JPS5827040A - Detecting method for short-circuiting spot at conductor-covered insulating pipe - Google Patents

Detecting method for short-circuiting spot at conductor-covered insulating pipe

Info

Publication number
JPS5827040A
JPS5827040A JP12650581A JP12650581A JPS5827040A JP S5827040 A JPS5827040 A JP S5827040A JP 12650581 A JP12650581 A JP 12650581A JP 12650581 A JP12650581 A JP 12650581A JP S5827040 A JPS5827040 A JP S5827040A
Authority
JP
Japan
Prior art keywords
core tube
short
conductor
short circuit
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12650581A
Other languages
Japanese (ja)
Other versions
JPS6316701B2 (en
Inventor
Hideo Kikuchi
菊池 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Denki Seisakusho KK
Original Assignee
Sanwa Denki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Denki Seisakusho KK filed Critical Sanwa Denki Seisakusho KK
Priority to JP12650581A priority Critical patent/JPS5827040A/en
Publication of JPS5827040A publication Critical patent/JPS5827040A/en
Publication of JPS6316701B2 publication Critical patent/JPS6316701B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To detect a spot where an outer covering material and a core tube short-circuit, by a method wherein a conductive core tube, an outer periphery of which a conductive sheathing material covers through the medium of an electrically insulating heat insulator 3, is earthed, and a periodical voltage is applied all the way through to the outer sheathing material and the core tube to detect a leak magnetic field or a change in the leak magnetic field. CONSTITUTION:A conductor-sheathed insulating pipe 1 is constituted such that a conductive outer sheathing material 4 is formed on an outer periphery of a conductive core tube 2 through the medium of an electrically insulating heat insulator 3. When detecting a spot 5 where the core tube 2 and the outer sheathing material 4 short-circuit, the core tube 2 is earthed, and an outer of an oscillator 7, employing, for example, a fork oscillator, is applied all the way through to the core tube 2 and the outer sheathing material 4 through a diode (D) 14, in parallel with which a switch (S) 13 is placed. If, with a S 13 closed, a voltage is applied, and an electrostatic induction detector 8 is caused to approach the insulating pipe 1, a leak electric field is detected irrespective of the presence of a short-circuiting spot, and a speaker 10 sounds. If, which a S 13 closed, a rectified voltage is applied through a D14, and in the case of no short-circuit spot, no current flows after charging by the use of an electrostatic capacity, and it is not detected by a detector. But if there is a short-circuiting spot, it can be detected.

Description

【発明の詳細な説明】 本発明は、給湯管の如き断熱管であって特にその外周に
同軸状に導電性外被材が被覆された導電体被覆断熱管の
新規な短絡箇所探知方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel method for detecting short circuits in insulated pipes such as hot water supply pipes, particularly conductor-coated insulated pipes whose outer periphery is coaxially coated with a conductive jacket material. It is something to do.

一般に給湯管は屋内においては床下の如き容易に視認し
難い場所を選んで配管される関係上、その配管後に室内
の内装を施こす際、これに用いた釘を誤まって給湯管に
打込むことがあっても気付かず、ために上記内装作業完
了後に上記釘打ちによる給湯管の破損箇所の有無、およ
び破損箇所の所在を探知してこれを補修し、給湯管の湯
漏れ事故を未然に防ぐことか必要となる。そのため第8
図に示すような導電性被覆断熱管(以後断熱管と略称す
る)1を給湯管に用いることが提案されている。この断
熱管11d釘管からなる芯管2にポリウレタン発泡材の
如き絶縁性断熱材3を介してカーボン系ゴムの如き導電
性外被材4を被覆してなるもので、これの芯管2と外被
材4との間に直流電圧を印加すれば、上記釘打ちによっ
て芯管2と外被材4とが釘5で短絡されている場合は電
流が流れ、釘打ちされていない時は絶縁抵抗によって電
流が流れず、これがため釘打ちの有無が簡単に判別でき
る。また断熱管4の直流抵抗を測定して短絡事故をおこ
している釘打ち箇所までの距離を測定抵抗値から算出す
るようにすれば、測定点から釘打ち箇所までの距離を知
ることができて、釘打ち箇所の発見および補修が容易と
なる。しがし現実にけ外被材4の抵抗値は一定ではなく
バラツキがあること、また断熱管1の配管路中の継手部
分では抵抗値が一定でないことにより、上記直流抵抗法
によって得られる短絡箇所までの算出距離は正確を期し
かたい難点があった。更に配管路に釘打ちによる短絡箇
所が一箇所以上ある時、あるいは配管路が分岐している
時は測定抵抗値がら算出した距離は全く意味をなさない
。つまり上記断熱管1を用いても従来の方法では短絡の
有無を判別できるにすぎず、短絡箇所の位置探索には依
然無策であった。
In general, hot water pipes are installed indoors in locations that are difficult to see, such as under the floor, so when installing the interior of the room after piping, the nails used for this are driven into the hot water pipes by mistake. Even if this happens, we do not notice it, so after completing the interior work, we detect whether or not there is any damage to the hot water pipe due to the nailing, and the location of the damage and repair it to prevent water leakage accidents from the hot water pipe. It is necessary to prevent it. Therefore, the 8th
It has been proposed to use a conductive coated heat insulated pipe (hereinafter abbreviated as heat insulated pipe) 1 as shown in the figure as a hot water supply pipe. This heat insulating pipe 11d is made by covering a core pipe 2 made of a nailed pipe with a conductive jacket material 4 such as carbon rubber through an insulating heat insulating material 3 such as polyurethane foam. If a DC voltage is applied between the outer covering material 4 and the core tube 2 and the outer covering material 4 are short-circuited by the nail 5 due to the above-mentioned nailing, a current will flow, and when they are not nailed, insulation will flow. The resistor prevents current from flowing, making it easy to determine whether or not a nail has been driven. In addition, by measuring the DC resistance of the insulated pipe 4 and calculating the distance to the nailing point where the short circuit occurred from the measured resistance value, it is possible to know the distance from the measurement point to the nailing point. This makes it easier to find and repair nailing points. However, in reality, the resistance value of the jacket material 4 is not constant and varies, and the resistance value is not constant at the joint part of the piping path of the insulated pipe 1, so that short circuits obtained by the above DC resistance method can be avoided. The problem was that it was difficult to ensure the accuracy of the calculated distance to the point. Furthermore, when there is one or more short-circuit points in the piping route due to nailing, or when the piping route is branched, the distance calculated from the measured resistance value has no meaning at all. In other words, even if the heat insulating pipe 1 is used, the conventional method can only determine the presence or absence of a short circuit, and is still ineffective in searching for the location of the short circuit.

本発明はかかる短絡箇所の位置探索を可能とするもので
ある。
The present invention makes it possible to search for the location of such a short circuit.

本発明の発明者がまず最初に着目したのは電線等の短絡
箇所を検出する方法を応用することであった。これは電
線に地絡事故等が生じた時に該電線に断続電流を通電す
ると共に、この断続電流を検出する検出器を電線に沿っ
て移動させて検出器が断続電流を検出しなくなった点を
求めて地絡箇所を探知する方法である。しかし、この方
法は前述の断熱管1に応用しても全く効果がなかった。
The inventor of the present invention first focused on applying a method for detecting short circuits in electric wires, etc. When a ground fault occurs in a wire, an intermittent current is passed through the wire, and a detector that detects this intermittent current is moved along the wire to detect the point at which the detector no longer detects the intermittent current. This is a method of detecting the ground fault location. However, even when this method was applied to the heat-insulated pipe 1 described above, it had no effect at all.

これは上記方法が架空配電線又は単線による配線もしく
は平行電線には有効であっても、芯管1と外被材3とを
同軸に配置した上記断熱管1は同軸ケーブル状となって
、芯管1と外被材3とが発する磁束が相互に打消し合う
ためと考えられる。しかし乍ら、導電体被覆断熱管1の
電気的構造を見てみるならば、同軸ケーブルの場合は内
部導体と外部導体の抵抗が無視できるように設定されて
いるのに対し、上記断熱管1では鋼管からなる芯管2の
抵抗は無視し得る程度に小さく、一方外被材4け完全な
抵抗体であって、その抵抗がコKn/m。
This is because even though the above method is effective for overhead distribution lines, single-wire wiring, or parallel electric wires, the above-mentioned insulated pipe 1 in which the core pipe 1 and the jacket material 3 are coaxially arranged becomes a coaxial cable, and the core This is thought to be because the magnetic fluxes emitted by the tube 1 and the jacket material 3 cancel each other out. However, if we look at the electrical structure of the conductor-covered heat-insulating pipe 1, we will see that in the case of a coaxial cable, the resistance between the inner conductor and the outer conductor is set to be negligible, whereas the heat-insulating pipe 1 In this case, the resistance of the core tube 2 made of a steel pipe is negligibly small, and on the other hand, the outer jacket material is a complete resistor made of four resistors, and its resistance is Kn/m.

静電容量がθ、JグjPF/m、そして芯管2と外被材
4との絶縁抵抗がコooMn/m以上で、集中定数回路
であられせば、絶縁抵抗が釘打ち事故における接触抵抗
に比し極めて大きいので該接触抵抗を無視すると第9図
の如くなり、完全な同軸ケーブルではない。、そこでこ
の断熱管1において漏洩電界および漏洩磁界が発生して
いるのではないかと考え、この漏洩電界および漏洩磁界
を利用して短絡箇所を探知する方法を求めて試行錯誤を
重ねたところ、芯管2をアースした場合に、上記短絡箇
所において漏洩電界および漏洩磁界が消失し、この消失
点を電界誘導および磁界誘導によって検出することによ
って短絡箇所を探知できることを発見するに至った。
If the capacitance is θ, JgjPF/m, and the insulation resistance between the core tube 2 and the jacket material 4 is ooMn/m or more, and the circuit is a lumped constant circuit, the insulation resistance will be the contact resistance in a nailing accident. If the contact resistance is ignored, the result will be as shown in FIG. 9, which is not a perfect coaxial cable. Therefore, we thought that a leakage electric field and a leakage magnetic field were generated in this insulated pipe 1, and after repeated trial and error to find a method to detect the short circuit using this leakage electric field and leakage magnetic field, we found that the core It has been discovered that when the tube 2 is grounded, the leakage electric field and leakage magnetic field disappear at the short circuit point, and the short circuit point can be detected by detecting this vanishing point by electric field induction and magnetic field induction.

これを第1図において説明すると、A点に短絡事故が生
じている断熱管1において、芯管2をアース6し、外被
材4と芯管2にわたって可聴周波数の交流7を印加し、
一方漏洩電界を拾う周知構造の電界誘導検出器8であっ
て、その出力を増幅器9を介しスピーカ10に入力すべ
く結線してなる検出器8を上記断熱管1に近すけ、且つ
断熱管1の端部Bから短絡箇所Aに向けて移動させてい
ったところ、スピーカioh鳴音を発し続け、検出器8
が短絡箇所Aに近ずくに従って音量が低下し該短絡箇所
を通過した際に鳴音が停止した。これは断熱管1の端部
Bがら短絡箇所Aまで断熱管1に漏洩電界が生じていて
、検出器9に電界誘導電圧が生じ、短絡箇所Aにおいて
漏洩電界が消失したことを意味している。これは上記電
界誘導検出器8を電磁誘導検出器に代えて、漏洩電界に
リンケージする漏洩磁界を検出しても同じであった。
To explain this with reference to FIG. 1, in the insulated pipe 1 where a short circuit accident has occurred at point A, the core pipe 2 is grounded 6, and an audible frequency alternating current 7 is applied across the jacket material 4 and the core pipe 2.
On the other hand, an electric field induction detector 8 having a well-known structure for picking up leakage electric fields, which is wired so as to input its output to a speaker 10 via an amplifier 9, is placed close to the adiabatic tube 1, and the adiabatic tube 1 When I moved it from end B of
The sound volume decreased as it approached the short-circuit point A, and the sound stopped when it passed the short-circuit point. This means that a leakage electric field is generated in the insulation tube 1 from the end B of the insulation tube 1 to the short circuit point A, an electric field induced voltage is generated in the detector 9, and the leakage electric field disappears at the short circuit point A. . This was the same even if the electric field induction detector 8 was replaced with an electromagnetic induction detector to detect the leakage magnetic field linked to the leakage electric field.

何故、上記アース6によってがような現象が生じるのか
未だ分明でないが、以下本発明を実験データによって立
証する。
Although it is not yet clear why the above-mentioned earth 6 causes such a phenomenon, the present invention will be proven below using experimental data.

○ 芯管2に外径が/j、/cmの銅管、外被材4に外
径カニ iJ、、r cmのカーボン系ゴムを用いた長
さ2mの導電体被覆断熱管1であって、芯管2の導電度
が2j〜りJ%、外被材4の抵抗がコにΩ/m %静電
容量がθ、JダsPF/m、そして芯管2と外被材4と
の絶縁抵抗がrooMn/mの上記断熱管1に対し、第
1図に示す方法によって10o■、10oθH2の交流
を印加すると共に、その芯管2をアースして電界誘導検
出器8により短I@箇所を速めたところ第2図乃至第4
図に示す如き実験データが得られた。第2図のa、bけ
短絡筒所Nを断熱管1の端部Bがらコmのところに設定
した時、第3図のa、b/′iダmのところに設定した
時、第4図のa、l)は7mのところに設定した時のデ
ータを示し、更に第2図乃至第4図の各aは断熱管1か
ら検出器8を/jcmlliして探知した時、第2図乃
至第4図の各すは検出器8をJOCm離して探知した時
のデータを示している。此等第2図乃至第4図のグラフ
に示すように検出器8の出力電圧は短絡箇所に至って急
速に減衰して短絡箇所とほぼ一致する時点で消失してお
り、本発明方法によって正確に短絡箇所を探知できるこ
とを立証している。これは実際に配管されたSOm長の
断熱管に対し実験を施こしても、同様な結果が得られた
○ A conductor-coated insulated pipe 1 with a length of 2 m, in which the core tube 2 is a copper pipe with an outer diameter of /j, /cm, and the jacket material 4 is a carbon-based rubber with an outer diameter of iJ,, r cm. , the conductivity of the core tube 2 is 2j~J%, the resistance of the outer sheathing material 4 is Ω/m%, the capacitance is θ, JdsPF/m, and the relationship between the core tube 2 and the outer sheathing material 4 is An alternating current of 10o■, 10oθH2 is applied to the above-mentioned heat-insulating tube 1 having an insulation resistance of rooMn/m by the method shown in FIG. Figures 2 to 4 are obtained by speeding up the process.
Experimental data as shown in the figure was obtained. When the short-circuit tube N shown in a and b in Fig. 2 is set at the end B of the insulated pipe 1, and when it is set at the position a and b/'i in dam m in Fig. 3, Figures a and l) in Figure 4 show the data when set at 7 m, and each a in Figures 2 to 4 shows the data when the detector 8 is detected from the insulated pipe 1 by /jcmlli. Each of the figures in FIGS. 4 to 4 shows data obtained when the detector 8 was detected at a distance of JOCm. As shown in the graphs of FIGS. 2 to 4, the output voltage of the detector 8 rapidly attenuates when it reaches the short-circuit point and disappears when it almost coincides with the short-circuit point. It has been proven that short circuits can be detected. Similar results were obtained even when an experiment was performed on an actually installed SOm-long insulated pipe.

上記の実験は断熱管1の芯管2と外被i4とが釘によっ
て短絡した場合であるが、この釘打ちによっても芯管2
と外被材4とが釘5によって短絡しない場合が考えられ
る。例えば上記断熱管1が配管時の屈曲加工により外被
材4に裂は目が生じ、この裂は目に釘5が打込まれた場
合であり、釘5が芯管2に突き刺さっているにもががゎ
らず、釘5が外被材4に接触せず、ため短絡が発生しな
い。
In the above experiment, the core tube 2 and the outer sheath i4 of the insulated tube 1 were short-circuited by a nail, but even if this nailing caused the core tube
There may be a case where the nail 5 does not cause a short circuit between the nail 5 and the jacket material 4. For example, cracks occur in the jacket material 4 due to the bending process of the insulated pipe 1 during piping, and this crack occurs when a nail 5 is driven into the hole, and the nail 5 pierces the core pipe 2. There is no struggle, and the nail 5 does not come into contact with the jacket material 4, so no short circuit occurs.

しかしこの時でも該断熱管1の釘打ち箇所がら水漏れが
生じて、釘5と外被材4とが漏水により短絡されれば本
発明方法によって該釘抜き箇所が発見できないかと考え
、次のような実験を行なった。
However, even at this time, if water leaks from the nailed point of the insulated pipe 1, and the nail 5 and the sheathing material 4 are short-circuited due to water leakage, we thought that the nailed point could be found by the method of the present invention, and so we conducted the following procedure. We conducted an experiment.

つまり、釘5によって芯管2と外被材4とが直接短絡し
た場合の膝部の接触抵抗F′i/θ乃至コ□Ωと極めて
小さい。これに対し水漏れによって間接的に短絡した場
合の膝部の接触抵抗け/θにΩ乃至、ioKΩ程度であ
る。そこで第5図のように断熱管1において外被材4に
穴11をあけて該部11を通して釘5を芯管2に打込み
、且つ釘5と外被材4との間に水に代えて可変抵抗器1
2を介在させ、その抵抗値を変化させ乍ら本発明探知方
法を試みたところ、芯管2と外被材4に印加する電圧に
よって異なるが、実験によれば可変抵抗器12によって
変化させた抵抗値がJMΩ乃至10MΩであっても、上
記釘打ちによって漏水が発生し、これによって外被材4
と芯管2とが漏水および釘5によって短絡されればその
釘打ち箇所を探知できることが分かった。
In other words, when the core tube 2 and the sheath material 4 are directly short-circuited by the nail 5, the contact resistance at the knee part F'i/θ to □Ω is extremely small. On the other hand, when there is an indirect short circuit due to water leakage, the contact resistance /θ at the knee is approximately Ω to ioKΩ. Therefore, as shown in FIG. 5, a hole 11 is made in the jacket material 4 of the insulated pipe 1, and a nail 5 is driven into the core pipe 2 through the hole 11, and water is replaced between the nail 5 and the jacket material 4. Variable resistor 1
When the detection method of the present invention was attempted by changing the resistance value of the variable resistor 2, the resistance value varied depending on the voltage applied to the core tube 2 and the jacket material 4, but according to experiments, the resistance value was changed by the variable resistor 12. Even if the resistance value is JMΩ to 10MΩ, water leakage occurs due to the above nailing, and this causes the outer covering material 4 to leak.
It has been found that if a short circuit occurs between the core tube 2 and the nail 5 due to water leakage and the nail 5, the nailing point can be detected.

従って、建造物の構築後の完工検査時には上記断熱管1
に10 kg/crrzの圧力をかけて漏水検査を行な
うのを通例するから、その漏水検査後に本発明方法を用
いることが好ましい。また、上記探知に必要な上記印加
電圧を変化させたところ、人体に安全なJyV程度の低
電圧によって充分探知できた。
Therefore, at the time of completion inspection after construction of a building, the above-mentioned insulated pipe 1
Since it is customary to perform a water leakage test by applying a pressure of 10 kg/crrz, it is preferable to use the method of the present invention after the water leakage test. Furthermore, when the applied voltage necessary for the detection was varied, sufficient detection could be achieved with a voltage as low as JyV, which is safe for the human body.

更に本発明方法においては芯管2と外被材4とに印加さ
せる電圧は、交流(正弦波、その他のパルス波、短形波
、三角波を含む)と脈流(余波整流波、片波整流波その
他の脈流、パルス波を含む)の周期的電圧を用いるが、
この交流と脈流とを選択使用することによって次のよう
な相違が生じる。
Furthermore, in the method of the present invention, the voltage applied to the core tube 2 and the jacket material 4 can be applied to alternating current (including sine waves, other pulse waves, rectangular waves, and triangular waves) and pulsating currents (residual rectified waves, single-wave rectified waves). waves and other pulsating currents, including pulse waves), but
The following differences arise by selectively using this alternating current and pulsating current.

第1図においてスイッチ13を閉成して正弦波交流電圧
を印加した場合第9rgJに示す回路の容量Cには変位
電流が流れるために、断熱管1に電界誘導検出器8を近
ずければ、短絡箇所の有無にかかわらず漏洩電界を検出
してスピーカ10が鳴音を発する。しかし、スイッチ1
3を開成し且つダイオード14を通して半波整流電圧(
もしくはブリッジ回路を通した余波整流波)を印加すれ
ば、断熱管1に短絡箇所がなければ容量Cが充電された
以後は電流は流れず、従って漏洩電界検出器8を近すけ
でも漏洩電界を検出せず、スピーカ1oが鳴らないが、
短絡箇所がある時には電流が流れるからスピーカ10が
鳴音を発する。故に、脈流を使用する時は短絡箇所の有
無が判別でき、冒頭に述べた直流抵抗法による機能を併
せもっことになり、短絡箇所が有李ることが判別された
時のみ該短絡箇所の探知作業を行なえば良いことになる
In FIG. 1, when the switch 13 is closed and a sinusoidal AC voltage is applied, a displacement current flows through the capacitance C of the circuit shown at 9 rgJ. , the leakage electric field is detected and the speaker 10 emits a sound regardless of the presence or absence of a short circuit. However, switch 1
3 is opened and a half-wave rectified voltage (
If a rectified wave (or aftereffect rectified wave passed through a bridge circuit) is applied, no current will flow after the capacitor C is charged unless there is a short circuit in the insulated tube 1, and therefore, even if the leakage electric field detector 8 is placed close, the leakage electric field will not be detected. Although it is not detected and speaker 1o does not sound,
When there is a short circuit, current flows and the speaker 10 emits a sound. Therefore, when using pulsating current, it is possible to determine whether there is a short circuit, and it also has the function of the DC resistance method mentioned at the beginning, and only when it is determined that there is a short circuit, can the short circuit be detected. It would be a good idea to do some detection work.

逆に印加電圧に交流を用いる時は、この交流電圧を印加
するに先立って直流抵抗法で短絡箇所の有無を判別し、
短絡箇所の有るものに対してのみ交流電圧を印加し短絡
箇所を探知してゆけば良い。
Conversely, when using alternating current as the applied voltage, use the direct current resistance method to determine the presence or absence of a short circuit before applying this alternating voltage.
All you have to do is apply AC voltage only to those with short circuits and detect the short circuits.

尚、アース6は大地との静電容量を利用するカウンター
ボイズを含み、これには絶縁電線を大地に這わして利用
するもの、g0Cm×りθam程度のアルミ箔に導線を
接続して利用するものおよび後記する第6図回路のケー
スf金属から構成して利用するものが考えられる。
In addition, earth 6 includes countervoices that utilize the capacitance with the ground, and these include those that use insulated wires running along the ground, and those that connect conductive wires to aluminum foil of approximately g0Cm x R θam. It is conceivable that the case f of the circuit shown in FIG. 6, which will be described later, is made of metal.

次に本発明方法に用いる一実施例回路を第6図および第
7図で説明する。第6図は電圧印加装置で、音叉発振器
(商標名マイクロフォーク)15にこれの専用ICであ
る増幅器16とを含む発振段17、その発振出力が発振
出力調整用可変抵抗器18を介して人力される出力増幅
器19、出力増幅器19の出力を昇圧し且つインピーダ
ンス整合する変圧器20゜第1図で示した切換えスイッ
チ13およびダイオード°14、および定電流抵抗21
を具備しており、直流電源子Bによって発振段イ17か
ら出力される発振出力を端子22.23から芯管2と外
被材4に印加するものである。
Next, an embodiment of the circuit used in the method of the present invention will be explained with reference to FIGS. 6 and 7. FIG. 6 shows a voltage application device, which includes an oscillation stage 17 including a tuning fork oscillator (trade name: Microfork) 15 and an amplifier 16, which is a dedicated IC for this, and whose oscillation output is manually applied via a variable resistor 18 for adjusting the oscillation output. an output amplifier 19, a transformer 20 for boosting the output of the output amplifier 19 and matching impedance; a changeover switch 13 and a diode 14 shown in FIG. 1; and a constant current resistor 21.
The oscillation output output from the oscillation stage I 17 by the DC power element B is applied to the core tube 2 and the jacket material 4 from the terminals 22 and 23.

第7図は短絡箇所検出装置で、第1図に示す電界誘導検
出器(もしくけ磁界誘導検出器)8が接続されるジャッ
ク24、電界誘導検出器と磁界誘導検出器とを選択使用
するために用いるインピーダンス整合用手段25、前置
増幅器26、この前置増幅器26の出力を増幅するマク
テイブフィルタ(オペ・を介して人力される出力増幅器
29、この出力増幅器29の出力で駆動されるスピーカ
30、および上記マクテイブフィルタ27の出力が増幅
器31を介して入力される直流電流計32を有している
。更に芯管2と外被材4に接触される測定端子33.3
4、増幅器35、および発振器36とを有する抵抗測定
部37が構成され、前述の出力増幅器29の入力端を抵
抗測定部37の出力端子38と可変抵抗器28の出力端
子39とにわたって選択的に切換えるスイッチ4oが設
けられている。
Figure 7 shows a short-circuit detection device, with a jack 24 to which the electric field induction detector (moshikake magnetic field induction detector) 8 shown in Figure 1 is connected, and for selective use of the electric field induction detector and the magnetic field induction detector. an impedance matching means 25, a preamplifier 26, an output amplifier 29 which is manually powered through a McTive filter (operator) that amplifies the output of the preamplifier 26, and an output amplifier 29 driven by the output of the output amplifier 29. It has a speaker 30 and a DC ammeter 32 into which the output of the McTave filter 27 is inputted via an amplifier 31. Furthermore, a measuring terminal 33.3 is brought into contact with the core tube 2 and the jacket material 4.
4. A resistance measuring section 37 having an amplifier 35 and an oscillator 36 is configured, and the input terminal of the aforementioned output amplifier 29 is selectively connected to the output terminal 38 of the resistance measuring section 37 and the output terminal 39 of the variable resistor 28. A switch 4o for switching is provided.

第7図回路では、まず切換えスイッチ40を実線に示す
如く抵抗測定部37の出力端子38に切換えて、抵抗測
定部37を出力増幅器29に接続した状態から、測定端
子33.34を被検査物である断熱管1の芯管2と外被
材4とに接触させて直流電源子Bを該断熱管1に印加す
る。短絡箇所がない場合は芯管2と外被材4との絶縁抵
抗故に増幅器35に入力電圧がないが、短絡箇所がある
場合はその短絡箇所までの抵抗に応じた電圧が増幅器3
5に入り、その増幅出力で発振器36が作動して発振出
力が切換えスイッチ40から出力増幅器29に入力し、
従ってスピーカ30が鳴る。これがためスピーカ30の
鳴音の有無によって短絡箇所の有無が判別されるから、
スピーカ30が鳴った時は切換えスイッチ40を破線の
ように可変抵抗器28の出力端子39に接続したのち、
第6図の電圧印加装置によって発振出力を芯管2と外被
材4に印加し、電界誘導検出器(もしくは磁界誘導検出
器)8を導電体被覆断熱管1に沿って移動させてゆく。
In the circuit of FIG. 7, first, the changeover switch 40 is switched to the output terminal 38 of the resistance measurement section 37 as shown by the solid line, and the resistance measurement section 37 is connected to the output amplifier 29, and the measurement terminals 33 and 34 are connected to the test object. A DC power source B is applied to the heat insulated pipe 1 by bringing it into contact with the core pipe 2 and the jacket material 4 of the heat insulated pipe 1. If there is no short circuit, there is no input voltage to the amplifier 35 due to the insulation resistance between the core tube 2 and the jacket material 4, but if there is a short circuit, the voltage corresponding to the resistance up to the short circuit will be applied to the amplifier 3.
5, the oscillator 36 is activated by the amplified output, and the oscillation output is input from the changeover switch 40 to the output amplifier 29.
Therefore, the speaker 30 sounds. Therefore, the presence or absence of a short circuit can be determined based on the presence or absence of sound from the speaker 30.
When the speaker 30 sounds, connect the selector switch 40 to the output terminal 39 of the variable resistor 28 as shown by the broken line.
An oscillation output is applied to the core tube 2 and the jacket material 4 by the voltage application device shown in FIG. 6, and the electric field induction detector (or magnetic field induction detector) 8 is moved along the conductor-coated heat-insulating tube 1.

この電界誘導検出器(もしくけ磁界誘導検出器)8が漏
洩電界(もしくは漏洩磁界)をひろうと、その誘導電流
が前置増幅器26、マクテイプフィルタ27、可変抵抗
器28、および出力増幅器29を経てスピーカ30に入
って鳴音が発せられる一方、増幅器31を経て直流電流
計32で漏洩電界(もしくけ漏洩磁界)の強さがメータ
表示される。そして上記電界誘導検出器(もしくは磁界
誘導検出器8が短絡箇所に至って漏洩電界(もしくけ漏
洩磁界)が消失すると、スピーカ30が鳴りやみ、直流
電流計32が0点付近を指示し、これによって短絡箇所
が探知できる。
When this electric field induction detector (magnetic field induction detector) 8 picks up a leakage electric field (or leakage magnetic field), the induced current flows through the preamplifier 26, McTape filter 27, variable resistor 28, and output amplifier 29. Then, it enters the speaker 30 and a sound is emitted, while the strength of the leakage electric field (leakage magnetic field) is displayed by a meter after passing through the amplifier 31 and a DC ammeter 32. When the electric field induction detector (or magnetic field induction detector 8) reaches a short-circuit point and the leakage electric field disappears, the speaker 30 stops sounding, and the DC ammeter 32 indicates around the 0 point. Short circuits can be detected.

尚、導電体被覆断熱管1に印加する電圧は低周波、高周
波“、可聴周波数で変調された高周波等を用いることが
できる。
Note that the voltage applied to the conductor-coated heat-insulating tube 1 can be a low frequency, a high frequency, a high frequency modulated at an audio frequency, or the like.

以上のように本発明け、導電体被覆断熱管においてその
芯管をアースすると共に、外被材と芯管とにわたり周期
的電圧を印加した状態がら、上記断熱管の漏洩電界変化
をとらえる電界誘導検出器または漏洩磁界変化をとらえ
る磁界誘導検出器を該断熱管に沿って移動させて、漏洩
電界またけ漏洩磁界の消失点から短絡箇所を探知するも
のであるから、導電体被覆断熱管の抵抗のバラツキ、配
管路の継手部分の抵抗変化に影響なく短絡箇所を正確に
探知できる利点があり、また配管路に一箇所以上の釘打
ちによる短絡箇所があっても、上記断熱管の電圧印加端
から検出器を移動させて短絡箇所を順番に/箇所ずつ見
つけ、そのたびに釘を抜いてゆけば全ての短絡箇所を探
知できると共に、配管路が分岐していても各分岐管路に
沿って上記電界誘導検出器またけ磁界誘導検出器を移動
させることによって容易に短絡箇所を探知できる。
As described above, the present invention provides an electric field induction that captures the leakage electric field change of the insulated tube while the core tube of the conductor-covered insulated tube is grounded and a periodic voltage is applied across the jacket material and the core tube. A detector or a magnetic field induction detector that detects changes in the leakage magnetic field is moved along the insulated tube to detect the short circuit from the vanishing point of the leakage electric field and the leakage magnetic field, so the resistance of the conductor-coated insulated tube is This has the advantage of being able to accurately detect short-circuit points without affecting resistance variations in the joints of pipes, and even if there is a short-circuit in one or more places in the pipe due to nailing, the voltage applied end of the insulated pipe can be detected accurately. By moving the detector from the beginning to find the short-circuit points one by one and removing the nail each time, you can detect all the short-circuit points, and even if the pipe line is branched, it can be detected along each branch pipe line. By moving the magnetic field induction detector across the electric field induction detector, a short circuit can be easily detected.

また、導電体被覆断熱管に印加する電圧が脈流である時
は、該断熱管に短絡箇所が無いと充電電流が流れた以後
は電流は流れず、故に電界誘導検出器または磁界誘導検
出器を近ずけても漏洩電界または漏洩磁界をひろわない
から、導電体被覆断熱管の短絡箇所の有無を該短絡箇所
の探知に先立って判別できる利点がある。
In addition, when the voltage applied to the conductor-coated insulated tube is a pulsating current, if there is no short circuit in the insulated tube, no current will flow after the charging current flows, so an electric field induction detector or magnetic field induction detector Since a leakage electric field or a leakage magnetic field is not spread even if the conductor-coated heat-insulated pipe is brought close, there is an advantage that the presence or absence of a short circuit in the conductor-covered heat-insulated pipe can be determined before detecting the short circuit.

更に導電体被覆断熱管に印加する電圧が交流である時は
、この電圧臼“加に先立って、直流抵抗法により短絡箇
所の有無を判別すれば、上記断熱管の短絡箇所探知作業
が簡易になる。
Furthermore, when the voltage applied to the conductor-coated insulated tube is AC, the presence or absence of a short circuit in the insulated tube can be easily detected by determining the presence or absence of a short circuit using the DC resistance method before applying this voltage. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を示す概略図、第2図乃至第4図は
実験データを示すグラフ、第5図は水洩れ実験方法を示
す図、第6図は本発明の一実施例を示す電圧印加装置の
回路図、第7図は同じく短絡箇所検出装置の回路図、第
8図は本発明を適用する導電体被覆断熱管の断面図、第
9図は第8図断熱管の集中定数回路である。 1・・・導電体被覆断熱管、2・O・導電性芯管、3・
・・絶縁性断熱管、4・・・導電性外被材、6・・・ア
ース、8・・・電界誘導検出器または磁界誘導検出器。 咄f爲 一−−◆諏絨 一−−◆聾き1 j1力4 一−−◆碑錬 一一一伽チ籠 →vi燻 一−ツ淋。 −一瀝楓
Fig. 1 is a schematic diagram showing the method of the present invention, Figs. 2 to 4 are graphs showing experimental data, Fig. 5 is a diagram showing the water leakage test method, and Fig. 6 shows an embodiment of the present invention. Figure 7 is a circuit diagram of the voltage application device, Figure 7 is a circuit diagram of the short-circuit detection device, Figure 8 is a cross-sectional view of a conductor-covered heat-insulated pipe to which the present invention is applied, and Figure 9 is a lumped constant of the heat-insulated pipe shown in Figure 8. It is a circuit. 1... Conductor coated heat insulated tube, 2. O. conductive core tube, 3.
...Insulating heat-insulated pipe, 4. Conductive jacket material, 6. Earth, 8. Electric field induction detector or magnetic field induction detector.咄f爲一--◆桏絨一--◆Deafness 1 j1力4 1--◆Himeren 111 佽子籠→vi 经一-ツ淋. -Kaede Ichiro

Claims (1)

【特許請求の範囲】 八 導電性芯管の外周に絶縁性断熱材を介し導電性外被
材を被覆してなる導電体被覆断熱管において、その芯管
をアースすると共に、外被材と芯管にわたり周期的電圧
を印加して上記断熱管の漏洩電界変化をとらえる電界誘
導検出器または漏洩磁界変化をとらえる砒界誘導検/f
l器により、上記外被材と芯管との短絡箇所を探知する
ことを特徴とする導電体被覆断熱管の短絡箇所探知方法
。 コ、周期的電圧が交流である特許請求の範囲第7項記載
の導電体被覆断熱管の短絡箇所探知方法。 !、周期的電圧が脈流である特許請求の範囲第7項記載
の導電体被覆断熱管の短絡箇所探知方法。 ダ、周期的電圧の印加に先立って、導電体被覆断熱管の
外被材と芯管とにわたり直流電圧を印加して直流抵抗に
より外被材と芯管との短絡箇所の頁無を判別する直流抵
抗法を含む特許請求の範囲第1項記載の導電体被覆断熱
管の短絡箇所探知方法。
[Scope of Claims] 8. In a conductor-coated heat-insulating tube formed by covering the outer periphery of a conductive core tube with a conductive jacket material via an insulating heat-insulating material, the core tube is grounded, and the jacket material and the core An electric field induction detector that applies a periodic voltage across the tube to detect changes in the leakage electric field of the insulated tube, or an arsenic field induction detector that detects changes in the leakage magnetic field.
1. A method for detecting a short circuit in a conductor-coated heat-insulated pipe, the method comprising detecting a short circuit between the jacket material and the core tube using a heat detector. (h) A method for detecting a short circuit in a conductor-coated heat-insulated pipe according to claim 7, wherein the periodic voltage is an alternating current. ! 8. The method of detecting a short circuit in a conductor-coated heat-insulated pipe according to claim 7, wherein the periodic voltage is a pulsating current. Before applying a periodic voltage, a DC voltage is applied across the jacket material and the core tube of the conductor-coated insulated pipe, and the presence of a short circuit between the jacket material and the core tube is determined based on the DC resistance. A method for detecting a short circuit in a conductor-coated heat-insulated pipe according to claim 1, which includes a direct current resistance method.
JP12650581A 1981-08-11 1981-08-11 Detecting method for short-circuiting spot at conductor-covered insulating pipe Granted JPS5827040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12650581A JPS5827040A (en) 1981-08-11 1981-08-11 Detecting method for short-circuiting spot at conductor-covered insulating pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12650581A JPS5827040A (en) 1981-08-11 1981-08-11 Detecting method for short-circuiting spot at conductor-covered insulating pipe

Publications (2)

Publication Number Publication Date
JPS5827040A true JPS5827040A (en) 1983-02-17
JPS6316701B2 JPS6316701B2 (en) 1988-04-11

Family

ID=14936863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12650581A Granted JPS5827040A (en) 1981-08-11 1981-08-11 Detecting method for short-circuiting spot at conductor-covered insulating pipe

Country Status (1)

Country Link
JP (1) JPS5827040A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001429A2 (en) * 1995-06-26 1997-01-16 Conenor Oy An extrusion apparatus and method, a tubular product, and a pipe
US6446674B1 (en) 1995-12-12 2002-09-10 Uponor Innovation Ab Method of producing homogeneous material with an extruder, an extruder, and a multilayer plastic pipe
JP2014514577A (en) * 2011-04-29 2014-06-19 イートン コーポレーション Deterioration monitoring system for hose assemblies
JP6492150B1 (en) * 2017-11-02 2019-03-27 株式会社川本製作所 Pressure increase water supply device and water leak detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001429A2 (en) * 1995-06-26 1997-01-16 Conenor Oy An extrusion apparatus and method, a tubular product, and a pipe
WO1997001429A3 (en) * 1995-06-26 1997-02-27 Conenor Oy An extrusion apparatus and method, a tubular product, and a pipe
US7381454B1 (en) 1995-06-26 2008-06-03 Uponor B.V. Tubular product
US6446674B1 (en) 1995-12-12 2002-09-10 Uponor Innovation Ab Method of producing homogeneous material with an extruder, an extruder, and a multilayer plastic pipe
JP2014514577A (en) * 2011-04-29 2014-06-19 イートン コーポレーション Deterioration monitoring system for hose assemblies
JP6492150B1 (en) * 2017-11-02 2019-03-27 株式会社川本製作所 Pressure increase water supply device and water leak detector

Also Published As

Publication number Publication date
JPS6316701B2 (en) 1988-04-11

Similar Documents

Publication Publication Date Title
US10520540B2 (en) Survey signal transmitter
US4438389A (en) Method for utilizing three-dimensional radiated magnetic field gradients for detecting serving faults in buried cables
US6531880B1 (en) Non-invasive cable tester
US4322677A (en) System and method for locating resistive faults and interconnect errors in multi-conductor cables
US6867596B1 (en) Fault detection system
JPH01501419A (en) Method for detecting wall thickness changes in hollow bodies that conduct electricity
JPS5827040A (en) Detecting method for short-circuiting spot at conductor-covered insulating pipe
US3066256A (en) Detector for flaws in buried pipe and the like
CA1305521C (en) Underground cable testing method
JP2004198410A (en) Method for inspecting defect in coated pipe, and method for diagnosing corrosion
JPS5832176A (en) Detector for short circuited point in heat insulating pipe clad with electric conductor
JP4004300B2 (en) Object exploration method
US20220075006A1 (en) Mobile electric leakage detection device and method
JPH06103291B2 (en) Pipe inspection device by remote field eddy current method
JP3097896B2 (en) Wiring current route search method
JPS60195460A (en) Insulating state deciding device of pipe
JP2868786B2 (en) Method and apparatus for searching for accident points in indoor wiring
JPH08304321A (en) Method for detecting coating damage of underground buried metal conduit
JPH1082865A (en) Position searching method for underground buried pipe
JP3363340B2 (en) Capacitive detection electrode for cable detection device and cable detection method
JPH08145934A (en) Monitoring method and device for damage degree of clad steel pipe
JPH01155278A (en) Inspecting device of cable
JPH07128272A (en) Method for monitoring degree of damage of covered steel pipe, and device therefor
JPS6044858A (en) Damage position detector of coating film of buried piping
RU2582301C2 (en) Method to detect extended anode earthing device damage point