JPS5826901A - Recovery boiler for waste heat - Google Patents

Recovery boiler for waste heat

Info

Publication number
JPS5826901A
JPS5826901A JP12413481A JP12413481A JPS5826901A JP S5826901 A JPS5826901 A JP S5826901A JP 12413481 A JP12413481 A JP 12413481A JP 12413481 A JP12413481 A JP 12413481A JP S5826901 A JPS5826901 A JP S5826901A
Authority
JP
Japan
Prior art keywords
economizer
steam
feed water
water
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12413481A
Other languages
Japanese (ja)
Inventor
石橋 則隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12413481A priority Critical patent/JPS5826901A/en
Publication of JPS5826901A publication Critical patent/JPS5826901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はガスタービンやジーゼル主機等からの排ガスの
排熱を回収する。ための排熱回収ボイラに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention recovers exhaust heat from exhaust gas from a gas turbine, diesel main engine, or the like. Regarding waste heat recovery boiler for

ガスタービンの排ガス中の排熱を回収して蒸気を発生し
、蒸気タービンへ低圧蒸気及び高圧蒸気を供給する排熱
回収ボイ2や、船舶においてジーゼル主機からの排ガス
中の排熱を回収して、発電用タービンを駆動するための
蒸気や船内雑用蒸気を得る排熱回収ボイラは、共に省エ
ネルギ機器として活用されている。
The exhaust heat recovery boiler 2 recovers the exhaust heat in the exhaust gas of a gas turbine to generate steam and supplies low-pressure steam and high-pressure steam to the steam turbine, and recovers the exhaust heat in the exhaust gas from the main diesel engine in ships. Exhaust heat recovery boilers, which obtain steam to drive power generation turbines and steam for onboard miscellaneous purposes, are both used as energy-saving equipment.

第1図はガスタービンからの排熱を回収する従来の排熱
回収ボイラの概略的な構成を示した系統図であり、まず
これについて説明する。
FIG. 1 is a system diagram showing a schematic configuration of a conventional exhaust heat recovery boiler that recovers exhaust heat from a gas turbine, and this will be explained first.

第1図において1は過熱器、2は高圧蒸発器、2aは高
圧蒸気ドラム、3は2次節炭器、4は低圧蒸発器、4a
は低圧蒸気ドラム、5は1次節炭器、6は脱気器、7は
給水予熱器、la、 tb、5at3b、sa、s’b
、?’a、7bは夫に管寄せ’y:示している。そして
図示しないガスタービンからの排ガスは、矢印で示すよ
う匿、過熱器lから給水予熱器7の方向へ流れるように
なっている。一方給水は給水予熱器7から過熱器1側へ
向けて流れながら排ガスによって加熱されるものであり
、以下その作用を給水の流れに沿って説明する。
In Fig. 1, 1 is a superheater, 2 is a high-pressure evaporator, 2a is a high-pressure steam drum, 3 is a secondary economizer, 4 is a low-pressure evaporator, 4a
is a low pressure steam drum, 5 is a primary economizer, 6 is a deaerator, 7 is a feed water preheater, la, tb, 5at3b, sa, s'b
,? 'a, 7b is for the husband'y: Indicates. Exhaust gas from a gas turbine (not shown) flows from the superheater 1 to the feed water preheater 7 as indicated by an arrow. On the other hand, the feed water is heated by the exhaust gas while flowing from the feed water preheater 7 toward the superheater 1 side, and its operation will be explained below along the flow of the feed water.

復水ポンプ等(図示せず)から供給された給水は、給水
予熱器7に入り加熱された後、脱気器6にて脱気加熱さ
れる。
Feed water supplied from a condensate pump or the like (not shown) enters a feed water preheater 7 and is heated, and then is degassed and heated in a deaerator 6.

脱−気加熱された′給水は、低圧給水ポンプ(図示せず
)によって、低圧蒸気ドラム4aを介しV低圧蒸発器4
に供給される。ここで蒸発した低圧蒸気は蒸気タービン
(図示せず)の低圧部へ供給される。
The degassed and heated feed water is passed through the low pressure steam drum 4a to the low pressure evaporator 4 by a low pressure water pump (not shown).
is supplied to The low pressure steam evaporated here is supplied to the low pressure section of a steam turbine (not shown).

一方、脱気器6を経た給水は、高圧給水ポンプ(図示せ
ず)によって、1次節炭器5.2次節炭器3を通り、高
圧蒸気ドラム2aを介して高圧蒸発器2にも供給される
。ここで高圧蒸気となり過熱器1によって過熱された後
、蒸気タービン(図示せず)の高圧部へ供給される。
On the other hand, the water that has passed through the deaerator 6 is supplied to the high-pressure evaporator 2 through the primary economizer 5 and secondary economizer 3 via the high-pressure steam drum 2a by a high-pressure water pump (not shown). Ru. Here, the steam becomes high-pressure steam, is superheated by the superheater 1, and then supplied to the high-pressure section of a steam turbine (not shown).

此様に伝熱面が構成されているので、ガスタービンの排
熱は効率よく回収され、第2図にガスの流れ方向に沿っ
た各伝熱部の排ガス温度と給水・蒸気温度の関係を示し
た特性図からも、−見して無駄なく効率よ(熱回収が行
なわnている様子が判る。ところが、ガスタービンはそ
の特性上第3、図に示す様な排ガス特性を示す。即ち、
排ガス流量はガスタービン負荷に比例せず約70%負荷
以下では略一定、量となる。一方、排ガス温度、は約7
0%負荷まではガスタービン負荷に比例し、それ以上で
は略一定温度とな令。
Since the heat transfer surface is configured in this way, the exhaust heat of the gas turbine is efficiently recovered. From the characteristic diagram shown, it can be seen that heat recovery is being carried out efficiently without wastage.However, due to its characteristics, gas turbines exhibit the third exhaust gas characteristic as shown in the diagram.In other words,
The exhaust gas flow rate is not proportional to the gas turbine load and remains approximately constant below about 70% load. On the other hand, the exhaust gas temperature is about 7
The temperature is proportional to the gas turbine load up to 0% load, and the temperature is approximately constant above that.

このためガスタービン定格負荷附近にて第2図に実線で
示した様な最も熱回収効果が良くなる如く構成された排
ガスボイラは、その特、性上、低負荷域においては第2
図に破線で示した特性を示す。
For this reason, an exhaust gas boiler that is configured to have the best heat recovery effect near the gas turbine rated load, as shown by the solid line in Figure 2, has a second heat recovery effect in the low load range due to its characteristics.
The characteristics shown by the broken lines are shown in the figure.

実線と破線を比較すると、ボイラ入口側(過熱器1側)
は、排ガス温度の低下に伴なってガスタービン負荷に比
例して熱吸収量が減少しているが。
Comparing the solid line and the broken line, the boiler inlet side (superheater 1 side)
However, as the exhaust gas temperature decreases, the amount of heat absorption decreases in proportion to the gas turbine load.

ボイラ出口側(給水予熱器7側)は殆んど排ガ、ス温度
の変化はなく、熱吸収量もあまり減少しないことが判る
It can be seen that on the boiler outlet side (feed water preheater 7 side), there is almost no change in exhaust gas temperature and the amount of heat absorption does not decrease much.

そこで高圧蒸発器2と節炭器3の特性の比較を第4図に
示す。
Therefore, a comparison of the characteristics of the high-pressure evaporator 2 and the economizer 3 is shown in FIG.

囚は高圧蒸発器2の蒸発量をガスタービン100%負荷
時と25%負荷時を比較したものである。
The figure shows a comparison of the evaporation amount of the high-pressure evaporator 2 when the gas turbine is 100% loaded and when the gas turbine is 25% loaded.

ガスタービン負荷が25%負荷のときの蒸発器は、10
0%負荷時の約50%となる。
When the gas turbine load is 25%, the evaporator is 10
It is approximately 50% at 0% load.

(B)は同じ(節炭器3における熱吸収量を比較したも
のである。
(B) is the same (comparison of heat absorption amount in the economizer 3).

ガスタービン負荷が25%に低下しても熱吸収量は約8
0%もある。
Even if the gas turbine load decreases to 25%, the amount of heat absorbed is approximately 8
There are also 0%.

このため高圧蒸気の蒸発量に従って給水量を・減少させ
ると節炭器3においてスチーミングが起る。
Therefore, if the amount of water supply is reduced according to the amount of evaporation of high-pressure steam, steaming will occur in the energy saver 3.

従来の節炭器は、排ガスの流れに対して、給水が上昇及
び下降を繰り返すような配管構造となっているので、節
反器内部でスチーミングか起ると不均一流の発生、或は
一部の管に滞留が起る廊不具合が生じる。
Conventional energy savers have a piping structure in which the water supply repeatedly rises and falls relative to the flow of exhaust gas, so if steaming occurs inside the energy saver, uneven flow may occur or Corridor problems occur where stagnation occurs in some pipes.

このスチーミング防止のため、節炭器出口の給水温度を
抑制すべ(節炭器再循環を行なっている。
To prevent this steaming, the temperature of the water supply at the outlet of the economizer should be suppressed (recirculation is performed through the economizer).

この再循還は吸収熱を放出する必要があるため復水器等
に戻してしまい有効に利用されていない。
Since this recirculation requires releasing the absorbed heat, it is returned to the condenser or the like and is not used effectively.

(C)は節炭器でのスチーミング防止のための再循環を
含めた給水量を比較したものである。ガスタービン負荷
が25%に低下しても、約76%の給水が必要であり、
しかもそのうちの約40%(斜線部分)は節炭器再循環
によるものである。・以上述べたように、従来の排熱回
収ボイ゛うは、ボjう或いは°ガスタービンの特性上や
むを得な、いこととは云え、回収した熱が有効に活用さ
れていないという欠点があった。
(C) compares the amount of water supplied including recirculation to prevent steaming in the economizer. Even if the gas turbine load drops to 25%, approximately 76% of the water supply is required,
Moreover, about 40% of that amount (the shaded area) is due to economizer recirculation.・As mentioned above, conventional exhaust heat recovery boilers have the disadvantage that the recovered heat is not used effectively, although this is unavoidable due to the characteristics of the engine or gas turbine. .

本発明は、上記のような従来の欠点を除去することを目
的としてなされたものであり、回収した熱を無駄に排出
、することなく、有効に活用して熱効率を向上させよう
とするものである。
The present invention was made with the aim of eliminating the above-mentioned conventional drawbacks, and aims to improve thermal efficiency by effectively utilizing the recovered heat without wasting it. be.

以下本発明に係る排熱回収ボイラの一実施例を、第5図
に示した概略的な系統図を参照しながら詳細に説明する
。なお、第5図において第1図と同一部分には同一符号
を附して示しであるので、その部分の説明は省略する。
An embodiment of the exhaust heat recovery boiler according to the present invention will be described in detail below with reference to the schematic system diagram shown in FIG. Note that in FIG. 5, the same parts as in FIG. 1 are designated by the same reference numerals, so the explanation of those parts will be omitted.

本発明は2次節炭器3と高圧蒸発器2の間に蒸発形節炭
器11を設けたことを特徴とするものである。すなわち
、蒸発形節炭器11は、上昇管のみによって形成され、
下部に管寄せ12と上部に管寄せ13を配置し、各管寄
せ12.13間に上昇管11aのみによって構成される
蒸発形節炭器11が設けられている。従って2次節炭器
3によって加熱された給水は下部の管寄せ12において
、蒸発形節炭器11の上昇管11aに均一に配分され、
排ガスとの熱交換によってさらに加熱される。
The present invention is characterized in that an evaporative type economizer 11 is provided between the secondary economizer 3 and the high-pressure evaporator 2. That is, the evaporative economizer 11 is formed only by the riser pipe,
A header 12 and a header 13 are arranged in the lower part and the header 13 in the upper part, respectively, and between each header 12, 13 there is provided an evaporative type economizer 11 consisting only of a riser pipe 11a. Therefore, the feed water heated by the secondary economizer 3 is uniformly distributed to the riser pipe 11a of the evaporative economizer 11 in the lower header 12,
It is further heated by heat exchange with the exhaust gas.

蒸発形節炭器11で加熱された給水の一部は蒸発する。A portion of the supplied water heated by the evaporative economizer 11 evaporates.

すると、上昇管11a中の給水の平均比重量が減少する
ため、給水の上昇流は加速され、上昇管での流れが助長
されるので、蒸気とともに給水が気水混合体となって上
部の管寄せ13に集合される。管寄せ13に集められた
気水混合体は、高圧蒸気ドラム2aで気水分離され、水
分は高圧蒸発器2に送られ抽ガスとの熱交換により蒸発
し、この蒸気は高圧蒸気ドラム2aで蒸発形節炭器11
にて蒸発した蒸気と混合して過熱器1へ送られる。
Then, since the average specific weight of the feed water in the riser pipe 11a decreases, the upward flow of the feed water is accelerated and the flow in the riser pipe is promoted, so that the feed water together with steam becomes a steam-water mixture and flows into the upper pipe. Gather at Yose 13. The steam-water mixture collected in the header 13 is separated into steam and water by the high-pressure steam drum 2a, and the moisture is sent to the high-pressure evaporator 2 and evaporated by heat exchange with the extracted gas, and this steam is evaporated by the high-pressure steam drum 2a. Evaporation type economizer 11
The mixture is mixed with the vapor evaporated at , and sent to the superheater 1.

そして、過熱器1において規定の温度まで過熱された蒸
気は、蒸気タービンの高圧部へ供給される。
The steam superheated to a specified temperature in the superheater 1 is then supplied to the high pressure section of the steam turbine.

上述のように本発明によれば、伝熱管を上昇管のみで構
成する蒸発形節炭器11を、2次節炭器3と高圧蒸発器
2との間に設け、この蒸発形節炭器11で給水の一部を
蒸発させるようにしたので、この蒸気によって給水の流
れが助長されて、従来の如(不均一流の発生や滞留等が
起ることはない。
As described above, according to the present invention, the evaporative economizer 11 whose heat transfer tubes are composed of only riser tubes is provided between the secondary economizer 3 and the high-pressure evaporator 2, and the evaporative economizer 11 Since a part of the feed water is evaporated, the flow of the feed water is promoted by this steam, and unlike the conventional method, non-uniform flow and stagnation do not occur.

また、第4図(D)に示すように本発明によれば、ガス
タービン負荷が25%に低下した場合の給水量は100
%負荷時の50%でよく、これは、第4図(A)に示し
た高圧蒸発量の関係と等しくなる。
Further, as shown in FIG. 4(D), according to the present invention, when the gas turbine load decreases to 25%, the water supply amount is 100%.
It may be 50% at % load, which is equal to the relationship of high-pressure evaporation amount shown in FIG. 4(A).

なお、第4図(D)に示されているように、本発明によ
れば、タービン負荷が25%に低下したとき、蒸発形節
炭器への給水量のうち約13%(斜視部分)を蒸発させ
ることによって、排ガスから回収した熱量を全て有効に
活用することが出来る。
As shown in FIG. 4(D), according to the present invention, when the turbine load decreases to 25%, about 13% of the water supply to the evaporative economizer (slanted view) By evaporating the exhaust gas, all of the heat recovered from the exhaust gas can be effectively utilized.

本発明は上述の一実施例に限定されることなく、要旨を
逸脱しない範囲内で種々変形して実施できることは云う
までもない。また本8発明をガスタービンからの排熱を
回収するものとして説明したが、これに限らず、ガスタ
ービンと蒸気タービンのコンバインドプラントにおける
排熱回収用としても利用できるものである。
It goes without saying that the present invention is not limited to the above-mentioned embodiment, but can be implemented with various modifications without departing from the scope of the invention. Furthermore, although the present invention has been described as a device for recovering exhaust heat from a gas turbine, the present invention is not limited to this, but can also be used for exhaust heat recovery in a combined plant of a gas turbine and a steam turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排熱回収ボイラの概略的な構成を示す系
統図、第2図は排熱回収ボイラに於げる排ガスの流れ方
向に沿う各伝熱部の排ガス温度と、給水・蒸気温度の関
係を示した特性図、第3図はガへタービンの負荷状態に
対す゛る排ガニ温度と排ガス量の関係を示した特性図、
第4図は従来の排熱回収ボイラと本発明に係る排熱回収
ボイラとの効果を比較するために、ガスタービンの10
0%負荷と25%負荷におけ全高圧蒸発器と節炭器の特
性を比較した図、第5図は本発明に係る排熱回収ボイラ
の一実施例の概略的構成を示す系統図である。 l・・過熱器、2・・高圧蒸発器、3,5・・節炭器、
4・・低圧蒸発器、6・・脱気器、7・・給水予熱器、
11・・蒸発形節炭器・。 第3図 0                        
      1000 噛゛入タービンφ刷 2 第4図
Figure 1 is a system diagram showing the general configuration of a conventional waste heat recovery boiler, and Figure 2 shows the exhaust gas temperature at each heat transfer section along the flow direction of exhaust gas in the waste heat recovery boiler, and the supply water and steam. Figure 3 is a characteristic diagram showing the relationship between temperature and the relationship between exhaust gas temperature and exhaust gas amount with respect to the load condition of the gas turbine.
FIG. 4 shows a 10-meter scale of a gas turbine in order to compare the effects of a conventional exhaust heat recovery boiler and an exhaust heat recovery boiler according to the present invention.
FIG. 5 is a diagram comparing the characteristics of a full high-pressure evaporator and an energy saver at 0% load and 25% load, and is a system diagram showing a schematic configuration of an embodiment of the exhaust heat recovery boiler according to the present invention. . l...Superheater, 2...High pressure evaporator, 3,5...Economy device,
4. Low pressure evaporator, 6. Deaerator, 7. Water supply preheater,
11. Evaporation type economizer. Figure 3 0
1000 Biting turbine φ printing 2 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 給水から脱気する脱気器と、この脱気器で脱気された給
水が供給され、該給水を上昇及び下降を繰り返しながら
加熱する第1の節炭器と、この第1の節炭器で加熱され
た給水を上昇管に導入して加熱する蒸発形節炭器と、こ
の蒸発形節炭器を経た給水を礒水分離し、分離された水
分を蒸発させる高圧蒸発器と、この高圧蒸発器にて蒸発
した蒸気及び前記気水分離された蒸気を過熱する過熱器
とを具備し、排ガスが前記過熱器から前記脱気器方向へ
流れるようにして成る排熱回収ボイラ。
a deaerator that deaerates water from the feed water; a first economizer to which the feed water deaerated by the deaerator is supplied; and a first economizer that heats the feed water while repeating rising and falling; and the first economizer. an evaporative type economizer that introduces and heats the feed water heated by An exhaust heat recovery boiler comprising a superheater for superheating the steam evaporated in an evaporator and the steam separated from the steam and water, the exhaust gas flowing from the superheater toward the deaerator.
JP12413481A 1981-08-10 1981-08-10 Recovery boiler for waste heat Pending JPS5826901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12413481A JPS5826901A (en) 1981-08-10 1981-08-10 Recovery boiler for waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12413481A JPS5826901A (en) 1981-08-10 1981-08-10 Recovery boiler for waste heat

Publications (1)

Publication Number Publication Date
JPS5826901A true JPS5826901A (en) 1983-02-17

Family

ID=14877758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12413481A Pending JPS5826901A (en) 1981-08-10 1981-08-10 Recovery boiler for waste heat

Country Status (1)

Country Link
JP (1) JPS5826901A (en)

Similar Documents

Publication Publication Date Title
US6092490A (en) Heat recovery steam generator
US5293842A (en) Method for operating a system for steam generation, and steam generator system
AU755040B2 (en) Heat recovery steam generator
EP0391082A2 (en) Improved efficiency combined cycle power plant
US3803846A (en) Waste heat recovery process
CA1223488A (en) Steam generation and reheat apparatus
US4387577A (en) Boilers
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
JPS6030401B2 (en) Recirculation device for intermediate superheater
JPS5826901A (en) Recovery boiler for waste heat
JPH0440524B2 (en)
JP2944783B2 (en) Natural circulation type waste heat recovery boiler
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
JPH0445301A (en) Natural circulation waste heat recovery heat exchanger
JPH01280604A (en) Method of improving efficiency of steam process
JPS6016802Y2 (en) Two-stage pressure type exhaust gas economizer
JPS62131102A (en) Supercritical variable pressure operation type boiler
JPH0988516A (en) Exhaust heat recovery boiler
JPS6014082Y2 (en) Exhaust gas heat recovery device
GB816765A (en) Steam power plants
KR820002030B1 (en) The method of steam generating using a steam generator
JPH0227282Y2 (en)
JPS6365806B2 (en)
JPH11350921A (en) Exhaust heat recovery boiler
JPH0330763B2 (en)