the center to the outside, and has a period length of -. The end surfaces of the lenses 5 and 6 are arranged so as to face each other, and a flat plate 7 that transmits light and sound is placed on the end surface of one lens 6 at an angle α, and an adhesive 8f that transmits light is placed between the end surfaces of the lens 6. 5 and the flat plate 7.

レンズ5,6の元軸を一致させて配列するとレンズ5の
端面上の11点Aから入射した元はレンズ5を通過後平
行ビームとなるので、レンズ5゜へ2個によりコリメー
ト系が構成できる。上記平板7が接着されていない状態
ではA点から入射した光はレンズ6の端面のB点に集束
する。しかし平板7が接着されていると接着剤8がプリ
ズムとして作用し、A点から入射しE光は0点に集束す
る。したがって、平板7を接着するときの傾斜角の制御
により光の集束位置を制御することができる。接着剤の
屈折率(i=n、平板7の傾斜角をα。
When lenses 5 and 6 are arranged with their axes aligned, the light incident from point 11 A on the end face of lens 5 becomes a parallel beam after passing through lens 5, so a collimating system can be constructed with two lenses at 5°. . When the flat plate 7 is not bonded, the light incident from point A is focused on point B on the end surface of the lens 6. However, when the flat plate 7 is glued, the adhesive 8 acts as a prism, and the light E entering from the point A is focused on the zero point. Therefore, by controlling the angle of inclination when bonding the flat plate 7, the focusing position of the light can be controlled. The refractive index of the adhesive (i=n, the inclination angle of the flat plate 7 is α.

平行ビームの軸ずれの角全θとすると、=(n−1)α
の関係がある。又軸から集束位置までの距離全dとする
と、d=θ−L/2yrN 、:(n−1) a ・L
/2πN  の関係がある。ここでLは集束性レンズ6
.6の周期長、Nはレンズ6.6の屈折率である。レン
ズ5,6として(φ2. L=20. a 、 N=1
.6 )の集束性レンズ゛とl1=1.5の樹脂用いた
時のαとdの関係を第4図に示す。このクラ7から角度
’(i70.01度制御すれば0.18μmの位置制御
ができることがわかる。又角度制御する為の装置として
例えば、第5図に示す様にマイクロメータのヘッド9a
 、 9b 、 9cを用いた装置を使いヘッドの間隔
Li10cmとすればヘッドの最小目盛1μm動かすと
角度は0.00057°動くことになり、従って集束位
置は約0.01μm動く。1dB以内にする為の精度0
.26μmK対し非常に良い制御性があることがわかる
If the angle of axis deviation of the parallel beam is all θ, then = (n-1) α
There is a relationship between Also, if the total distance from the axis to the focusing position is d, then d=θ-L/2yrN, :(n-1) a ・L
There is a relationship of /2πN. Here, L is the focusing lens 6
.. 6, N is the refractive index of the lens 6.6. As lenses 5 and 6 (φ2.L=20.a, N=1
.. FIG. 4 shows the relationship between α and d when the converging lens 6) and the resin with l1=1.5 are used. It can be seen that if the angle '(i70.01 degrees) is controlled from this angle 7, the position can be controlled by 0.18 μm.As a device for controlling the angle, for example, a micrometer head 9a as shown in FIG.
, 9b, and 9c, and the head interval Li is 10 cm, if the head is moved by 1 μm of the minimum scale, the angle will move by 0.00057°, and therefore the focusing position will move by about 0.01 μm. Accuracy 0 to within 1dB
.. It can be seen that there is very good controllability for 26 μmK.

又、平板7とレンズ5の接着には紫外線硬化樹脂音用い
れば、温度によって作製装置が膨張することもないので
精度良く接着することができる。
Furthermore, if ultraviolet curing resin is used for bonding the flat plate 7 and the lens 5, the manufacturing device will not expand due to temperature, so that the bonding can be performed with high precision.

したがって、逆に0点から光を入れるとA点に光を出す
ことができる。レーザ光iB点に正しく入れることがで
きればよいが、ずれて入ることが多く、0点にずれて入
っても平板7と接着剤8によって軌道修正されA点に光
を出すことができる。
Therefore, if light is introduced from point 0, it can be emitted to point A. It would be good if the laser beam could enter point iB correctly, but it often happens that the laser beam enters deviated, and even if it enters deviated from the 0 point, the trajectory is corrected by the flat plate 7 and adhesive 8, and the light can be emitted to point A.

これを実施したものが第6図に示すものであり、られて
いる。11はレンズ5の端面に取付けられたシングルモ
ードファイバである。レーザ10を出た光はレンズ6の
中心に正しく当らなくても接着剤8のプリズム作用でフ
ァイバ11に正しく光を入れることができる。
An example of this implementation is shown in FIG. 6. 11 is a single mode fiber attached to the end face of the lens 5. Even if the light emitted from the laser 10 does not hit the center of the lens 6 correctly, it can be correctly directed into the fiber 11 due to the prism effect of the adhesive 8.

第7図に本発明による別の実施例を示す。集束性Oy7
ドレンズ12a、12b、12cは光コネクタ13a、
13b、13  c内に挿入されており、コリメート系
を構成されている。そして、その中間にハーフミラ−1
3が挿入されており、元ファイバ14aから入射した光
で)・−フ・ミラー13を透過した光はファイバ14b
Vc、又反射した光は、ファイバ140[入射する。こ
の時の集束位置の微調整に平板15b 、 1escお
よび接着剤16a、16bを利用している。平板16b
、1rsc全フイルタにすれば光分波器となる。
FIG. 7 shows another embodiment according to the present invention. Focusing Oy7
Drain lenses 12a, 12b, 12c are optical connectors 13a,
13b and 13c, forming a collimating system. And in the middle is half mirror 1
3 is inserted, and the light incident from the original fiber 14a) - the light transmitted through the mirror 13 is transferred to the fiber 14b.
Vc, and the reflected light enters the fiber 140 [. At this time, flat plates 15b and 1esc and adhesives 16a and 16b are used for fine adjustment of the focusing position. flat plate 16b
, 1rsc, it becomes an optical demultiplexer.

なお、接着剤によって平板を取付けるのは二つのレンズ
のうちどちらのレンズに取付けてもよい。
Note that the flat plate may be attached to either of the two lenses using adhesive.

れた柱状の集束性ロッドレンズを2個端面同志を相対向
させて配置し、上記2個の集束性0ノドレンズの相対向
している端面の少くとも一方に光が透過する平板を傾斜
して設け、この平板と端面との間に元が透過する接着剤
を満して集束性ロッドレンズと平板とを接着したこと全
特徴としたものであり、平板全接着する角度全調整する
ことによって、一方のレンズを通って米た光を他方のレ
ンズの端面の所定の場所に正確に伝送することができる
ものである。
Two cylindrical focusing rod lenses are arranged with their end surfaces facing each other, and a flat plate through which light passes is tilted to at least one of the opposing end surfaces of the two focusing rod lenses. The main feature is that the focusing rod lens and the flat plate are bonded by filling the space between the flat plate and the end face with a transparent adhesive, and by fully adjusting the angle at which the flat plate is bonded, Light that has passed through one lens can be accurately transmitted to a predetermined location on the end face of the other lens.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例における半導体レーザと光ファイバとの
結合特性全示す特性図、第2図は従来例における半導体
レーザと元ファイバとの結合状態全示す原理図、第3図
は本発明の光伝送装置の原理図、第4図は同装置説明の
ための特性図、第5図は同装置全製作するための装置の
斜視図、第6図は本発明の一実施例における光伝送装置
の斜視E5 、8 、12 a 、 12 b 、 1
2 c ・−−−−−集束口、トレンズ、7 、16 
b 、 I E5 c ・・−平板、8゜1eb、16
c・・・・・・接着剤。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第35iI @ 4 図 第5図 し−−L−一」
Fig. 1 is a characteristic diagram showing all the coupling characteristics of a semiconductor laser and an optical fiber in a conventional example, Fig. 2 is a principle diagram showing all the coupling states of a semiconductor laser and an original fiber in a conventional example, and Fig. 3 is a characteristic diagram showing all the coupling characteristics of a semiconductor laser and an optical fiber in a conventional example. 4 is a characteristic diagram for explaining the device, FIG. 5 is a perspective view of the device for manufacturing the entire device, and FIG. 6 is a diagram of the optical transmission device in an embodiment of the present invention. Strabismus E5, 8, 12 a, 12 b, 1
2 c ・----Focusing aperture, torrent lens, 7, 16
b, I E5 c...-flat plate, 8゜1eb, 16
c...Adhesive. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 35iI @ 4 Figure 5 - L-1

Claims (1)

【特許請求の範囲】[Claims] 中心から外側に行くにしたがって屈折率が徐々に小さく
なるように設足された柱状の集束性ロッドレンズを2個
端面同志全相対向させて配置し、上記2個の集束性ロッ
ドレンズの相対向している端面の少くとも一方に光が透
過する平板全傾斜して設け、この平板と端面との間に光
が透過する接着剤を満して集束性ロッドレンズと平板と
全接着したことを特徴とする光伝送装置。
Two columnar focusing rod lenses installed so that the refractive index gradually decreases from the center to the outside are arranged so that their end surfaces completely face each other, and the relative orientation of the two focusing rod lenses is At least one of the end faces of the lens is provided with a flat plate that allows light to pass therethrough, and an adhesive that allows light to pass through is filled between the flat plate and the end face, and the focusing rod lens and the flat plate are fully bonded. Features of optical transmission equipment.
JP56125677A 1981-08-11 1981-08-11 Optical transmission device Pending JPS5827113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56125677A JPS5827113A (en) 1981-08-11 1981-08-11 Optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56125677A JPS5827113A (en) 1981-08-11 1981-08-11 Optical transmission device

Publications (1)

Publication Number Publication Date
JPS5827113A true JPS5827113A (en) 1983-02-17

Family

ID=14915925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56125677A Pending JPS5827113A (en) 1981-08-11 1981-08-11 Optical transmission device

Country Status (1)

Country Link
JP (1) JPS5827113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539577A (en) * 1995-05-16 1996-07-23 Jds Fitel, Inc. Means to lessen unwanted reflections in an optical device
JP2013509614A (en) * 2009-10-28 2013-03-14 タイコ・エレクトロニクス・コーポレイション Expanded beam interface device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539577A (en) * 1995-05-16 1996-07-23 Jds Fitel, Inc. Means to lessen unwanted reflections in an optical device
JP2013509614A (en) * 2009-10-28 2013-03-14 タイコ・エレクトロニクス・コーポレイション Expanded beam interface device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3067968B2 (en) Optical fiber interface for coupling light source and method of manufacturing the same
JPS6128964B2 (en)
JP2004533004A (en) Apparatus and method for collimating and transferring beams
WO1997007425A1 (en) Polarization-independent optical isolator
JP2006522943A (en) A practical way to reduce losses associated with beam shaping and fitting external sources and optics to thin silicon waveguides
US7746914B2 (en) Waveguide retroreflector and method of fabricating the same
JP2020534566A (en) Methods and equipment for self-aligned connections of optical fibers to waveguides in photonic integrated circuits
JP2002196181A (en) Optical fiber attached with lens function and its manufacturing method
JPH10282364A (en) Assembly of optical device
US20020057873A1 (en) Laser collimator for a free space optical link
JP2896947B2 (en) Optical fiber end structure and method of manufacturing the same
JPS5827113A (en) Optical transmission device
JPH11160569A (en) Optical coupling circuit
JPH11218638A (en) Optical constituent element
JPH0836119A (en) Manufacture of low-loss collimator couple
JP2004061772A (en) Method for coupling optical device and optical fiber
JPS6243609A (en) Optical circuit element
JP3077554B2 (en) Optical isolator
JPH05288956A (en) Optical fiber terminal optical device with microlens
JP2003043285A (en) Method for manufacturing optical device and the optical device
JP2513652B2 (en) Optical device
JPH03149510A (en) Semiconductor laser optical fiber coupling device and its manufacture
JPH063538A (en) Optical waveguide
JPS5955407A (en) Optical demultiplexer
JPH02210406A (en) Optical coupling circuit