JPS5827027A - Photo detector - Google Patents

Photo detector

Info

Publication number
JPS5827027A
JPS5827027A JP12557081A JP12557081A JPS5827027A JP S5827027 A JPS5827027 A JP S5827027A JP 12557081 A JP12557081 A JP 12557081A JP 12557081 A JP12557081 A JP 12557081A JP S5827027 A JPS5827027 A JP S5827027A
Authority
JP
Japan
Prior art keywords
light
signal
diameter part
error signal
photo sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12557081A
Other languages
Japanese (ja)
Inventor
Tsutomu Matsui
勉 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akai Electric Co Ltd
Original Assignee
Akai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akai Electric Co Ltd filed Critical Akai Electric Co Ltd
Priority to JP12557081A priority Critical patent/JPS5827027A/en
Publication of JPS5827027A publication Critical patent/JPS5827027A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only

Abstract

PURPOSE:To miniaturize a device, to prevent the production of light volume loss, and to facilitate detection of a focus error signal as well as an information signal, by constituting a device such that reflecting light from a disc, producing an approximately parallel luminous flux through the working of an objective, is collected by a photo sensor as it is. CONSTITUTION:A laser luminous flux rectilinearly polarized from a semiconductor laser 1 is collected on a disc 6 through a collimater lens 2, a polarizing prism 3, a lambda/4 plate 4, and an objective 5. The reflecting light, reversing and passing the polarizing prism 3, enters a photo sensor 10 in a manner to produce an approximately parallel luminous light. The photo sensor 10 consists of a small diameter part 10a and a large diameter part 10b which form a concentric circle, and each of outputs Va and Vb changes resulting from the change in a diameter of an incident luminous flux corresponding to a focus. A difference between two signals is obtained by a subtracting circuit 11, the difference signal is compared with a difference signal at a focusing time by a comparing circuit 12 to output a focus error signal SP. A critical prism is not used, and this miniaturizes a device, prevents the occurrence of a light volume loss, and facilitates an operation.

Description

【発明の詳細な説明】 この発明は、光式ビデオディスクプレーヤ等に用いる光
検出装置に関し、特にディスクの変位によるフォーカス
ずれを修正するためのフォーカスエラー信号を簡単に検
出し得るようにした光検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photodetection device used in an optical video disc player, etc., and in particular to a photodetection device that can easily detect a focus error signal for correcting a focus shift caused by displacement of a disc. Regarding equipment.

光式ディスクプレーヤ等に用いる光検出器は、ディスク
上に刻まれたビットにレーザ光線等によるスポット光を
対物し/ズを介して照射し、その反射光を再び対物レン
ズを介してフォトセンサで受光してビット信号すなわち
情報信号(一般にはビデオ信号で、R−F信号ともいう
)を得るようになっているが、同時にディスクの上下動
によるフォーカスずれを修正するためのフォーカスエラ
ー信号及びディスクの偏心等によるトラッキングずれを
修正するためのトラッキングエラー信1−も得る必要が
ある。
A photodetector used in an optical disc player, etc., irradiates a spot light such as a laser beam onto a bit engraved on a disc through an objective lens, and then sends the reflected light back through the objective lens to a photo sensor. It receives the light and obtains a bit signal, that is, an information signal (generally a video signal, also called an RF signal), but at the same time a focus error signal and a focus error signal to correct the focus shift due to the vertical movement of the disc are obtained. It is also necessary to obtain a tracking error signal 1- for correcting tracking deviation due to eccentricity or the like.

そして、従来の光検出装置は、フォーカスエラー信号を
得るために例えば第1図に示すように構成されていた。
The conventional photodetecting device was configured as shown in FIG. 1, for example, in order to obtain a focus error signal.

これを簡単に説明すると、半導体レーザ1からの直線偏
光のレーザ光束をコリメータレンズ2によって平行光束
にして、偏光プリズム3によって上方へ90°変向させ
、λ/4板4を通して円偏光に変換し、対物レンズ5に
よって集光してピット(図示せず)が刻まれているデス
ク6に径が1〜2μmの微小なスポット光を照射する。
To explain this simply, a linearly polarized laser beam from a semiconductor laser 1 is made into a parallel beam by a collimator lens 2, deflected upward by 90 degrees by a polarizing prism 3, and converted into circularly polarized beam by a λ/4 plate 4. , a minute spot light having a diameter of 1 to 2 μm is focused by an objective lens 5 and irradiated onto a disk 6 in which pits (not shown) are carved.

このスポット光のディスク6からの反射光は入射光と逆
回りの円偏光となり、再び対物レンズ5を通って平行光
束となって、2λ/4 板4によって入射時と向きが9
0°異る直線偏向に変換されるので、偏光プリズム3を
通過して臨界プリズム7に入射する。
The reflected light from the disk 6 of this spot light becomes circularly polarized light in the opposite direction to the incident light, passes through the objective lens 5 again, becomes a parallel light beam, and is changed by the 2λ/4 plate 4 so that the direction is 9
Since it is converted into a linear polarization that differs by 0°, it passes through the polarizing prism 3 and enters the critical prism 7.

この臨界プリズム7の反射面7aは、図に1点鎖線で示
す光軸に対して臨界角となるようにしてあり、その反射
光束を受光面PD1.PD2を有する2分割フォトセン
サ8によって受光して、その各受光面からの出力の差を
減算回路9によって検出してフォーカスエラー信号SF
 を得ていた。
The reflective surface 7a of the critical prism 7 is configured to form a critical angle with respect to the optical axis indicated by the dashed line in the figure, and the reflected light beam is transmitted to the light receiving surface PD1. Light is received by a two-split photosensor 8 having a PD2, and the difference in output from each light receiving surface is detected by a subtraction circuit 9 to generate a focus error signal SF.
I was getting .

すなわち、合焦時には臨界プリズム7への入射光束は光
軸に平行な平行光束となっているため、全て反射されて
2分割フォトセンサ8に入射する出力も等しいから減算
回路9の出力であるフォーカスエラー信号はゼロになる
That is, at the time of focusing, the incident light beam on the critical prism 7 is a parallel light beam parallel to the optical axis, so the outputs that are all reflected and incident on the two-split photosensor 8 are also equal, so the focus is the output of the subtraction circuit 9. The error signal becomes zero.

一方、合焦位置に対してディスク6が近づ今週ぎの場合
及び離れ過ぎの場合には、臨界プリズム7への入射光束
が発散光束あるいは収束光束となるため、光軸を境とし
て図で左側と右側の光束の臨界プリズム7へ入射する角
度が臨界角に対して犬又は小となり、その大小関係は近
づき過ぎの場合と離れ過ぎの場合で逆になる。
On the other hand, if the disc 6 approaches the in-focus position or is too far away, the light beam incident on the critical prism 7 becomes a diverging light beam or a convergent light beam. The angle at which the light beam on the right side enters the critical prism 7 is smaller than or equal to the critical angle, and the magnitude relationship is reversed depending on whether it is too close or too far away.

そのため、臨界プリズム7の反射面7aによって反射さ
れてフォトセンサ8の受光面PD1とPD2に達する光
量に差を生じ、減算回路9の出力に、近づき過ぎの場合
と離れ過ぎの場合で極性の異なる差信号がフォーカスエ
ラー信号として現われる。
Therefore, there is a difference in the amount of light that is reflected by the reflective surface 7a of the critical prism 7 and reaches the light receiving surfaces PD1 and PD2 of the photosensor 8, and the output of the subtraction circuit 9 has different polarity depending on whether it is too close or too far away. The difference signal appears as a focus error signal.

しかしながら、このような従来の光検出装置では、臨界
プリズムを使用するため、小型化を計るのに不都合であ
るばかりか、その反射面の臨界角の設定に精度を要する
ので位置調整が難しい。
However, such conventional photodetecting devices use a critical prism, which is not only inconvenient for miniaturization, but also requires precision in setting the critical angle of the reflecting surface, making position adjustment difficult.

さらに、フォーカスずれにより臨界プリズムで反射され
ずにロスになる光量が生ずるため、2分割フオトセ/す
の各受光面からの出力の和によって得られる情報信号の
レベルもフォーカスずれにより低減するという不都合も
ある。
Furthermore, since the amount of light that is not reflected by the critical prism is lost due to focus deviation, the level of the information signal obtained by the sum of the outputs from each light-receiving surface of the two-part photo sensor also decreases due to focus deviation. be.

この発明は、上記の問題を全て解消し、小型化に適し、
調整容易でしかも光量ロスなく情報信号と共にフォーカ
スエラー信号を検出し得る光検出装置を提供することを
目的とする。
This invention solves all the above problems and is suitable for miniaturization.
It is an object of the present invention to provide a photodetection device that is easy to adjust and can detect a focus error signal together with an information signal without loss of light amount.

そのため、この発明による光検出装置は、臨界プリズム
を使用せず、対物レンズによって略平行キ 光束にされたディスからの反射光をそのままフォトセン
サで受光するようにし、そのフォトセンサの受光面を、
中心からの半径が異なる同心円又はその一部をなす小径
部と大径部とによって形成し、その小径部の出力と大径
部の出力との差によってフォーカスエラー信号を得るよ
うにしたものである。
Therefore, the photodetector according to the present invention does not use a critical prism, but instead uses a photosensor to directly receive the reflected light from the disk, which is made into a substantially parallel beam by an objective lens, and the light-receiving surface of the photosensor is
It is formed by a small diameter part and a large diameter part that form concentric circles or parts of concentric circles with different radii from the center, and a focus error signal is obtained from the difference between the output of the small diameter part and the output of the large diameter part. .

以下、図面を参照してこの発明の内容を詳細に説明する
Hereinafter, the contents of the present invention will be explained in detail with reference to the drawings.

第2図はこの発明による光検出装置の光学系の構成を示
し、第1図の従来例と同一部分には同一符号を付しであ
る。
FIG. 2 shows the configuration of an optical system of a photodetecting device according to the present invention, and the same parts as in the conventional example shown in FIG. 1 are given the same reference numerals.

この光学系において第1図の光学系と異なるのは、臨界
プリズムを使用せず、ディスク6を照射したスポット光
の反射光を対物レンズ5で再び平行光束(合焦の場合)
にした光束を、λ/4板4及び偏光プリズム6を通して
そのままフォトセンサ10に受光させるようになってい
る点である。
What is different about this optical system from the optical system shown in FIG. 1 is that it does not use a critical prism, and the reflected light of the spot light that irradiated the disk 6 is redirected into a parallel light beam (in the case of focusing) by the objective lens 5.
The point is that the light beam is directly received by the photosensor 10 through the λ/4 plate 4 and the polarizing prism 6.

フオトセ/す10の受光面は、第3図(ロ)に示すよう
に、中心からの半径がrl、 r2(r2>r+)の同
心円をなす小径部10aと大径部10bとによって形成
されている。
As shown in FIG. 3(b), the light-receiving surface of the photo sensor 10 is formed by a small diameter portion 10a and a large diameter portion 10b forming concentric circles with radii rl and r2 (r2>r+) from the center. There is.

次に、この発明による光検出装置におけるフォーカスエ
ラー信号の検出原理を第3図(イ)〜(ハ)によって説
明する。
Next, the principle of detecting a focus error signal in the photodetector according to the present invention will be explained with reference to FIGS. 3(A) to 3(C).

第6図(イ)において、ディスク6がbの位置にある時
合焦状態であるとすると、この時のスポット光の反射光
束は対物し/ズ5によって光軸tに平行な平行光束とな
り、同図(ロ)に示す7オトセンサ10の受光面の実線
すより内側の円形部分を照射し、その光量分布は同図(
ハ)に実mbで示すようになる。
In FIG. 6(A), if it is assumed that the disc 6 is in focus when it is at position b, the reflected light flux of the spot light at this time becomes a parallel light flux parallel to the optical axis t by the objective lens 5, The circular part of the light-receiving surface of the 7-otosensor 10 shown in the same figure (b) inside the solid line is irradiated, and the light intensity distribution is shown in the same figure (b).
c) is shown in actual mb.

とt″Lに対し、ディスク6が合焦位置より遠い例えば
第6図(イ)にaで示す位置にあると、対物レンズ5か
らフォトセンサ10に向かう光束は収束光束になり、同
図(ロ)に示すフォトセンサ10の受光面の破線aより
内側の小さい円形部分を照射し、その光量分布は同図t
つに破線aで示すようになる。
and t''L, if the disk 6 is at a position far from the in-focus position, for example, at the position indicated by a in FIG. A small circular part inside the broken line a of the light receiving surface of the photosensor 10 shown in b) is irradiated, and the light amount distribution is t in the same figure.
as shown by a broken line a.

また、ディスク6が合焦位置より近い例えば第3図(イ
)にCで示す位置にあると、対物レンズ5からフォトセ
ンサ10に向かう光束は発散光束になり、同図(ロ)に
示すフォトセンサ10の受光面の2点鎖線Cより内側の
大きい円形部分を照射し、その光量分布は同図(ハ)に
2点鎖線Cで示すようになる。
Furthermore, when the disk 6 is located closer to the in-focus position, for example, at the position shown by C in FIG. A large circular portion of the light-receiving surface of the sensor 10 inside the two-dot chain line C is irradiated, and the light amount distribution is as shown by the two-dot chain line C in FIG.

このように7オーカスの状態に応じてフォトセンサ10
の受光面を照射する光束の半径及び光量分布が変化する
。 したがって、受光面の小径部10a(半径r1) 
 による受光量に応じた検出出力va と、大径部10
b(半径r2 )  による受光量に応じた検出出力v
bとの割合がフォーカス状態によって変化する。
In this way, depending on the state of the 7 orcus, the photo sensor 10
The radius and light intensity distribution of the light beam that illuminates the light-receiving surface of the light-receiving surface changes. Therefore, the small diameter portion 10a (radius r1) of the light receiving surface
The detection output va according to the amount of light received by the large diameter part 10
Detection output v according to the amount of light received by b (radius r2)
b changes depending on the focus state.

そこで、差動増幅器を用いた減算回路11によって小径
部10aと大径部10bによる検出用、力Va とvb
ノ差(V(1=Va−Vb ) tトF)、比較回路1
2によって合焦時の差出力Vd に相当する基準電圧v
r と比較して、Vr−Vdに応じた信号をフォーカス
エラー信号SF として出力する。
Therefore, a subtraction circuit 11 using a differential amplifier is used to detect the forces Va and vb by the small diameter part 10a and the large diameter part 10b.
difference (V(1=Va-Vb)tF), comparison circuit 1
2, the reference voltage v corresponding to the difference output Vd at the time of focusing
In comparison with r, a signal corresponding to Vr-Vd is output as a focus error signal SF.

なお、基準電圧vrはツェナダイオードZDによる定電
圧を可変抵抗VRで分圧して作る。 また、定電圧源を
用いればツェナダイオードZDは不要である。
Note that the reference voltage vr is created by dividing a constant voltage generated by a Zener diode ZD using a variable resistor VR. Further, if a constant voltage source is used, the Zener diode ZD is not necessary.

このようにすると、合焦時にはVd=V、  となるの
でフォーカスエラー信号SFはゼロになり、ディスク6
が遠すぎる場合には、Va に対してVbの割合が小さ
くなるので、vd>Vr  となり、負のフォーカスエ
ラー信号S、rが現われ、ディスク6が近すぎる場合に
は、Va に対してvb の割合が大きくなるので、v
d<vr となり、正のフォーカスエラー信号SFが現
われる。
In this way, when in focus, Vd=V, so the focus error signal SF becomes zero, and the disc 6
If the disk 6 is too far away, the ratio of Vb to Va becomes smaller, so vd>Vr, and negative focus error signals S and r appear.If the disk 6 is too close, the ratio of Vb to Va becomes smaller. Since the ratio increases, v
d<vr, and a positive focus error signal SF appears.

このフォーカスエラー信号SFに応じて対物レンズ5を
光軸方向に移動させることにより、フォーカスずれを修
正できる。
By moving the objective lens 5 in the optical axis direction according to the focus error signal SF, the focus shift can be corrected.

ところで、フオトセ/す10の受光面を照射する全光量
はフォーカス状態によって変わらないので、小径部10
aと大径部10bによる検出出力vaとvb  の和を
とれば、光量のロスがなく高感度で情報信号(R−F信
号)を得ることができる。
By the way, since the total amount of light irradiating the light receiving surface of the photo sensor 10 does not change depending on the focus state, the small diameter portion 10
By taking the sum of detection outputs va and vb from a and the large diameter portion 10b, it is possible to obtain an information signal (RF signal) with high sensitivity without loss of light quantity.

次に、この発明をトラッキングエラー信号も同時に検出
できるように、4分割7オトセンサを使用した光検出装
置に適用した実施例を第4図に示す。 なお、光学系の
構成は第2図と同様であるので1図示及び説明を省略す
る。
Next, FIG. 4 shows an embodiment in which the present invention is applied to a photodetection device using a 4-division 7-photo sensor so that a tracking error signal can also be detected at the same time. The configuration of the optical system is the same as that shown in FIG. 2, so illustration and explanation will be omitted.

この実施例に用いるフォトセンサ20は、その受光面が
、従来の4分割フォトセンサと同様に中心を通って直交
する2本の線によって4分割されると共に、さらに中心
からの半径が異なる同心円状に2分割され、4個のA円
形状の小径部a−dと4個のμ扇形状の大径部eyhと
に8分割されている。
The photosensor 20 used in this embodiment has a light-receiving surface divided into four parts by two orthogonal lines passing through the center, similar to the conventional four-part photosensor. It is divided into 8 parts into 4 A-circular small diameter parts ad and 4 μ fan-shaped large diameter parts eyh.

そして、このフォトセンサ20の受光面の4個の小径部
a−xdからの出力を加算回路21に入力して和をとり
、4個の大径部e−hからの出力を加算回路22に入力
して和をとり、さらに加算阻路23によって両顎算回路
21.22の出力の和をとって、すなわち全受光面によ
る出力によって情報信号(R−F信号)を得る。
The outputs from the four small diameter sections a-xd on the light-receiving surface of the photosensor 20 are input to an adding circuit 21 and summed, and the outputs from the four large diameter sections e-h are sent to an adding circuit 22. The inputs are summed, and the outputs of the two-jaw arithmetic circuits 21 and 22 are summed by the adding block 23, that is, an information signal (RF signal) is obtained by outputting from all the light receiving surfaces.

一方、加算回路21と22の出力を、第6図(ロ)によ
って説明したのと同様に、減算回路24に入力して差を
とり、その差出力vdヲ比較回路25に入力して、合焦
時の差出力に相当する基準電圧Vr  と比較して、V
r−Vd  に応じた信号をフォーカスエラー信号SF
として出力する。
On the other hand, the outputs of the adder circuits 21 and 22 are input to the subtracter circuit 24 to calculate the difference, and the difference output vd is input to the comparator circuit 25 to calculate the sum, as explained in FIG. 6(b). Compared with the reference voltage Vr corresponding to the difference output in focus, V
The signal corresponding to r-Vd is the focus error signal SF.
Output as .

なお、減算回路24による差出力をそのままフォーカス
エラー信号として用いてもよい。
Note that the difference output from the subtraction circuit 24 may be used as it is as the focus error signal.

さらに加算回路26〜29によって7オトセ/す20の
4分割された受光面における各A円形状部分の小径部と
大径部aとe 、、bとf、cとg。
Further, adding circuits 26 to 29 calculate the small diameter portion and large diameter portion a, e, b, f, c, and g of each A circular portion on the light receiving surface divided into four parts.

dとhの出力の和をとり、加算回路30と31VCよっ
て各対角関係にあるμ円形状部分a+eとc+g 、b
十fとd+hの出力の和をそれぞれとり、その和信号S
+、S2をトラッキング検出回路32に入力し、トラッ
キングエラー信号STを得る。
The sum of the outputs of d and h is calculated, and the addition circuits 30 and 31VC calculate the diagonal μ-circular portions a+e, c+g, and b.
The sum of the outputs of 10f and d+h is calculated, and the sum signal S
+, S2 are input to the tracking detection circuit 32 to obtain the tracking error signal ST.

トラッキング検出回路32は、第5図に示すような公知
の回路を使用する。 そこで、この回路の動作を第6図
も参照して簡単に説明する。
The tracking detection circuit 32 uses a known circuit as shown in FIG. Therefore, the operation of this circuit will be briefly explained with reference to FIG. 6 as well.

フオトセ/す20の4分割受光面の各対角関係にある部
分の出力の和信号s+ l S2を減算回路Slh  
で差をとり、加算回路ADで和をとって、第6図(イ)
に示すような差信号S3  と(ロ)に示すような和信
号S4 を得る゛。 このRF帯域の差信号S3は、デ
ィスクのピットに対して読取りスポットがどちら側にあ
るかの位置情報をもつ。  RF帯域の和信号S4 は
ビデオ信号等の情報信号を意味する。
The sum signal s+l S2 of the outputs of the diagonal parts of the four-divided light-receiving surface of the photo sensor 20 is subtracted by the subtraction circuit Slh.
The difference is taken with the addition circuit AD, and the sum is taken with the addition circuit AD, as shown in Fig. 6 (a).
A difference signal S3 as shown in (b) and a sum signal S4 as shown in (b) are obtained. This RF band difference signal S3 has positional information as to which side the reading spot is on with respect to the pits of the disk. The RF band sum signal S4 means an information signal such as a video signal.

この和信号S4を立上りパルス発生回路RPCおよび立
下りパルス発生回路FPGに通すことにより、第6図(
ハ)およびに)に示すサンプリングパルスss I 8
6を発生させる。
By passing this sum signal S4 through the rising pulse generation circuit RPC and the falling pulse generation circuit FPG, as shown in FIG.
Sampling pulse ss I 8 shown in c) and d)
Generate 6.

このサンプリングパルスS5,56vcよって、ケ9−
ト回路G1 + G2を通る差信号S3は和信号S4の
立上りおよび立下りのタイミングでサンプリングされ、
ホールド回路HD1. HD2 によってそ、れぞれホ
ールドされて、第6図(ホ)および(へ)に示す信号S
、 、 Ssを発生する。
With this sampling pulse S5, 56vc,
The difference signal S3 passing through the gate circuit G1 + G2 is sampled at the rising and falling timings of the sum signal S4,
Hold circuit HD1. The signals S shown in FIG. 6 (E) and (F) are held by HD2 and
, , generate Ss.

これらの信号Sy 、 Ssは、サンプリングホールド
されることによりRF帯域からトラッキングエラー信号
帯域に帯域変換されており、しかもトランクの中心を境
としてバイポーラ信号となっている。 したがって、こ
の信号は夫々トラッキングエラー(ラジアルエラー)を
表わすが、更に信号を確実なものにするため、減算回路
SB2 によってs、 −Saの減算を行って、第6図
(υに示すようなトラッキングエラー信号STを得るよ
うにしている。7 第7図は、この発明の他の実施例を示す図であり、光学
系はやはり第2図と同じであるから図示及び説明を省略
する。
These signals Sy and Ss are band-converted from the RF band to the tracking error signal band by sampling and holding, and are bipolar signals with the center of the trunk as the boundary. Therefore, each of these signals represents a tracking error (radial error), but in order to make the signals more reliable, the subtraction circuit SB2 subtracts s and -Sa to obtain the tracking error as shown in FIG. 6 (υ). An error signal ST is obtained.7 FIG. 7 is a diagram showing another embodiment of the present invention, and since the optical system is the same as that in FIG. 2, illustration and description thereof will be omitted.

この実施例におけるフォトセンサ40は、従来の4分割
7オトセンサの4個のA円形状の受光面のうちの1個だ
けを他の部分a、b、cに比して半径の小さい小径部d
としたものである。
The photosensor 40 in this embodiment has only one of the four A-circular light-receiving surfaces of the conventional 4-division 7-oto-sensor.
That is.

そして、この7オトセンサ40の受光面の小径部dと1
個の大径部Cの出力を減算回路jjNc入力して差をと
り、その差信号Vdを比較回路42に入力して基準電圧
vrと比較してVr−Vdに応じた7オ一カスエラー信
号sFを得る。
The small diameter portion d of the light receiving surface of this 7-point sensor 40 and the
The outputs of the large diameter portions C are inputted to a subtraction circuit jjNc to take the difference, and the difference signal Vd is inputted to the comparison circuit 42 and compared with the reference voltage vr to generate a 7-occasion error signal sF corresponding to Vr-Vd. get.

一方、フォトセンサ40の受光面の大径部aとbの出力
をトラッキング検出回路43に入力してトラッキングエ
ラー信号sT を得る。 また、加算回路44によって
大径部aとbの出力の和をとって情報信号(R−F信号
)を得る。
On the other hand, the outputs of the large diameter portions a and b of the light receiving surface of the photosensor 40 are input to a tracking detection circuit 43 to obtain a tracking error signal sT. Further, an information signal (RF signal) is obtained by adding the outputs of large diameter portions a and b using an adder circuit 44.

このフォトセンサ40を光束の中心に合わせるには、受
光面の大径部aとbの出力の差によって2方向のずれを
検出し、大径部すとCの出力の差によってy方向のずれ
を検出して、その両方がゼロになるようにすればよいの
で、調整が簡単である。
In order to align this photo sensor 40 with the center of the light beam, the deviation in two directions is detected by the difference in the output of large diameter parts a and b of the light receiving surface, and the deviation in the y direction is detected by the difference in the output of large diameter parts a and c. Adjustment is easy because all you need to do is to detect and make both of them zero.

以上実施例について説明したように、この発明難しい調
整の必要もなくなり、光量のロスもなくなるという優れ
た効果を奏する。
As described above with respect to the embodiments, this invention has excellent effects in that difficult adjustments are not required and there is no loss of light quantity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の光検出装置の例を示す構成図、第2図
は、この発明による光検出装置の光学系を示す構成図、 第3図(イ)〜(ハ)は、この発明による光検出装置の
フォーカスエラー信号検出原理を説明するための図であ
り、(イ)は光路図、(O)は検出回路図、(ハ)はフ
ォーカス状態によるフォトセンサの受光面上での光量分
布を示す曲線図である。 第4図は、この発明を4分割7オトセンサを使用した光
検出装置に適用した実施例を示すブロック図、 第5図は、そのトラッキング検出回路のブロック図、 第6図は、第5図の回路の動作説明に供する各部の信号
波形図。 第7図は、この発明の他の実施例を示すブロック図であ
る。 1・・・半導体レーザ  2・・・コリメータレンズ3
・・・偏光プリズム  4・・・λ/4板5・・・対物
レンズ   6・・・ディスク7・・・臨界プリズム 8.10,20.40・・・フォトセンサ11.24.
41・・・減算回路 12.25.42・・・比較回路
FIG. 1 is a configuration diagram showing an example of a conventional photodetection device, FIG. 2 is a configuration diagram showing an optical system of a photodetection device according to the present invention, and FIGS. FIG. 2 is a diagram for explaining the focus error signal detection principle of the photodetector, in which (A) is an optical path diagram, (O) is a detection circuit diagram, and (C) is the amount of light on the light receiving surface of the photosensor depending on the focus state. It is a curve diagram showing distribution. FIG. 4 is a block diagram showing an embodiment in which the present invention is applied to a photodetection device using a 4-divided 7-point sensor. FIG. 5 is a block diagram of its tracking detection circuit. FIG. 3 is a signal waveform diagram of each part used to explain the operation of the circuit. FIG. 7 is a block diagram showing another embodiment of the invention. 1... Semiconductor laser 2... Collimator lens 3
...Polarizing prism 4...λ/4 plate 5...Objective lens 6...Disc 7...Critical prism 8.10, 20.40...Photo sensor 11.24.
41...Subtraction circuit 12.25.42...Comparison circuit

Claims (1)

【特許請求の範囲】 1 ビットが刻まれているディスクを照射したスポット
光の反射光を対物レンズを介してフォトセンサで受光し
て情報信号を得る光検出装置において、前記フォトセン
サの受光面を、中心からの半径が異なる同心円又はその
一部をなす小径部と大径部とによって形成し、その小径
部の出力と大径部の出力との差によってフォーカスエラ
ー信号を得る回路を設けたことを特徴とする光検出装置
。 2 フオトセ/すの受光面を形成する小径部と大径部が
、それぞれ中心を通って直交する2本の線によって4分
割され、その各対角関係にあるA円形状部分の出力の和
からトラツキ7 /’Z5−信号が得られるようにした
特許請求の範囲第1項記載の光検出装置。
[Claims] In a photodetecting device that obtains an information signal by receiving the reflected light of a spot light irradiated on a disk on which one bit is engraved by a photosensor via an objective lens, the light receiving surface of the photosensor is A circuit is provided which is formed by a small diameter part and a large diameter part forming concentric circles or parts thereof having different radii from the center, and obtains a focus error signal based on the difference between the output of the small diameter part and the output of the large diameter part. A photodetection device characterized by: 2 The small diameter part and the large diameter part that form the light receiving surface of the photo sensor are divided into four parts by two lines passing through the center and intersecting at right angles, and from the sum of the outputs of the diagonal A circular parts, The photodetecting device according to claim 1, wherein a tracking 7/'Z5- signal is obtained.
JP12557081A 1981-08-11 1981-08-11 Photo detector Pending JPS5827027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12557081A JPS5827027A (en) 1981-08-11 1981-08-11 Photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12557081A JPS5827027A (en) 1981-08-11 1981-08-11 Photo detector

Publications (1)

Publication Number Publication Date
JPS5827027A true JPS5827027A (en) 1983-02-17

Family

ID=14913453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12557081A Pending JPS5827027A (en) 1981-08-11 1981-08-11 Photo detector

Country Status (1)

Country Link
JP (1) JPS5827027A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544424A (en) * 1991-08-13 1993-02-23 Kubota Corp Breather device of engine
US5497229A (en) * 1993-05-28 1996-03-05 Asahi Kogaku Kogyo Kabushiki Kaisha Photometering apparatus having a split light receiving device
JP2020534534A (en) * 2017-09-21 2020-11-26 サフラン エレクトロニクス アンド ディフェンス Positioning and detection device with multiple photodiodes
CN113721061A (en) * 2021-10-09 2021-11-30 福州大学 Non-contact wireless transmission alternating current voltage transformer based on electroluminescent device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125417A (en) * 1979-03-20 1980-09-27 Matsushita Electric Ind Co Ltd Photodetector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125417A (en) * 1979-03-20 1980-09-27 Matsushita Electric Ind Co Ltd Photodetector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544424A (en) * 1991-08-13 1993-02-23 Kubota Corp Breather device of engine
US5497229A (en) * 1993-05-28 1996-03-05 Asahi Kogaku Kogyo Kabushiki Kaisha Photometering apparatus having a split light receiving device
JP2020534534A (en) * 2017-09-21 2020-11-26 サフラン エレクトロニクス アンド ディフェンス Positioning and detection device with multiple photodiodes
CN113721061A (en) * 2021-10-09 2021-11-30 福州大学 Non-contact wireless transmission alternating current voltage transformer based on electroluminescent device

Similar Documents

Publication Publication Date Title
JPS618744A (en) Focus error detector of optical disc device
JPH01116930A (en) Position detecting device for light beam
JPS5827027A (en) Photo detector
US4807212A (en) Correcting for comatic aberration in an optical head of an optical disk apparatus
JPS6155047B2 (en)
JPH04353633A (en) Error signal generator for optical disk apparatus
JPS6043234A (en) Detector for defocus of optical disk head
JPH07294231A (en) Optical surface roughness sensor
JPS6123572B2 (en)
JP2552660B2 (en) Focus error detector
JPH0231337A (en) Focus error detecting device
JPH01303632A (en) Optical disk device
JP2650118B2 (en) Optical head device
JPH02192040A (en) Optical pickup device
JP2686323B2 (en) Focus error detection device
JPH0743835B2 (en) Focus error detector
JPS62143235A (en) Out-of-focus detector for optical information recording and reproducing device
JPS6142743A (en) Optical information reader
JPS61230633A (en) Focus position detecting device
JP3581941B2 (en) Optical disc apparatus and method for adjusting light beam projection position
JPS59231738A (en) Optical pickup
JPS60239936A (en) Optical information detector
JPS60177436A (en) Optical pickup
JPS61227233A (en) Optical reading device
JPS60187941A (en) Optical information detector